JPH0315237A - Storage of electric power by means of annular flywheel - Google Patents

Storage of electric power by means of annular flywheel

Info

Publication number
JPH0315237A
JPH0315237A JP1141382A JP14138289A JPH0315237A JP H0315237 A JPH0315237 A JP H0315237A JP 1141382 A JP1141382 A JP 1141382A JP 14138289 A JP14138289 A JP 14138289A JP H0315237 A JPH0315237 A JP H0315237A
Authority
JP
Japan
Prior art keywords
flywheel
energy
rim
storage
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1141382A
Other languages
Japanese (ja)
Inventor
Ryuichi Shimada
隆一 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1141382A priority Critical patent/JPH0315237A/en
Publication of JPH0315237A publication Critical patent/JPH0315237A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To permit the accumulation of energy into a flywheel by a method wherein an annular rotary body, constituted of only a rim and having no rotor shaft, is levitated by contactless levitation through magnetic force and the like and is turned in a high speed. CONSTITUTION:A flywheel, constituted of only a rim and having no central shaft, is rotated. According to this method, energy equivalent to the tensile strength of a material, is accumulated. Even when a rotary body is not provided with a shaft, a super giant ring may be slid in a vacuum tube when the annular rim is levitated and turned by magnetic levitation like as a magnetic levitation train. The selection of an installation place may be facilitated since there is no shaft whereby the size of the flywheel may be increased to a giant size.

Description

【発明の詳細な説明】 (1) 発明の目的 電力エネルギーを必要に応じて必
要なだけ発生させることが出来れば理想的だが人間の都
合のよい良いようにはいかない。このエネルギーを蓄積
して大きなエネルギーを必要とするとき、それに応じて
エネルギーを取り出せれば大変都合がよい.電力系統の
大きな日本の場合、電力エネルギーは好きなだけ供給さ
れるかのように考えられるほど電力事情がよい。それで
も、電力応用プラントの規模が大きくなり、製鉄!2鋼
産業における電力変動・フリッカは従来からの問題であ
ったが、今後も例えば核融合実験装置、磁気浮上鉄道の
駆動電力、医療用粒子加速装置とパルス的大電力応用が
増えてくるのは間違いない。
[Detailed Description of the Invention] (1) Purpose of the Invention It would be ideal if electric energy could be generated in the required amount as needed, but it is not possible to do so in a way that is convenient for humans. When we need a large amount of energy by accumulating this energy, it would be very convenient if we could extract the energy accordingly. In the case of Japan, which has a large power system, the electricity situation is so good that it can be considered as if electricity energy is supplied as much as desired. Still, the scale of power application plants has increased, and steel production! 2 Power fluctuations and flicker have been a problem in the steel industry for a long time, but in the future, for example, nuclear fusion experimental equipment, driving power for magnetic levitation trains, medical particle accelerators, and pulsed high-power applications will continue to increase. no doubt.

例えば、日本原子力研究所で建設された核融合実験装f
iJT−60のトロイダル磁場コイル′F4.源はビー
ク32万kW必要とする電力の半分の16万kWを電力
系統から受電し、残りはフライホイール付発電機により
供給される形になっている。電力系統の周波数変動の制
限±0.05 Hzにより、30秒で立ち上がるl6万
kWのパルスに制限されているからである。このフライ
ホイール付発電機は世界最大のフライホイール(重量6
00トノ・直径6.6 m)  で8GJのエネルギー
を蓄積しその半分の4GJを最大200MWの出力で放
出できる。
For example, the fusion experimental facility f constructed at the Japan Atomic Energy Research Institute
iJT-60 toroidal magnetic field coil 'F4. The power source receives 160,000 kW from the power grid, which is half of the 320,000 kW required by the peak, and the rest is supplied by a generator with a flywheel. This is because the frequency fluctuation limit of the power system is ±0.05 Hz, which limits the pulse to 160,000 kW that can rise in 30 seconds. This generator with flywheel is the world's largest flywheel (weight 6
It can store 8GJ of energy and release half of it, 4GJ, with a maximum output of 200MW.

既に完成されてから5年のあいだ問題なく運転されてき
た。このように古来からあるフライホイールによるエネ
ルギー蓄積は未来のエネルギー開発に1要な働きをして
いるのである。
It has been in operation without any problems for five years since it was completed. In this way, energy storage using the ancient flywheel plays an important role in future energy development.

