JPH03152130A - Powdery or granular fine fiber material and production thereof - Google Patents

Powdery or granular fine fiber material and production thereof

Info

Publication number
JPH03152130A
JPH03152130A JP28916489A JP28916489A JPH03152130A JP H03152130 A JPH03152130 A JP H03152130A JP 28916489 A JP28916489 A JP 28916489A JP 28916489 A JP28916489 A JP 28916489A JP H03152130 A JPH03152130 A JP H03152130A
Authority
JP
Japan
Prior art keywords
fibers
material according
producing
microfibrillated
microfibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28916489A
Other languages
Japanese (ja)
Other versions
JP2675643B2 (en
Inventor
Ko Miyagawa
宮川 滉
Akiyoshi Kamida
紙田 章義
Akira Fujikawa
明 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP1289164A priority Critical patent/JP2675643B2/en
Publication of JPH03152130A publication Critical patent/JPH03152130A/en
Application granted granted Critical
Publication of JP2675643B2 publication Critical patent/JP2675643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Artificial Filaments (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To obtain the subject material, excellent in handleability and capable of disaggregating and rehydrating by stirring in a short time in placing thereof in water substantially without reblocking by providing a powdery or granular material using microfibrillated fiber in a state wetted with a medium. CONSTITUTION:The objective material obtained by dispersing a fibrous substance such as cellulose, chitin, chitosan or collagen in a medium (e.g. water), treating the resultant dispersion in a high-pressure homogenizer, microfibrillating the aforementioned fibrous substance and having the thickness of the fibrillated fiber having D<1mum and the formula 500<L/D<100000 (D is the fineness of the microfibrillated fiber; L is the length), providing a slurry in 0.5-10wt.% concentration, then subjecting the aforementioned slurry to dehydration treatment such as draining with a filter press, etc., to afford a caky solid in 10-60wt.% solid concentration and pulverizing the resultant caky solid into a powdery or granular material having 3-200 mesh particle diameter under wet conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、粉粒体として取り扱うことのできる微小繊
維材料及びその製造方法に関するものである。本発明の
微小繊維材料は応用分野が広く、例えば食品産業、化粧
品産業、窯業、製紙産業、繊維産業などに有用である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a microfiber material that can be handled as powder or granules and a method for producing the same. The microfiber material of the present invention has a wide range of applications, and is useful, for example, in the food industry, cosmetics industry, ceramic industry, paper industry, textile industry, etc.

〔従来の技術及び発明が解決しようとする課題〕セルロ
ースからなる微小繊維材料の例としては、特公昭60−
19921号公報に記載の微小繊維状セルロースがある
。この従来技術では微小繊維材料は10重量%以下、通
常5重量%以下のセルロースを含有する水懸濁液として
得られ、通常その形で使用せざるを得ない。併しながら
、かかる大量の分散媒体を伴う高粘度の懸濁液は、輸送
、貯蔵、使用時の取り扱いに不利である上に、不要又は
好ましくない分散媒体が許容量以上に使用系中に入り込
む場合もあり、特公昭60−19921号公報記載の水
懸濁液は満足すべきものとは言えなかった。
[Prior art and problems to be solved by the invention] As an example of a microfiber material made of cellulose,
There is a microfibrous cellulose described in Japanese Patent No. 19921. In this prior art, the microfibrous material is obtained as an aqueous suspension containing less than 10% by weight of cellulose, usually less than 5% by weight, and must normally be used in that form. However, such highly viscous suspensions with large amounts of dispersion medium are disadvantageous in transportation, storage, and handling during use, and also introduce unnecessary or undesirable dispersion medium into the use system in excess of the allowable amount. In some cases, the aqueous suspension described in Japanese Patent Publication No. 60-19921 could not be said to be satisfactory.

又セルロースの代わりにキチンからなる微小繊維材料の
例として特開昭61−149237号公報に記載のもの
があるが、この公報に記載の微粒子懸濁液も基本的には
上記特公昭60−19921号公報記載の懸濁液と同様
な問題点がある。
Furthermore, as an example of a fine fiber material made of chitin instead of cellulose, there is one described in JP-A-61-149237, but the fine particle suspension described in this publication is also basically based on the above-mentioned JP-A-60-19921. It has the same problems as the suspension described in the publication.

