JPH03152381A - Very low temperature cooling device - Google Patents

Very low temperature cooling device

Info

Publication number
JPH03152381A
JPH03152381A JP29055389A JP29055389A JPH03152381A JP H03152381 A JPH03152381 A JP H03152381A JP 29055389 A JP29055389 A JP 29055389A JP 29055389 A JP29055389 A JP 29055389A JP H03152381 A JPH03152381 A JP H03152381A
Authority
JP
Japan
Prior art keywords
vibration
vibration damping
dewar
cooler
damping member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29055389A
Other languages
Japanese (ja)
Inventor
Yoshio Kazumoto
数本 芳男
Kazuo Kashiwamura
和生 柏村
Yoshio Furuishi
古石 喜郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29055389A priority Critical patent/JPH03152381A/en
Publication of JPH03152381A publication Critical patent/JPH03152381A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/13Vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Abstract

PURPOSE:To improve vibration insulation by filling a space between a cooler and a Dewar with a vibration damping member having a vibration damping effect. CONSTITUTION:A space 7a between a cold finger 4 and a cylinder wall 2 is filled therein with a vibration damping member 10, the thin cylinder wall 2 being supported by said two members. The wall of the cold finger 4 has its thickness durable against internal pressure of several tens atoms, so that the frequency of vibration of the normal mode of the cylinder wall 2 supported by the vibration damping member 10 and the cold finger 4 is very high and is unlikely to resonate for vibration caused by operation of a cooler. Further, the vibration damping member has a greater vibration damping characteristic in itself and hence the vibration is further suppressed. Hereby, vibration isolation is improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、赤外線素子等の各種素子の冷却を行なう極
低温冷却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cryogenic cooling device for cooling various elements such as infrared elements.

[従来の技術] 第6図は、例えば米国特許4802345号に開示され
た従来の極低温冷却装置を一部切り欠いて内部を示す側
面図である。図において、(1)はデュワー、であり、
薄い金属またはガラスを成形した円筒壁(2)および金
属製のキャップ(3)を気密に接合することにより構成
されている。また、デュワー、(1)の内部にはコール
ドフィンガー(4)が同心状に挿入されており、コール
ドフィンガー(4)は連結管(5)及び連結管(5)を
介して連通されている圧縮機(図示されていない)とと
もに全体として、例えばスターリングサイクル冷却機の
ような、ガスサイクル冷却機(6)を構成している。一
方、コールドフィンガー(4)とデュワー、(1)の間
の空間(7)内には、伝熱手段(8)として、本冷却装
置の冷却温度においてもガス状態を維持する低沸点ガス
(例えば、ネオンガス等)が封入されており、こうして
、冷却機(6)の動作によりコールドフィンガー(4)
の先端の低温部(4a)に発生した冷熱は、このガスの
熱伝導の作用により、デュワー、(1)の先端にあるキ
ャップ(3)を冷却し、さらに、キャップ(3)上に設
けられた被冷却体(9)を冷却するよう構成されている
[Prior Art] FIG. 6 is a partially cutaway side view showing the interior of a conventional cryogenic cooling device disclosed in, for example, US Pat. No. 4,802,345. In the figure, (1) is Dewar,
It is constructed by airtightly joining a cylindrical wall (2) made of thin metal or glass and a metal cap (3). Further, a cold finger (4) is inserted concentrically into the inside of the dewar (1), and the cold finger (4) is connected to a compression pipe (5) and a compression pipe (5) that communicate with each other via a connecting pipe (5). Together with the machine (not shown), they collectively constitute a gas cycle cooler (6), for example a Stirling cycle cooler. On the other hand, in the space (7) between the cold finger (4) and the dewar (1), a low boiling point gas (e.g. , neon gas, etc.), and in this way, the operation of the cooler (6) causes the cold finger (4) to
The cold heat generated in the low temperature part (4a) at the tip of the dewar cools the cap (3) at the tip of the dewar (1) due to the heat conduction of this gas, and further cools the cap (3) at the tip of the dewar (1). It is configured to cool the object (9) to be cooled.