(2) フライホイールの産業応用   核融合開発の
一環として開発されたこのフライホイールはエネルギー
量・a気出力共に産業用の必要規模を超えるもので、も
し効率と価格の問題が解決すれば、広く普及するもの−
と検討を進めている.表1にエネルギーの体積密度を示
すがフライホイールは磁気エネルギーより5倍と大きく
、しかも電気への変換効率が98%と大変よい。ここに
超同期シェルビウス制御技術を採用すれば、入出力周波
数を一定にしたままフライホイールの可変速運転が出来
る。空転損については、JT−60用の大気中で回転し
特別な軸受なしにエネルギー蓄積時定数(if積エネル
ギー/損失)は1600秒で100秒程度の産業用負荷
変動にはこのままでも十分適している。
(2) Industrial application of flywheels This flywheel, which was developed as part of nuclear fusion development, exceeds the scale required for industrial use in terms of energy consumption and aerodynamic output, and if the issues of efficiency and price are solved, it can be widely used. Things that become popular-
We are currently considering this. Table 1 shows the volume density of energy, and the flywheel is five times larger than magnetic energy, and has a very high conversion efficiency of 98% to electricity. If super-synchronous Shelbius control technology is adopted here, the flywheel can be operated at variable speed while keeping the input and output frequencies constant. Regarding idling loss, the JT-60 rotates in the atmosphere without special bearings and has an energy storage time constant (if product energy/loss) of 1600 seconds, which is well suited for industrial load fluctuations of about 100 seconds. There is.

(3)  巨大なリング形状のフライホイールフライホ
イールの半径を大きくするとそのエネルギーは大きくな
り蓄積時定数も大きくなる。従来の円盤であると中心部
への応力集中によりそこでの応力に耐える構造で制限さ
れていた。ここで提案するフライホイールは中心軸のな
いリムのみを回転させることにより、材料の引っ張り強
さいっぱいのエネルギーを!積しようとするものである
(3) Huge ring-shaped flywheel When the radius of the flywheel is increased, its energy increases and the storage time constant also increases. With conventional disks, stress is concentrated in the center, and the structure is limited to withstand the stress there. By rotating only the rim without a central axis, the flywheel proposed here generates energy that is full of the tensile strength of the material! This is what we are trying to accumulate.

回転体の軸は無くとも磁気4上列車のようにリング形状
のリムを浮かして回転させれば超巨大なリングが真空の
チューブのなかに滑走させることができる.軸が無いこ
とは設置場所の3M択を容易にさせ巨大化できる。ここ
に人を乗せない真空チューブ地下鉄道にエネルギーを蓄
積する巨大リング状フライホイールの概念が生まれる。
Even if there is no shaft for the rotating body, if the ring-shaped rim is suspended and rotated like a magnetic 4-wheel train, a gigantic ring can be slid into a vacuum tube. The fact that there is no axis makes it easy to choose a 3M installation location and it can be made large. This is where the concept of a giant ring-shaped flywheel to store energy was born in a vacuum tube underground railway that carries no passengers.

リングを回転させると引っ張り応力は δ,=ρ(rω)2   (式l) ρ は密度k g / m ’ rは半径 、ωは角速度 エネルギーEは E=Iω2/2(式2) ■は回転モーメントで 工=ρ2πr’SSは断面積で
あるから、 これより E=δtπrs   (式3) となり、エネルギーは半径rと引っ張り強さδ,によっ
て決まる。引っ張り強い材料がよく、その限界まで使用
すればFRPで300J/cc.#4鉄では9 0 J
 / ccのエネルギーM!R密度が得られる.(4)
 実施例  引っ張り強い材料として高傷力鋼を用いて
 δ, = 90kgf/mm2  ρ:7.8ト,/
13 とすれば、速度は 340m/sであり半径25
mでは断面積1 m ?で7 0GJのエネルギーがM
 114される。
When the ring is rotated, the tensile stress is δ, = ρ(rω)2 (Formula 1) ρ is the density kg / m ' r is the radius, ω is the angular velocity energy E is E = Iω2/2 (Formula 2) ■ is rotation Since the moment E = ρ2πr'SS is the cross-sectional area, E = δtπrs (Equation 3), and the energy is determined by the radius r and the tensile strength δ. A material with strong tensile strength is best, and if used to its limit, FRP can reach 300 J/cc. 90 J for #4 iron
/cc energy M! The R density is obtained. (4)
Example Using high flaw strength steel as a tensile strength material δ, = 90kgf/mm2 ρ: 7.8t,/
13, the speed is 340m/s and the radius is 25
In m, the cross-sectional area is 1 m? So the energy of 70GJ is M
114.