セルロースからなる別の微小繊維材料の例としては、特
開昭59−189141号公報に記載のミクロフィフリ
ル化セルロースがある。この従来技術では、微小繊維材
料であるミクロフィフリル化セルロースは乾燥品として
得られ、通常その形で使用される。併しながら、この乾
燥したミクロフィフリル化セルロースからなる微小繊維
材料は通常セルロース以外の大量の添加物、即ちセルロ
ース繊維間の水素結合を実質的に阻止させる化合物とし
て、例えばシコクロース、グリセリン、ポリエチレング
リコール、澱粉等の添加物を含有しており、この添加物
がミクロフィフリル化セルロースの用途を制限する。例
えば、添加物が糖類であればセメントのように硬化反応
中糠類の存在により強度が発現しない等の分野もあるか
ら、利用分野が食品添加のように極めて限られた用途分
野しかないという欠点があり、限られた用途にしか適用
出来ない欠点がある。他方、セルロース以外の添加物を
含有していない場合は、乾燥状態では実質的に微細繊維
の機能保護が充分でなく、本来の性能が失われるため商
品化は困難である。一方、大量の水で分散させる従来技
術は、その分散液が3.000cp〜50.000cp
と粘度が高く、通常の液体として取り扱うことは出来ず
、特殊な高粘性流体設備を必要とする。又大量の水を含
有する水懸濁液では、押出成形法によるセメントへの添
加のように製造工程で使用する水そのものが量の制限の
ある場合は、そのセメント等への添加量が低く抑えられ
、充分な機能を発現させ得ない欠点を有していた。
Another example of a microfibrous material made of cellulose is microfibrillated cellulose described in Japanese Patent Application Laid-Open No. 189141/1983. In this prior art, the microfibrous material microfifurylated cellulose is obtained as a dry product and is usually used in that form. However, this microfibrous material consisting of dried microfifurylated cellulose is usually prepared with a large amount of additives other than cellulose, i.e., compounds that substantially prevent hydrogen bonding between the cellulose fibers, such as sycoclose, glycerin, polyethylene glycol, etc. , starch, and other additives, which limit the uses of microfifurylated cellulose. For example, if the additive is saccharide, there are some fields such as cement where the strength is not developed due to the presence of bran during the hardening reaction, so the disadvantage is that it can only be used in extremely limited fields such as food additives. However, it has the disadvantage that it can only be used for limited purposes. On the other hand, if it does not contain any additives other than cellulose, it is difficult to commercialize it because the functional protection of the fine fibers is not sufficient in the dry state and the original performance is lost. On the other hand, in the conventional technology of dispersing with a large amount of water, the dispersion liquid is 3.000 cp to 50.000 cp.
Due to its high viscosity, it cannot be handled as a normal liquid and requires special high viscosity fluid equipment. In addition, for water suspensions that contain a large amount of water, if the amount of water itself used in the manufacturing process is limited, such as when added to cement by extrusion molding, the amount added to the cement, etc. may be kept low. However, it had the disadvantage of not being able to express sufficient functionality.

又、乾燥したミクロフィフリル化セルロースの代わりに
乾燥したミクロフィフリル化キチン又はキトサンからな
る微小繊維材料が特開昭61−159430号公報に記
載されているが、この従来技術も基本的には上記特開昭
59−189141号公報に記載のものと同じ問題点が
ある。
Furthermore, a microfiber material made of dried microfifurylated chitin or chitosan instead of dried microfifurylated cellulose is described in JP-A-61-159430, but this prior art also basically There are the same problems as those described in the above-mentioned Japanese Patent Application Laid-Open No. 59-189141.

本発明者等は、かかる従来の微小繊維材料の有する問題
点につき鋭意検討を加え、実質的に粉粒体として取り扱
うことが出来るため、通常の粉粒体取扱機(例えば、ベ
ルトコンベアー、ロータリーバルブ、スケールホッパー
等の仕込装置)に適した形状を有し、且つ微細繊維本来
の機能を維持し、利用分野の要請にかなった性質を備え
た製品を開発することを目的として、研究の結果本発明
に到ったものである。
The present inventors have made a thorough study of the problems that conventional microfiber materials have, and found that they can be handled substantially as powder or granules, so they can be used with ordinary powder handling machines (e.g., belt conveyors, rotary valves, etc.). As a result of our research, we have developed a product that has a shape that is suitable for use in microfibers, scale hoppers, and other charging equipment, maintains the original functions of fine fibers, and has properties that meet the demands of the field of use. This led to an invention.

〔課題を解決するための手段〕[Means to solve the problem]

ミクロフィフリル化セルロース或いはミクロフ′イブリ
ル化キチン又はキトサンの様なミクロフィフリル化繊維
は、水又は他の極性溶媒中では安定な高粘性の懸濁液を
形成しているが、乾燥すると上記の如くその本来的性能
である分散性、水和性及び粘性は失われるか、実質的に
減少する。しかるに本発明者等はミクロフィフリル化繊
維を媒体中に懸濁してなる懸濁液をフィルタープレス或
いは遠心分離等により脱液して固形分濃度が10〜60
%程度のケーキ状物質となし、これを粉砕して得られる
粉粒体状物が、実質的に再ブロック化しない粉粒体とし
て取り扱い可能な微小繊維材料であって、特開昭59−
189141号公報に記載の如きポリヒドロキシ化合物
等の添加物を配合しなくても、ミクロフィフリル化繊維
の分散性、水和性、粘性等の性能が実質的に変化しない
ことを見出して、本発明に到ったものである。
Microfifurylated fibers, such as microfifurylated cellulose or microfibrillated chitin or chitosan, form stable, highly viscous suspensions in water or other polar solvents, but when dried, they As such, its essential properties of dispersibility, hydration and viscosity are lost or substantially reduced. However, the present inventors removed the liquid from a suspension obtained by suspending microfibrillated fibers in a medium by using a filter press or centrifugation to obtain a solid content of 10 to 60.
% cake-like material, and the powder obtained by crushing this is a fine fiber material that can be handled as a powder or granule without substantially reblocking, and is disclosed in JP-A-59-
The present invention was based on the discovery that the properties such as dispersibility, hydration, and viscosity of microfifurylated fibers do not substantially change even if additives such as polyhydroxy compounds as described in Publication No. 189141 are not blended. This led to an invention.

即ち本発明は、媒体で湿潤された状態のミクロフィフリ
ル化繊維よりなり、実質的に再ブロック化しない粉粒体
として取り扱い可能な微小繊維材料であって、媒体に再
分散した時粉粒体化前に媒体に分散した同一濃度のミク
ロフィフリル化繊維の粘度の少なくとも50%の粘度を
有することを特徴とする粉粒体状の微小繊維材料に係る
ものであり、又本発明は、ミクロフィフリル化繊維が媒
体中に懸濁してなる懸濁液を脱液処理し、得られたケー
キ状物質を粉砕して粉粒体物とすることを特徴とする上
記の如き粉粒体状の微小繊維材料の製造方法を提供する
ものである。
That is, the present invention provides a microfibrous material which is made of microfibrillated fibers wetted with a medium and which can be handled as a powder or granule material without substantially reblocking, and which, when redispersed in a medium, produces a powder or granule material. The present invention relates to a granular microfiber material having a viscosity of at least 50% of the viscosity of the same concentration of microfibrillated fibers dispersed in a medium before microfibrillation. The above-mentioned powder-like material is produced by deliquifying a suspension of fifurlated fibers in a medium, and crushing the obtained cake-like material to obtain a powder-like material. A method of manufacturing a microfiber material is provided.