次に、上記した従来の極低温冷却装置の動作について説
明する。冷却機(6)に外部からエネルギーを入力する
と、冷却機(6)の一部をなすコールドフィンガー(4
)の先端の低温部(4a)には冷熱が発生する。一方、
コールドフィンガー(4)とデュワー、(1)の間の空
間(7)内には、本極低温冷却装置の冷却温度において
もガス状態を維持する低沸点ガス(例えは、ネオンガス
等)が伝熱手段(8)として封入されているため、コー
ルドフィンガー(4)の低温部(4a)に発生した冷熱
はこのガスの熱伝導によりキャップ(3)に伝達され、
こうして、キヤ・ツブ(3)及びこの上に設けられた被
冷却体(9)が冷却1m(6)により冷却されることに
なる。
Next, the operation of the conventional cryogenic cooling device described above will be explained. When energy is input from the outside to the cooler (6), the cold fingers (4) forming a part of the cooler (6)
) Cold heat is generated in the low temperature part (4a) at the tip. on the other hand,
In the space (7) between the cold finger (4) and the dewar (1), a low boiling point gas (for example, neon gas, etc.) that maintains a gas state even at the cooling temperature of this cryogenic cooling device is used for heat transfer. Since it is enclosed as a means (8), the cold heat generated in the low temperature part (4a) of the cold finger (4) is transmitted to the cap (3) by thermal conduction of this gas,
In this way, the cab (3) and the object to be cooled (9) provided thereon are cooled by the cooling 1 m (6).

なお、ここでは、本冷却装置に用いられるガスサイクル
冷却機の構成と動作については説明を省略したが、各種
ガスサイクル冷却機の構成と冷熱発生の原理については
、文献(rCryoco。
Although the explanation of the structure and operation of the gas cycle cooler used in this cooling device has been omitted here, the structure of various gas cycle coolers and the principle of generating cold heat can be found in the literature (rCryoco.

1ersJ  (G、Walker、PlenumPr
ess、   New    York、    19
83)  )  !こ詳細に説明されている。
1ersJ (G, Walker, PlenumPr
ess, New York, 19
83))! This is explained in detail.

[発明が解決しようとする課題] 従来の極低温冷却装置は以上のように構成されているの
で、円筒壁(2)の熱伝導による冷熱の損失を小さくす
るためには、円筒壁(2−)の厚さをできるだけ薄くす
ることが望まれる。一方、円筒壁(2)の厚さを薄くす
ると円筒壁(2)の固有振動数が低下するため、外部か
らの振動(冷却機の運転によって生ずる振動なと)によ
って円筒壁(2)が共振し、場合によっては円筒壁(2
)が破壊するという問題点があった。また、円筒壁(2
)とコールドフィンガー(4)の間の隙間(7a)内に
も熱伝達媒体であるガスが封入されているため、低温部
(4a)の冷熱がこの隙間を通して散逸し、冷却装置の
効率を低下させるという問題点もあった。
[Problems to be Solved by the Invention] Since the conventional cryogenic cooling device is configured as described above, in order to reduce the loss of cold energy due to heat conduction through the cylindrical wall (2- ) is desired to be as thin as possible. On the other hand, when the thickness of the cylindrical wall (2) is reduced, the natural frequency of the cylindrical wall (2) decreases, so the cylindrical wall (2) resonates due to external vibrations (such as those caused by the operation of the cooler). In some cases, the cylindrical wall (2
) was destroyed. In addition, the cylindrical wall (2
) and the cold finger (4) is also filled with gas as a heat transfer medium, so the cold heat of the low temperature part (4a) is dissipated through this gap, reducing the efficiency of the cooling device. There was also the problem of allowing

この発明は上記のような問題点を解消するためになされ
たもので、耐振性に優れた極低温冷却装置を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a cryogenic cooling device with excellent vibration resistance.

[課題を解決するための手段] この発明にかかる極低温冷却装置は、冷却機とデュワー
、との間の空間に振動減衰効果を有した制振部材を充填
したものである。
[Means for Solving the Problems] A cryogenic cooling device according to the present invention is one in which a vibration damping member having a vibration damping effect is filled in a space between a cooling machine and a dewar.

[作用] この発明にかかる極低温冷却装置は、コールドフィンガ
ーと円筒壁の間の空間内に充填された制振部材が、コー
ルドフィンガーと協働して薄い円筒壁を支えることによ
り、円筒壁の共振を防止する。
[Function] In the cryogenic cooling device according to the present invention, the damping member filled in the space between the cold finger and the cylindrical wall cooperates with the cold finger to support the thin cylindrical wall, so that the vibration of the cylindrical wall is reduced. Prevent resonance.

[実施例] 以下、この発明の一実施例を図について説明する。第1
図において、(10)は発泡樹脂から成る潜1振部材で
あり、コールドフィンガー(4)と円筒壁(2)の閏の
空間(7a)内を充填するようζこ装着されている。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
In the figure, (10) is a latent vibration member made of foamed resin, and is mounted so as to fill the interspace (7a) between the cold finger (4) and the cylindrical wall (2).

次に動作について説明する。Next, the operation will be explained.