リングローターの実施例として図lに概念図を示すがロ
ーターであるリングに低周波の三和励磁を行う変換器(
サイクロコンバーター)をローター上に乗せてしまう。
As an example of a ring rotor, a conceptual diagram is shown in Figure 1.
cycloconverter) is placed on the rotor.

1!磯子とロータ一回転数との差の周波数を発生するが
そのための78力は非接触の磁気結合により出入りさせ
る。これはまた磁気吸引浮上およびガイドの一部になれ
ばよい。地下チューブの中は冷却のための低圧水素かヘ
リウムを入れる必要が生じるかもしれない。
1! A frequency equal to the difference between the number of revolutions of the rock and the rotor is generated, and the 78 forces required for this purpose are sent in and out through non-contact magnetic coupling. This may also be part of the magnetic levitation and guide. It may be necessary to fill the underground tubes with low-pressure hydrogen or helium for cooling.

超電導エネルギー蓄積の設計例としてウイスコンシン大
学の1000万kWhと比較すると機械エネルギーの優
秀性がよくわかる。このエネルギーは最大磁場6Tで巨
大な体積にN積されることになるがこれとの比較でリン
グフライホイールを並べると半径160m.iさ100
0mの地下チューブ断面10xlOmに秒速340mで
磁%ll上したリングを走らせることによって実現する
。中心部には建物があってよく公害、騒音についても問
題無い。現在進行している技術の範囲で実現可能であろ
う。さらに大きな半径にしてJR山手線の道のりの地下
チューブのなかを走らせれば、材料の応力を 20kg
f/me2としても1億kWhを超えるエネルギーがM
 flJ!できる。
The superiority of mechanical energy can be clearly seen by comparing it with the University of Wisconsin's 10 million kWh design example for superconducting energy storage. This energy is multiplied by N in a huge volume with a maximum magnetic field of 6T, but compared to this, if the ring flywheels were lined up, the radius would be 160m. Isa 100
This is achieved by running a ring with a magnetic flux of %ll at a speed of 340m per second over a cross section of a 0m underground tube of 10xlOm. There are buildings in the center, so there are no problems with pollution or noise. This would be possible within the scope of the technology currently in progress. If we make the radius even larger and run it inside the underground tube along the JR Yamanote Line, the stress in the material can be reduced to 20 kg.
Even as f/me2, energy exceeding 100 million kWh is M
flJ! can.

【図面の簡単な説明】[Brief explanation of the drawing]

表1は蓄積法によるエネルギー密度の比較を示す。図1
はリングフライホイールの概念図である。 図・2は1000万kWhlff積エネルギーフライホ
イールの実施例と超電導コイルを使用したエネルギー蓄
積SMESを並べて示す。 (1)磁気浮上及びガイド(励磁電力の供給もかねる)
  (2)界磁励起用サイクロコンバーター(3)界磁
 (4)電機子 (5)高張力鋼(6)g圧器 (7)
交直変換器および変圧器(8)超電導コイル (9)磁
気シールド(10)  リングフライホイール (1 1)  磁気厚上設備 密度は周辺機器をのぞいた+bare” storag
evolumeで評価 表1 蓄積法によるエネルギー密度の比較 ( 2 ) 図1 (b)SMES 図2 手 続 和tr 正 書 (方式) 補正の内容 6ページl8行及び19行における。 「 表1は蓄積法によるエネルギー密度の比較を示す。 」 を 削除する。 事件の表示 平成1年特許願第141382号 発明の名称 リング型フライホイールによ る電力貯蔵 補正をする者 事件との関係 特許出願人 住所 東京都目黒区大岡山2 − 1 2 − 1東京
工業大学電気電子工学科内 氏名 冫マタ゛リュウイチ 補正命令の日付 平成1年9月26 補正の対象 明細書の図面の簡単な説明の欄
Table 1 shows a comparison of energy densities by storage methods. Figure 1
is a conceptual diagram of a ring flywheel. Figure 2 shows an example of a 10 million kWhlff energy flywheel and an energy storage SMES using superconducting coils side by side. (1) Magnetic levitation and guide (also supplies excitation power)
(2) Cycloconverter for field excitation (3) Field (4) Armature (5) High-strength steel (6) G-pressure device (7)
AC/DC converter and transformer (8) Superconducting coil (9) Magnetic shield (10) Ring flywheel (1 1) Magnetic thickness equipment density is +bare” storag excluding peripheral equipment
Evaluation by evolume Table 1 Comparison of energy density by storage method (2) Figure 1 (b) SMES Figure 2 Procedure sum tr Ordinary book (method) Contents of correction in page 6, lines 8 and 19. Delete "Table 1 shows a comparison of energy densities by the storage method." Display of the case 1999 Patent Application No. 141382 Name of the invention Person who corrects energy storage using a ring-type flywheel Relationship with the case Patent applicant address 2-1 2-1 Tokyo Institute of Technology Electric and Electronics Co., Ltd., Ookayama, Meguro-ku, Tokyo Date of order to amend Ryuuichi's name in the Department of Engineering: September 26, 1999 Column for a brief explanation of drawings in the specification subject to amendment