本発明の微小繊維材料は、粘性が実質上変化乃至低下し
ないことで示される媒体への再分散性を保持するに必要
な量の媒体を含有すると共に、その形態が粉粒体として
取り扱い可能な実質的に再ブロックしない粉粒体状であ
る点に特徴を有し、かかる粉粒体状の微小繊維材料は従
来知られていない。
The microfibrous material of the present invention contains an amount of medium necessary to maintain redispersibility in the medium as shown by the fact that the viscosity does not substantially change or decrease, and its form is such that it can be handled as a powder or granule. It is characterized by being in the form of a powder or granule that does not substantially reblock, and such a fine fiber material in the form of a powder or granule has not been known so far.

次に、本発明による微小繊維材料の製造工程の概要を説
明する。
Next, the outline of the manufacturing process of the microfiber material according to the present invention will be explained.

原料の繊維質物質(例えばセルロース)を媒体(例えば
水)に分散させ、高圧ホモジナイザーで処理して、該繊
維質物質のミクロフィフリル化懸濁液を得る(第1工程
)。次に、この懸濁液を脱液(例えばフィルタープレス
脱水)して固いケーキ状とする(第2工程)。次に、こ
のケーキ状物質を取り扱いが便利な程度にまで粉砕して
、液体媒体で湿った状態であるにもかかわらず、相互付
着性がなく、包装された材料が積み重ねられてもブロッ
ク化することのない実質的に粉粒体として取り扱うこと
が可能な微小繊維材料とする(第3工程)。
A raw material fibrous material (eg, cellulose) is dispersed in a medium (eg, water) and treated with a high-pressure homogenizer to obtain a microfifurylated suspension of the fibrous material (first step). Next, this suspension is dehydrated (for example, by filter press dehydration) to form a hard cake (second step). This cake-like material is then pulverized to a degree that is convenient to handle, so that it forms blocks that are not mutually adhesive, even when wet with a liquid medium, and that the packaged materials can be stacked on top of each other. The microfiber material is made into a fine fiber material that can be handled as a powder or granular material without causing any damage (third step).

以下、本発明の構成と作用につき順を追って詳細に説明
する。
Hereinafter, the structure and operation of the present invention will be explained in detail in order.

(第1工程) 原料の繊維質物質としては特に限定する必要はないが、
経済性、応用範囲の広さなどからセルロースが実質的に
最も多用される材料となる。セルロースの原料は、パル
プ、リンターに留まらず、その他の植物に由来するもの
、動物に由来するもの、微生物に由来するものがある。
(First step) There is no need to specifically limit the fibrous material as a raw material, but
Cellulose is practically the most commonly used material due to its economic efficiency and wide range of applications. The raw materials for cellulose include not only pulp and linters but also those derived from other plants, animals, and microorganisms.

セルロース以外の繊維質物質としては、その特長、機能
、用途に応じて選択すれば良く、キチン、キトサン、皮
革等は特に有用であるが、大豆繊維、羊毛、絹等も有用
である場合がある。又合成繊維、例えばアラミド繊維を
使用することも出来る。
Fibrous substances other than cellulose may be selected depending on their features, functions, and uses; chitin, chitosan, leather, etc. are particularly useful, but soybean fiber, wool, silk, etc. may also be useful. . It is also possible to use synthetic fibers, such as aramid fibers.

媒体としては、経済性、取り扱いの容易性、汎用性など
から水が通常最も好適であるが、特殊な目的(水を嫌う
応用用途に使いたい場合又は最終的に媒体を全て蒸発さ
せて乾燥した微小繊維材料を得る場合など)のためにメ
タノール、エタノールなどの有機溶剤及びこれらの有機
溶剤と水との混合媒体が有用である場合もある。
Water is usually the most suitable medium for reasons of economy, ease of handling, and versatility. Organic solvents such as methanol, ethanol, and mixed media of these organic solvents and water may be useful (such as when obtaining microfiber materials).

高圧ホモジナイザーで処理してミクロフィブリル化繊維
の懸濁液を得る方法は従来技術(特公昭60−1992
1、特開昭6l−149237)を参考にして実施可能
である。即ち、濃度0.5〜10重量%の原料繊維質物
質のスラリーを調整し、該スラリーを小径オリフィスを
通過させるに際し、そのスラリーに少な(とも200k
g/cm2の圧力差で高速度を与え、次にこれをオリフ
ィス出口近傍の壁体に衝突させて急速に減速させること
により、剪断及び切断作用を行わせる。そして、このオ
リフィスを通過させて剪断・切断作用を行わしめる工程
を、繊維質物質がミクロフィフリル化され、実質的に安
定なg、m液となるまで繰り返すことにより、目的とす
るミクロフィフリル化繊維の安定な懸濁液が得られる。
The method of obtaining a suspension of microfibrillated fibers by treatment with a high-pressure homogenizer is a conventional technique (Japanese Patent Publication No. 60-1992).
1, Japanese Unexamined Patent Publication No. 61-149237). That is, a slurry of raw material fibrous material having a concentration of 0.5 to 10% by weight is prepared, and when the slurry is passed through a small-diameter orifice, a small amount (both 200 k
The shearing and cutting action is achieved by applying a high velocity with a pressure difference of g/cm 2 and then colliding with the wall near the orifice exit and rapidly decelerating it. Then, by repeating the process of passing through this orifice to perform a shearing and cutting action until the fibrous material is microfifurilized and becomes a substantially stable g, m liquid, the desired microfifurils are produced. A stable suspension of composite fibers is obtained.