コールドフィンガー(4)と円筒壁(2)の間の空間(
7a)内には制振部材(10)が充填されてt)るため
、薄い円筒壁(2)はこの制振部材(10)とコールド
フィンガー(4)によって支えられることζこなる。一
方、コールドフィンガー(4)の壁は数十気圧の内圧口
こ耐えられるだけの厚さを有しているため、結局、制振
部材(10)と、コールドフィンガー(4)によって支
えられる円筒壁(2)の固有振動数は非常に高いものと
なり、外部からの振動(冷却機の運転による振動など)
に対して共振しにくくなる。また、制振部材自身も大き
な振動減衰特性をもつため、これにより、−層振動は抑
制される。
The space between the cold finger (4) and the cylindrical wall (2) (
Since the damping member (10) is filled in 7a), the thin cylindrical wall (2) is supported by the damping member (10) and the cold fingers (4). On the other hand, since the wall of the cold finger (4) is thick enough to withstand the internal pressure of several tens of atmospheres, the cylindrical wall supported by the vibration damping member (10) and the cold finger (4) The natural frequency of (2) is very high, and external vibrations (such as vibrations caused by cooling machine operation)
It becomes difficult to resonate with. Further, since the vibration damping member itself has a large vibration damping characteristic, negative layer vibration is suppressed.

さらに、円筒壁(2)とコールドフィンガー(4)の間
の隙間(7a)内を発泡樹脂製の制振部材(lO)で埋
めることにより、この空間(7a)内の熱伝導率が下が
るため、低温部(4a)の冷熱がこの隙間を通して散逸
するのが防止され、冷却装置の効率が改善される。
Furthermore, by filling the gap (7a) between the cylindrical wall (2) and the cold finger (4) with a vibration damping member (lO) made of foamed resin, the thermal conductivity in this space (7a) is reduced. The cold heat of the low temperature section (4a) is prevented from dissipating through this gap, and the efficiency of the cooling device is improved.

なお、上記実施例では、円筒壁(2)とコールドフィン
ガー(4)の間の隙間(7a)の全体を制振部材(lO
)により充填した例について説明したが、第2図や第3
図に示すように、隙間(7a)の一部のみを充填しても
良く、上記実施例と同様の効果を奏する。
In addition, in the above embodiment, the entire gap (7a) between the cylindrical wall (2) and the cold finger (4) is covered with the damping member (lO
), but the examples shown in Figures 2 and 3
As shown in the figure, only a part of the gap (7a) may be filled, and the same effect as in the above embodiment can be obtained.

また、上記実施例では、デュワー、(1)が円筒壁(2
)とキャップ(3)のみにより構成された例を示したが
、第4図に示すように、冷熱の損失を低減する目的から
円筒壁(2)とキャップ(3)の外側にさらに外壁(1
1)を設け、外壁(11)との間の空間(12)内を真
空に維持するよう構成したものに適用しても、上記実施
例と同様の効果を奏する。
Further, in the above embodiment, the dewar (1) is replaced by the cylindrical wall (2).
) and cap (3), but as shown in Fig. 4, an outer wall (1
1) and the space (12) between the outer wall (11) and the space (12) is maintained in a vacuum, the same effect as in the above embodiment can be obtained.

さらに、上記実施例では、コールドフィンガー(4)の
低温部(4a)とデュワー、(1)間の伝熱手段り8)
として非凝縮性ガスの熱伝導を用いた例を示したが、第
5図に示すように、伝熱手段(8)として銅箔等を束ね
たもの等の他の手段を用いたものに適用しても上記実施
例と同様の効果を奏する。
Furthermore, in the above embodiment, the heat transfer means 8) between the low temperature part (4a) of the cold finger (4) and the dewar (1) is
Although we have shown an example using heat conduction of a non-condensable gas, as shown in Figure 5, it can also be applied to other methods such as bundles of copper foil etc. as the heat transfer means (8). However, the same effect as in the above embodiment can be obtained.

また、上記実施例では、制振部材(10)として発泡樹
脂を用いた例を示したが、発泡樹脂以外の制振材料、例
えばゴムであってもよい。
Furthermore, in the above embodiments, foamed resin was used as the damping member (10), but damping materials other than foamed resin, such as rubber, may be used.