Claims (2)

【特許請求の範囲】[Claims] (1)ローター軸をもたずリムのみで構成するリング形
状の回転体において、磁気力による浮上等により非接触
浮上させて高速回転させることによりエネルギーを蓄積
するフライホィール
(1) A ring-shaped rotating body that does not have a rotor shaft and consists only of a rim. A flywheel that stores energy by levitating it non-contact and rotating at high speed using magnetic levitation, etc.
(2)フライホィールの回転エネルギー増減による回転
速度の変化に対してローター上に設置した周波数変換器
が可変周波数の回転界磁を発生してフライホィールの回
転数によらず外部とのあいだで一定周波数の電力の蓄積
放出を可能とするフライホィールエネルギー蓄積システ
(2) A frequency converter installed on the rotor generates a variable frequency rotating field in response to changes in rotational speed due to increases and decreases in the rotational energy of the flywheel, and the rotational field remains constant regardless of the rotational speed of the flywheel. Flywheel energy storage system that enables storage and release of frequency power
JP1141382A 1989-06-12 1989-06-12 Storage of electric power by means of annular flywheel Pending JPH0315237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141382A JPH0315237A (en) 1989-06-12 1989-06-12 Storage of electric power by means of annular flywheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141382A JPH0315237A (en) 1989-06-12 1989-06-12 Storage of electric power by means of annular flywheel

Publications (1)

Publication Number Publication Date
JPH0315237A true JPH0315237A (en) 1991-01-23

Family

ID=15290697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141382A Pending JPH0315237A (en) 1989-06-12 1989-06-12 Storage of electric power by means of annular flywheel

Country Status (1)

Country Link
JP (1) JPH0315237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648509B2 (en) * 2005-09-20 2014-02-11 II William Allen Bastian Stabilizing power source for a vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648509B2 (en) * 2005-09-20 2014-02-11 II William Allen Bastian Stabilizing power source for a vehicle

Similar Documents

Publication Publication Date Title
US11070107B2 (en) Open-core flywheel architecture
Li et al. A utility-scale flywheel energy storage system with a shaftless, hubless, high-strength steel rotor
JP6363329B2 (en) Nested rotor open core flywheel
Xu et al. A fully superconducting bearing system for flywheel applications
US11451125B2 (en) Centripetal magnet accelerator utilizing magnets to produce rotational motion for generating electricity
Richards et al. Magnetic Suspension and Propulsion Systems for High‐Speed Transportation
Kirk et al. Flywheel energy storage—II: Magnetically suspended superflywheel
JPH10504874A (en) Bearing design for flywheel energy storage using high TC superconductor
JPH0315237A (en) Storage of electric power by means of annular flywheel
Li et al. Vibration characteristics of the HTS maglev vehicle running on a 45-m-long ring test line
Liu et al. Design of a High-$ T_ {\text {c}} $ Superconductive Maglev Flywheel System at 100-kW Level
Tang et al. Active vibration control of the flexible rotor in high energy density magnetically suspended motor with mode separation method
Neustroev et al. Passive Magnet Bearing Development for Axial Flux Permanent Magnet Generator with Diamagnetic Armature
Jing et al. Study on key design technologies of a wave energy converter with an HTS linear generator
Kirk et al. Mechanical capacitor
JP4549914B2 (en) Sensorless magnetic damping generation method using induction current collector
Kailasan Preliminary design and analysis of an energy storage flywheel
Dai et al. Design and test of a 300Wh composites flywheel energy storage prototype with active magnetic bearings
Liu et al. Research on a Novel Muti-gap HTS Linear Motor for the Using of Ultra High Speed Maglev
EP4362300A1 (en) Vertical propulsion magnetic generation turbine
Xingjian et al. Analysis and application of high strength alloy steel flywheel structure and material
CN117937801A (en) Hysteresis energy storage motor
Schweitzer Introduction and survey
Ikebudu Kingsley Asha Saturday, Alade Moses Aiyeoribe. Development OFA Smart Sustainable Free Flywheel Base Energy System
William M. Brobeck & Associates et al. Conceptual Design of a Flywheel Energy Storage System