かかるミクロフィフリル化繊維においては、電子顕微鏡
写真によれば全長にわたって微細化した繊維が多数観察
される。微細化は必ずしも完全である必要はなく、少し
太く集束した繊維が混ざっていてもよい。
In such microfibrillated fibers, a large number of fine fibers are observed over the entire length according to an electron micrograph. The fineness does not necessarily have to be perfect, and slightly thicker and bundled fibers may be mixed in.

ミクロフィフリル化された繊維の大さく以後りと略称)
及び長さ(以後りと略称)は最終目的物である固形化微
小繊維材料の使用用途によって制約を受ける性質のもの
であるが、大雑把な目安として数値表現すれば、D<1
μm1好ましくは0.02〜0.3μm、  500<
L/D < 100.600 となる。
Microfibrillated fiber size
The length and length (hereinafter abbreviated as ri) are subject to restrictions depending on the intended use of the solidified microfiber material, but as a rough guide, if expressed numerically, D<1.
μm1 preferably 0.02 to 0.3 μm, 500<
L/D<100.600.

(第2工程) 懸濁液からの脱液法としては、物理的な固液分離法、例
えばフィルタープレス脱液又は遠心脱液が適用出来る。
(Second Step) As a method for removing liquid from the suspension, a physical solid-liquid separation method, such as filter press deliquid or centrifugal deliquid, can be applied.

脱液の程度は最終製品の性状と機能を満足する限り任意
であるが、脱液コスト・次工程でのコストなどを勘案し
て、固形分濃度は10〜60%程度、好ましくは20〜
50%程度が望ましい。通常、脱液物は固いケーキ状の
固体として得られる。
The degree of liquid removal is arbitrary as long as it satisfies the properties and functions of the final product, but taking into account the cost of liquid removal and the cost of the next process, the solid content concentration should be about 10 to 60%, preferably 20 to 60%.
Approximately 50% is desirable. Usually, the deliquate is obtained as a hard cake-like solid.

(第3工程) 本発明の粉粒体は媒体で湿った状態のケーキ状固体をそ
の状態を保ったまま粉砕することにより得られる。
(Third Step) The granular material of the present invention is obtained by pulverizing a cake-like solid moistened with a medium while maintaining that state.

例示により具体的に説明すれば、ケーキ状で得られる遠
心脱水物ないしプレス脱水物を完全に乾燥させず、液体
媒体で湿った状態を保つような粉砕条件で粉砕する。得
られたものは、実質的に粉粒体として取り扱うことがで
き、かつ、再離解、再水和も可能である。
To explain specifically by way of example, the centrifugal dehydrated product or the press dehydrated product obtained in the form of a cake is not completely dried, but is pulverized under such pulverizing conditions that it is kept moist with a liquid medium. The obtained material can be handled as a powder or granules, and can also be redisaggregated and rehydrated.

通常、粉砕は発熱を伴い部分的に乾燥して微小繊維材料
の表面特性を失わせ易いため、ミクロフィフリル化繊維
材料においては、粉粒体として取り扱うことのできる性
状と水中の解離性とを両立させた材料が存在し得ること
は、従来知られていなかったのである。
Normally, pulverization generates heat and tends to partially dry out, causing the microfiber material to lose its surface characteristics. It was not previously known that there could be a material that was compatible with both.

脱液物の粉砕方法・程度は使用する用途に応じて選択す
べきであるが、粉砕機器については通常市販されている
種類のもので良く、特殊な機器を必要としない。粉砕物
の大きさは市販されている粉粒体取扱機で取り扱える程
度のものが望ましく、3メッシユ通過200メッシュ不
通過、好ましくは5メツシュ通過100メッシュ不通過
が望ましい。3メッシュ不通過の大きなものは取り扱い
が不便である上に、使用系内で再分散・再懸濁させる際
に、攪拌、ホモジナイズに多大のエネルギーを要し好ま
しくない。他方、200メツシュを通過するような細か
いものについては実用上特に大きな支障はないが、必要
以上に細かくすることは特殊な粉砕機が必要となるばか
りか、粉砕コストの増大を招き不利である。
The method and degree of pulverization of the deliquid product should be selected depending on the intended use, but the pulverizing equipment may be of a commercially available type and does not require any special equipment. The size of the pulverized material is preferably such that it can be handled by a commercially available powder handling machine, and it is desirable that the size of the pulverized product be such that it can pass through 3 meshes and not pass through 200 meshes, preferably pass through 5 meshes and not pass through 100 meshes. A material that does not pass through 3 meshes is not only inconvenient to handle, but also requires a large amount of energy for stirring and homogenizing when redispersing and resuspending in the system used. On the other hand, fine particles that pass through 200 meshes pose no particular problem in practice, but making them finer than necessary not only requires a special grinder but also increases the grinding cost, which is disadvantageous.