[発明の効果コ 以上のように、この発明によれば冷却機とデュワー、と
の間の空間に振動減衰効果を有した制振部材を充填した
ので、耐振動性に優れた極低温冷却装置が得られる効果
がある。
[Effects of the Invention] As described above, according to the present invention, a vibration damping member having a vibration damping effect is filled in the space between the cooler and the dewar, so that a cryogenic cooling device with excellent vibration resistance can be achieved. There is an effect that can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による極低温冷却装置を一
部切り欠いて内部を示す側面図、第2図ないし第5図は
いずれもこの発明の他の実施例による極低温冷却装置を
一部切り欠いて内部を示す側面図、並びに第6図は従来
の極低温冷却装置を一部切り欠いて内部を示す側面図で
ある。 (1)・・・デュワー、(4)・・・コールドフィンガ
ー (4a)・・・低温部、(6)・・・冷却機、(7
)(7a)・・・空間、(8)・・・伝熱手段、(9)
・・・被冷却体、(10)・・・制振部材 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a partially cutaway side view showing the inside of a cryogenic cooling device according to one embodiment of the present invention, and FIGS. 2 to 5 all show cryogenic cooling devices according to other embodiments of the present invention. FIG. 6 is a side view showing the inside with a part cut away, and FIG. 6 is a side view showing the inside of a conventional cryogenic cooling device with a part cut away. (1)...Dewar, (4)...Cold finger (4a)...Low temperature section, (6)...Cooler, (7
)(7a)...Space, (8)...Heat transfer means, (9)
. . . Cooled object, (10) . . . Vibration damping member In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 冷却機、この冷却機の低温部を取り囲んで設けられたデ
ュワー、及びこのデュワーと上記冷却機の間に設けられ
た伝熱手段を備え、上記デュワーの器壁の一部が上記伝
熱手段によって上記低温部に熱的に接触することにより
、上記デュワーの外壁に装着された被冷却体が冷却され
るよう構成される極低温冷却装置において、上記冷却機
と上記デュワーとの間の空間に振動減衰効果を有した制
振部材を充填したことを特徴とする極低温冷却装置。
A cooler, a dewar provided surrounding a low-temperature part of the cooler, and a heat transfer means provided between the dewar and the cooler, wherein a part of the wall of the dewar is heated by the heat transfer means. In a cryogenic cooling device configured such that an object to be cooled attached to the outer wall of the dewar is cooled by thermally contacting the low temperature part, vibration is generated in the space between the cooler and the dewar. A cryogenic cooling device characterized by being filled with a vibration damping member having a damping effect.
JP29055389A 1989-11-08 1989-11-08 Very low temperature cooling device Pending JPH03152381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29055389A JPH03152381A (en) 1989-11-08 1989-11-08 Very low temperature cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29055389A JPH03152381A (en) 1989-11-08 1989-11-08 Very low temperature cooling device

Publications (1)

Publication Number Publication Date
JPH03152381A true JPH03152381A (en) 1991-06-28

Family

ID=17757521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29055389A Pending JPH03152381A (en) 1989-11-08 1989-11-08 Very low temperature cooling device

Country Status (1)

Country Link
JP (1) JPH03152381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415830B2 (en) 2005-08-31 2008-08-26 Raytheon Company Method and system for cryogenic cooling
US20150276488A1 (en) * 2014-03-27 2015-10-01 Semi Conductor Devices - an Elbit Systems-Rafael Partnership Ruggedized dewar unit for integrated dewar detector assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415830B2 (en) 2005-08-31 2008-08-26 Raytheon Company Method and system for cryogenic cooling
WO2007027822A3 (en) * 2005-08-31 2009-10-08 Raytheon Company Method and system for cryogenic cooling
US20150276488A1 (en) * 2014-03-27 2015-10-01 Semi Conductor Devices - an Elbit Systems-Rafael Partnership Ruggedized dewar unit for integrated dewar detector assembly
US10222266B2 (en) * 2014-03-27 2019-03-05 Semi Conductor Devices—An Elbit Systems-Rafael Partnership Ruggedized dewar unit for integrated Dewar detector assembly

Similar Documents

Publication Publication Date Title
TW448279B (en) Cryogenic cooler with mechanically-flexible thermal interface
US20070051115A1 (en) Cryostat configuration with cryocooler and gas gap heat transfer device
KR20030009451A (en) Stirling cycle cryocooler with optimized cold end design
US6164077A (en) Thermal link device for a cryogenic machine
US6865894B1 (en) Cold inertance tube for multi-stage pulse tube cryocooler
JP3757166B2 (en) Heat exchanger and method of forming the same
JP3901217B2 (en) Vibration isolation cryogenic equipment
JPH03152381A (en) Very low temperature cooling device
JPH0728056B2 (en) Cryostat with refrigerator
JPH0640341Y2 (en) Seismic bellows for vacuum members
KR102050867B1 (en) Cryostat using 1K Sub Cooler for sample mounting on the external side
JPH08261821A (en) Infrared detector
JPS6396455A (en) Cooling section structure of cryogenic refrigerator
JPH05297092A (en) Superconducting device
KR20190121669A (en) Cryostat using bellows for vibration reduction of sample holder
JPH01250026A (en) Infrared detecting device
KR102050868B1 (en) Cryostat using 1K Sub Cooler for sample mounting on the external side
JPH0674819A (en) Freezing device
JP2004333054A (en) Pulse pipe refrigerator
JP3752395B2 (en) Cooling system
JPH07269967A (en) Refrigerator
JPH0364950A (en) Electrically insulated heat pipe
JP3593275B2 (en) Cooling system
JPH05315130A (en) Superconducting apparatus
JP2828541B2 (en) Stirling cycle equipment