この第3工程で次のような加工処理をしても良い。つま
り、粉砕工程でスチーム吹き込みや水噴霧を行って加湿
することにより、微細繊維の集合体の表面の再分散性を
更に良好にする処理、或いは逆に大量の乾燥空気や加熱
空気中で粉砕を行い、微細繊維集合体表面を角質化させ
使用状態での分散を抑え、増粘しない材料にする処理な
どである。
The following processing may be performed in this third step. In other words, by humidifying the surface of the fine fiber aggregate by blowing steam or spraying water during the crushing process, the redispersibility of the surface of the fine fiber aggregate can be further improved, or conversely, by crushing in a large amount of dry air or heated air. This process involves keratinizing the surface of the fine fiber aggregate, suppressing dispersion during use, and creating a material that does not thicken.

(第4工程) 前記加工処理の中、微細繊維集合体表面を角質化させる
処理を第4工程として実施することも出来る。即ち、第
3工程で得られた易分散性微細繊維に加熱乾燥空気を吹
き付けるなどして表面を角質化させ、使用状態での分散
を抑え、増粘しない材料にすることも出来る。
(Fourth Step) Among the processing treatments described above, a treatment for keratinizing the surface of the fine fiber aggregate can also be carried out as the fourth step. That is, the surface of the easily dispersible fine fibers obtained in the third step can be keratinized by blowing heated and dry air, thereby suppressing dispersion during use and producing a material that does not thicken.

上記の如(、加熱乾燥空気を吹き付けて表面を角質化さ
せ、使用系内での再分散・再懸濁を起こさせないように
して得られた微小繊維材料は殺菌も同時になされており
、比較的高濃度で使用する食品用途向けに好適である。
The microfiber material obtained by blowing heated dry air to keratinize the surface and preventing redispersion/resuspension in the usage system is sterilized at the same time, and is relatively effective. It is suitable for food applications where it is used in high concentrations.

〔発明の効果〕〔Effect of the invention〕

本発明の粉粒体状の微小繊維材料は、輸送、貯蔵、使用
時の取扱性にすぐれていると共に、水中の離解性にもす
ぐれ、水中に入れると短時間の攪拌で、離解、再水和し
て、安定な性能を示す。又、繊維材料以外の固形分を実
質的に含まないので、従来の糖類或いは澱粉などの添加
物に伴う不都合がない。
The powdery microfiber material of the present invention has excellent handling properties during transportation, storage, and use, and also has excellent disintegration properties in water. shows stable performance. Furthermore, since it does not substantially contain any solid content other than fiber materials, there are no disadvantages associated with conventional additives such as sugars or starch.

〔実 施 例〕〔Example〕

以下、本発明を実施例について説明するが、本発明がこ
れらの実施例に限定されるものでないことは言うまでも
ない。
EXAMPLES The present invention will be described below with reference to Examples, but it goes without saying that the present invention is not limited to these Examples.

例−1〔ミクロフィフリル化キチン〕 精製キチンを原料とし、装置のノズルを通過できるよう
に前処理されたキチン3.5%水懸濁液を常温(25℃
)で高圧ホモジナイザー(Gaulin15M−8T^
)に仕込み、圧力500kg/cm” Gで10回処理
する。得られた微小繊維材料懸濁液を濃度2%に調整し
、粘度計(BL型、東京計器製)で粘度を測定すると、
1.650cpS (25℃)であった。
Example 1 [Microfifurylated chitin] Using purified chitin as a raw material, a 3.5% aqueous suspension of chitin that has been pretreated so that it can pass through the nozzle of the device is prepared at room temperature (25°C).
) with a high-pressure homogenizer (Gaulin 15M-8T^
) and treated 10 times at a pressure of 500 kg/cm"G. The resulting fine fiber material suspension was adjusted to a concentration of 2%, and the viscosity was measured using a viscometer (model BL, manufactured by Tokyo Keiki).
It was 1.650 cpS (25°C).

次に、この懸濁液をフィルタープレス(栗田機械製)で
圧カフ0kg/cm2G、時間20分の条件で圧搾脱液
処理を行う。得られたケーキの固形分は25%であった
。このケーキを粉砕機(卓上形高速回転ミキサー、小平
製作新製)にかけて低速30秒、高速1分で粉砕を行う
。得られた粉粒体物の粒度を試験ふるいで測定すると、
6メツシュ通過48メッシュ不通過が97%であった。
Next, this suspension is subjected to deliquification treatment using a filter press (manufactured by Kurita Kikai) under the conditions of a pressure cuff of 0 kg/cm2G and a time of 20 minutes. The solid content of the resulting cake was 25%. This cake is crushed in a pulverizer (tabletop high-speed rotating mixer, manufactured by Kodaira Seisaku Shin) at a low speed of 30 seconds and a high speed of 1 minute. When the particle size of the obtained powder and granular material was measured using a test sieve,
97% of the samples passed through 6 meshes and did not pass through 48 meshes.

この粉粒体物をホモデイスパー(特殊機化工業製)を用
いて濃度2%、回転数5.00Orpm 、時間10分
で再離解し、粘度計で粘度を測定すると、1、570c
ps (25℃)であった。
This granular material was re-disaggregated using Homo Disper (manufactured by Tokushu Kika Kogyo) at a concentration of 2% and a rotational speed of 5.00 rpm for 10 minutes, and the viscosity was measured using a viscometer: 1,570c
ps (25°C).

例−2(ミクロフィフリル化セルロース(リンター)〕 精製リンク−(バラカイHVE)を原料とし、例−1と
同様の方法で前処理した後、高圧ホモジナイザーを用い
て濃度2%、圧力500kg/cm2Gで3回処理する
。得られた微小繊維材料懸濁液の粘度は1.950cp
s (25℃)であった。この懸濁液を例−1同様、フ
ィルタープレスで圧力4kg/cm” G、時間1分の
条件で圧搾脱液処理を行う。得られたケーキの固形分は
25%であった。
Example 2 (Microfifurylated cellulose (linter)) Using purified link (Barakai HVE) as a raw material, it was pretreated in the same manner as in Example 1, and then processed using a high-pressure homogenizer at a concentration of 2% and a pressure of 500 kg/cm2G. The viscosity of the resulting microfibrous material suspension is 1.950 cp.
s (25°C). As in Example 1, this suspension was subjected to deliquification treatment using a filter press under the conditions of a pressure of 4 kg/cm''G and a time of 1 minute.The solid content of the resulting cake was 25%.

このケーキを粉砕機にかけ粉砕を行う。得られた粉粒体
物の粒度を例−1と同様に測定すると、6メツシュ通過
48メッシュ不通過が81%であった。又、例−1同様
、この粉粒体物を濃度2%で再離解し、粘度を測定する
と、2.050cps (25℃)であった。
This cake is crushed using a crusher. When the particle size of the obtained granular material was measured in the same manner as in Example 1, it was found that 81% of the particles passed through 6 meshes and did not pass through 48 meshes. Similarly to Example 1, this granular material was re-disaggregated at a concentration of 2% and its viscosity was measured to be 2.050 cps (25°C).

例−3〔ミクロフィフリル化セルロース(木材パルプ)
〕 木材バルブ(レニア、アルファニアF)を原料とし、例
−1と同様の方法で前処理した後、高圧ホモジナイザー
を用いて濃度4%、圧力500kg/cm” Gで12
回処理する。得られた微小繊維材料懸濁液の粘度は濃度
2%で3.500cps (25℃)であった。この懸
濁液を遠心分離機(田辺鉄工断裂)にかけ、遠心効果G
=670 、時間3時間で脱液処理を行う。得られたケ
ーキの固形分は25%であった。このケーキを粉砕機で
粉砕し、粒度分布を測定すると、6メツシュ通過48メ
ッシニ不通過が99%であった。得られた粉粒体物を例
−1同様、濃度2%で再離解し、粘度を測定すると、3
.400cps (25℃)であった。
Example-3 [Microfifurylated cellulose (wood pulp)
] Wood bulbs (Renia, Alphania F) were used as raw materials, and after being pretreated in the same manner as in Example-1, the mixture was heated to 12% using a high-pressure homogenizer at a concentration of 4% and a pressure of 500 kg/cm"G.
Process times. The resulting microfibrous material suspension had a viscosity of 3.500 cps (25° C.) at a concentration of 2%. This suspension was applied to a centrifuge (Tanabe Tekko rupture), and the centrifugal effect G
= 670, and the dewatering process is performed for 3 hours. The solid content of the resulting cake was 25%. This cake was pulverized with a pulverizer and the particle size distribution was measured, and it was found that 99% of the particles passed through 6 meshes and did not pass through 48 meshes. The obtained granular material was re-disaggregated at a concentration of 2% in the same manner as in Example 1, and the viscosity was measured.
.. It was 400 cps (25°C).

例−4〔ミクロフィフリル化皮革〕 クロム揉革製品の製造工程から発生するシェービング屑
(水分的50%)を遠心式粉砕機(日本精機製作新製)
で予備粉砕する。金網は1mm孔径のものを用いる。粉
砕した皮粉を高圧ホモジナイザーにかけ、濃度2%、圧
力500kg/cm’ Gで20回処理する。得られた
微小繊維材料懸濁液の粘度は1.200cps (25
℃)であった。この懸濁液を予め遠心分離機を用いて脱
液処理を行った後、プレスで圧搾脱液を行う。得られた
ケーキの固形分は25%であった。この脱液ケーキを粉
砕機で粉砕し、粒度分布を測定すると、5メツシュ通過
80メッシュ不通過が90%であった。得られた粉粒体
物を例−1同様、濃度2%で再離解し、粘度を測定する
と、700cps (25℃)であった。
Example 4 [Microfifurillated leather] Shaving waste (50% moisture content) generated from the manufacturing process of chrome-rubbed leather products is processed using a centrifugal pulverizer (newly manufactured by Nippon Seiki Seisakusho).
Pre-grind with. The wire mesh used has a hole diameter of 1 mm. The pulverized skin powder is applied to a high-pressure homogenizer and treated 20 times at a concentration of 2% and a pressure of 500 kg/cm'G. The viscosity of the resulting microfibrous material suspension was 1.200 cps (25
℃). This suspension is deliquified in advance using a centrifugal separator, and then squeezed and deliquified using a press. The solid content of the resulting cake was 25%. This deliquified cake was pulverized with a pulverizer and the particle size distribution was measured, and it was found that 90% of the particles passed through 5 meshes and did not pass through 80 meshes. The obtained granular material was re-disaggregated at a concentration of 2% in the same manner as in Example 1, and the viscosity was measured to be 700 cps (25°C).

例−5〔ミクロフィフリル化アラミド繊維〕ケブラー(
Kevlar、米国Du Pant社製アラミド繊維の
商標名)を原料とし、例−1と同様の方法で前処理した
後、高圧ホモジナイザーを用いて濃度2%、圧力500
kg/crn” Gで10回処理する。得られた微小繊
維懸濁液の粘度は濃度1%で2.200cpsであった
。この懸濁液を遠心分離機にかけ、遠心効果G=670
 、時間60分で脱液処理を行う。得られたケーキの固
形分は25%であった。このケーキを粉砕機で粉砕し、
粒度分布を測定すると、5メツシュ通過80メッシニ不
通過が95%であった。又、得られた粉粒体物を濃度1
%で再離解し、粘度を測定すると、2.500CpS 
(25℃)であった。
Example-5 [Microfifurylated aramid fiber] Kevlar (
Kevlar (trade name of aramid fiber manufactured by Du Pant, USA) was used as a raw material, pretreated in the same manner as in Example 1, and then heated to a concentration of 2% and a pressure of 500 using a high-pressure homogenizer.
kg/crn" G 10 times. The viscosity of the obtained microfiber suspension was 2.200 cps at a concentration of 1%. This suspension was centrifuged and the centrifugal effect G = 670
, the liquid removal process is performed for 60 minutes. The solid content of the resulting cake was 25%. Grind this cake with a grinder,
When the particle size distribution was measured, 95% of the particles passed through 5 meshes and did not pass through 80 meshes. In addition, the obtained powder and granule material had a concentration of 1
%, and the viscosity was measured, it was 2.500CpS.
(25°C).

Claims (1)

【特許請求の範囲】 1 媒体で湿潤された状態のミクロフィフリル化繊維よ
りなり、実質的に再ブロック化しない粉粒体として取り
扱い可能な粉粒体状の微小繊維材料。 2 ミクロフィフリル化繊維の一部又は全部が天然若し
くは合成繊維質物質から成る請求項1記載の微小繊維材
料。 3 ミクロフィフリル化繊維の一部又は全部がキチン及
び/又はキトサンからなる請求項1記載の微小繊維材料
。 4 ミクロフィフリル化繊維の一部又は全部がセルロー
スからなる請求項1記載の微小繊維材料。 5 ミクロフィフリル化繊維の一部又は全部が皮革繊維
(コラーゲン)からなることを特徴とする請求項1記載
の微小繊維材料。 6 ミクロフィフリル化繊維が媒体中に懸濁してなる懸
濁液を脱液処理し、得られたケーキ状物質を湿潤下で粉
砕して粉粒体物とすることを特徴とする請求項1記載の
粉粒体状の微小繊維材料の製造方法。 7 ミクロフィフリル化繊維の一部又は全部が天然若し
くは合成繊維質物質からなる請求項6記載の微小繊維材
料の製造方法。 8 ミクロフィフリル化繊維の一部又は全部がキチン及
び/又はキトサンからなる請求項6記載の微小繊維材料
の製造方法。 9 ミクロフィフリル化繊維の一部又は全部がセルロー
スからなる請求項6記載の微小繊維材料の製造方法。 10 ミクロフィフリル化繊維の一部又は全部が皮革繊
維(コラーゲン)からなることを特徴とする請求項6記
載の微小繊維材料の製造方法。 11 脱液処理がフィルタープレス脱液又は遠心脱液で
ある請求項6記載の微小繊維材料の製造方法。 12 ケーキ状物質の固形分濃度が10〜60%である
請求項6記載の微小繊維材料の製造方法。 13 粉粒体物の大きさが3メッシュ〜200メッシュ
である請求項6記載の微小繊維材料の製造方法。
[Scope of Claims] 1. A fine fiber material in the form of a powder or granule, which is made of microfibrillated fibers moistened with a medium and can be handled as a powder or granule without substantially reblocking. 2. The microfibrous material according to claim 1, wherein some or all of the microfibrillated fibers consist of a natural or synthetic fibrous material. 3. The microfibrous material according to claim 1, wherein part or all of the microfibrillated fibers consist of chitin and/or chitosan. 4. The microfibrous material according to claim 1, wherein part or all of the microfibrillated fibers are made of cellulose. 5. The microfibrous material according to claim 1, wherein part or all of the microfibrillated fibers are made of leather fibers (collagen). 6. Claim 1, characterized in that a suspension in which microfifurylated fibers are suspended in a medium is deliquified, and the resulting cake-like material is crushed under humid conditions to form a granular material. A method for producing the powdery microfiber material described above. 7. The method for producing a microfibrous material according to claim 6, wherein part or all of the microfibrillated fibers are made of a natural or synthetic fibrous material. 8. The method for producing a microfibrous material according to claim 6, wherein part or all of the microfibrillated fibers are composed of chitin and/or chitosan. 9. The method for producing a microfibrous material according to claim 6, wherein part or all of the microfibrillated fibers are made of cellulose. 10. The method for producing a microfiber material according to claim 6, wherein part or all of the microfibrillated fibers are made of leather fibers (collagen). 11. The method for producing a microfiber material according to claim 6, wherein the dewatering treatment is filter press dewatering or centrifugal dewatering. 12. The method for producing a fine fiber material according to claim 6, wherein the cake-like substance has a solid content concentration of 10 to 60%. 13. The method for producing a fine fiber material according to claim 6, wherein the size of the powder or granule material is 3 mesh to 200 mesh.
JP1289164A 1989-11-07 1989-11-07 Granular fine fiber material and method for producing the same Expired - Lifetime JP2675643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289164A JP2675643B2 (en) 1989-11-07 1989-11-07 Granular fine fiber material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289164A JP2675643B2 (en) 1989-11-07 1989-11-07 Granular fine fiber material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03152130A true JPH03152130A (en) 1991-06-28
JP2675643B2 JP2675643B2 (en) 1997-11-12

Family

ID=17739592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289164A Expired - Lifetime JP2675643B2 (en) 1989-11-07 1989-11-07 Granular fine fiber material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2675643B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281017A (en) * 1991-03-07 1992-10-06 Murayama Toshihiro Natural fiber material opened to submicron unit, its production and production device therefor
JP2000017592A (en) * 1998-06-23 2000-01-18 Daicel Chem Ind Ltd Fibrillar cellulose and its production
WO2007074368A2 (en) * 2005-12-28 2007-07-05 Teijin Twaron B.V. Method for obtaining para-type wholly aromatic particles
JP2007262638A (en) * 2006-03-30 2007-10-11 Eagle Gijutsu Kenkyusho:Kk Handmade japanese paper in which leather fiber is united and method for producing the same
JP2009203559A (en) * 2008-02-26 2009-09-10 Daicel Chem Ind Ltd Fiber assembly of microfiber-shaped cellulose and method for producing the same
JP2011006609A (en) * 2009-06-26 2011-01-13 Daicel Chemical Industries Ltd Microcellulose-based fiber-containing resin composition and method for producing the same
JP2015508839A (en) * 2012-02-13 2015-03-23 ウーペーエム−キュンメネ コーポレイションUPM−Ky Method and apparatus for treating fibril cellulose, and fibril cellulose product
JP2016029227A (en) * 2009-04-29 2016-03-03 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation Method for manufacturing furnish, furnish and paper
US9663588B2 (en) 2012-02-13 2017-05-30 Upm-Kymmene Corporation Method for concentrating fibril cellulose and fibril cellulose product
WO2017141642A1 (en) * 2016-02-18 2017-08-24 セイコーエプソン株式会社 Sheet production device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293144A (en) * 1988-05-21 1989-11-27 Ain Kk Method for crushing cellulosic material and manufacture of, resin film, resin coating film, and paint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293144A (en) * 1988-05-21 1989-11-27 Ain Kk Method for crushing cellulosic material and manufacture of, resin film, resin coating film, and paint

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281017A (en) * 1991-03-07 1992-10-06 Murayama Toshihiro Natural fiber material opened to submicron unit, its production and production device therefor
JP2000017592A (en) * 1998-06-23 2000-01-18 Daicel Chem Ind Ltd Fibrillar cellulose and its production
WO2007074368A2 (en) * 2005-12-28 2007-07-05 Teijin Twaron B.V. Method for obtaining para-type wholly aromatic particles
WO2007074368A3 (en) * 2005-12-28 2007-10-04 Teijin Twaron Bv Method for obtaining para-type wholly aromatic particles
US8110129B2 (en) 2005-12-28 2012-02-07 Teijin Aramid B.V. Method for obtaining para-type wholly aromatic polyamide particles
JP2007262638A (en) * 2006-03-30 2007-10-11 Eagle Gijutsu Kenkyusho:Kk Handmade japanese paper in which leather fiber is united and method for producing the same
JP2009203559A (en) * 2008-02-26 2009-09-10 Daicel Chem Ind Ltd Fiber assembly of microfiber-shaped cellulose and method for producing the same
JP2016029227A (en) * 2009-04-29 2016-03-03 ウーペーエム−キュンメネ コーポレイションUPM−Kymmene Corporation Method for manufacturing furnish, furnish and paper
JP2011006609A (en) * 2009-06-26 2011-01-13 Daicel Chemical Industries Ltd Microcellulose-based fiber-containing resin composition and method for producing the same
JP2015508839A (en) * 2012-02-13 2015-03-23 ウーペーエム−キュンメネ コーポレイションUPM−Ky Method and apparatus for treating fibril cellulose, and fibril cellulose product
US9663588B2 (en) 2012-02-13 2017-05-30 Upm-Kymmene Corporation Method for concentrating fibril cellulose and fibril cellulose product
WO2017141642A1 (en) * 2016-02-18 2017-08-24 セイコーエプソン株式会社 Sheet production device

Also Published As

Publication number Publication date
JP2675643B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
CN104619913B (en) For preparation method and the intermediate product of the cellulose of highly refined or micro fibrillation
US3539365A (en) Dispersing and stabilizing agent comprising beta-1,4 glucan and cmc and method for its preparation
CN107531910B (en) Dry-blended redispersible cellulose filament/carrier product and method of making same
CN107207626B (en) Polysaccharide suspensions, method for the production thereof, and use thereof
KR100488832B1 (en) Process for Preparing Fine-Particle Polysaccharide Derivatives
CN109790681B (en) Method for converting high consistency pulp fibers into pre-dispersed semi-dry and dry fiber materials
KR102229332B1 (en) Dry cellulose filaments and the method of making the same
WO2017047768A1 (en) Product containing microfibrous cellulose
US8827192B2 (en) Cellulose suspension and processes for its production
CN107847834B (en) Method for producing filter material for air filter
JP2000503703A (en) Replenishment of Cellulose Nanofibrils with Carboxycellulose with Low Degree of Substitution
JPS6019921B2 (en) Method for producing microfibrous cellulose
JP5916902B2 (en) Method for concentrating fibril cellulose and fibril cellulose product
JP2009203559A (en) Fiber assembly of microfiber-shaped cellulose and method for producing the same
CN113272377B (en) Bacterial cellulose formulations, methods and uses thereof
Okiyama et al. Bacterial cellulose III. Development of a new form of cellulose
JP6768062B2 (en) Supercritical CO2 cellulose spray drying
JPH03152130A (en) Powdery or granular fine fiber material and production thereof
JP2017057285A (en) Manufacturing method of fine fibrous cellulose-containing article
JP2017008176A (en) Dry solid article of cellulose nanofiber and manufacturing method thereof
CN108350634A (en) Sheet producing device, method of producing sheet and the tree powder body
JP6507962B2 (en) Fine fibrous cellulose-containing composition
JP6534172B2 (en) Dry solid of cellulose nanofiber, method for producing the same, and redispersion of dry solid
JP6511441B2 (en) Three-dimensional cellulose molded body, method for producing the same, and use thereof
WO2023095421A1 (en) Cellulose particles and cellulose particle dispersion