JPH03152070A - Hydraulic elevator control device - Google Patents

Hydraulic elevator control device

Info

Publication number
JPH03152070A
JPH03152070A JP1288460A JP28846089A JPH03152070A JP H03152070 A JPH03152070 A JP H03152070A JP 1288460 A JP1288460 A JP 1288460A JP 28846089 A JP28846089 A JP 28846089A JP H03152070 A JPH03152070 A JP H03152070A
Authority
JP
Japan
Prior art keywords
motor
control device
oil
electric motor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288460A
Other languages
Japanese (ja)
Inventor
Takaaki Aoi
青井 隆明
Tomoichiro Yamamoto
山本 友一郎
Toshiaki Ishii
敏昭 石井
Hiroyuki Ikejima
宏行 池島
Takehiko Kubota
猛彦 久保田
Kazuaki Tomita
和明 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1288460A priority Critical patent/JPH03152070A/en
Publication of JPH03152070A publication Critical patent/JPH03152070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Elevator Control (AREA)

Abstract

PURPOSE:To safety increase the temperature of oil with a cheap arrangement by controlling a hydraulic elevator with the use of a speed signal for a motor during regenerating braking operation of the motor so as to issue a frequency instructing signal by which the regenerative power for the motor becomes zero. CONSTITUTION:When a motor falls in a braking operation, a slip frequency instructing signal 32a becomes negative so that a changeover device 37 is operated, and accordingly, shoes 37a, 37b are turned to contacts (b) respectively. A power control device 39 receives a speed signal 14a, and delivers a frequency instructing signal by which the regenerative power becomes zero, to a control device 36. Meanwhile, a slip frequency instruction signal 32a is inputted to a gain converter 38 from which an output as a voltage instructing signal is delivered to a control device 36. When a slip is controlled so that the sum of the power consumed in the motor and the regenerative power becomes zero, the mechanical energy is all consumed by the motor. Accordingly, the regenerative power are all consumed in the motor so as to be exhibited as a heat within the motor. However, since the motor is stored in oil in a tank, the temperature of the oil is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、上昇及び下降時共電動機を制御して油圧エ
レベータ−を制御する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for controlling a hydraulic elevator by controlling a common motor during ascending and descending.

[従来の技術] 近年、半導体などを含む電子技術の進歩に伴い、印加電
圧及び周波数を変化させて誘導電動機の回転速度を制御
する(以下VVVF制御という)方式を、油圧エレベー
タ−の制御装置に適用することが提案されている。これ
は、定吐出形ポンプを用い、ポンプの吐出量を電動機の
回転速度を変化させることにより可変制御するもので、
安価であり、かつ信頼性が高いものである。
[Prior Art] In recent years, with the advancement of electronic technology including semiconductors, a method of controlling the rotational speed of an induction motor by changing the applied voltage and frequency (hereinafter referred to as VVVF control) has been applied to hydraulic elevator control devices. It is proposed to apply. This uses a constant discharge pump and variably controls the pump's discharge amount by changing the rotational speed of the electric motor.
It is inexpensive and highly reliable.

ところで、油圧エレベータ−においては、冬場などで油
温が低下すると、油の粘性が変化し、乗心地の悪化、起
動時の電動機トルク不足などを生じる虞れがある。上記
VVVF制御では、動力損失が少ないことから、油温上
昇は従来のポンプ制御方式(可変容量形ポンプを用い、
ポンプ自身の吐出量を可変にする方式)などに比べて、
油温上昇が172以下となるため、上記のような冬場に
おける性能低下が発生しやすい。
By the way, in a hydraulic elevator, when the oil temperature decreases in winter or the like, the viscosity of the oil changes, which may cause a worsening of riding comfort and insufficient motor torque at startup. In the VVVF control mentioned above, since the power loss is small, the oil temperature rise can be controlled using the conventional pump control method (using a variable displacement pump,
Compared to methods such as methods that vary the discharge amount of the pump itself,
Since the oil temperature rises below 172°C, the above-mentioned performance decline in winter is likely to occur.

このような不具合を改善するものとして、例えば特開昭
60−148877号公報に示されるような油圧エレベ
ータ−の制御装置が提案されている。
To improve this problem, a hydraulic elevator control system has been proposed, for example, as disclosed in Japanese Patent Application Laid-Open No. 148877/1983.

第3図は上記油圧エレベータ−の制御装置を示す全体回
路図である。
FIG. 3 is an overall circuit diagram showing the control device for the hydraulic elevator.

図中、(1)は昇降路、(2)は昇降路(1)の下部に
設置され作動油(3)が満たされた油圧シリンダ、(4
)は油圧シリンダ(2)の油量の増減制御により上下す
るプランジャ、(5)はプランジャ(4)の頭部に結合
されたかご、(7)は乗場、(8)はかと(5)に設け
られたカム、(9)は昇降路(1)に設置されカム(8
)と係合する減速指令スイッチ、(lO)は同じく停止
指令スイッチ(図の(9)(10)は下降用を示すが、
上昇用も同様に設けられている。)、(11)は油圧ポ
ンプ(12)とシリンダ(2)との間に設けられた電磁
弁、(13)はポンプ(12)を駆動する誘導電動機、
(14)は電動機(13)に直結され速度信号(14a
)を出力する速度検出器、(15)はポンプ(12)に
接続された油タンクで、油温検出器(16)及びヒータ
(17)が設けられている。(18)は三相交流電源R
,S、Tを直流に変換するダイオードブリッジからなる
コンバータ、(19)はコンバータ(18)の出力を平
滑にするコンデンサ、(20)は平滑にされた直流をパ
ルス幅制御して可変電圧・可変周波数の交流電力を発生
するインバータ、(21a)〜(21c)はインバータ
(20)と電動機(13)の間に挿入されかご(5)に
走行指令が発せられると閉成し、着床停止直前に開放す
る電磁接触器接点、(22)は減速指令スイッチ(9)
からの信号(9a)と、停止指令スイッチ(10)から
の信号(loa)と、接点(21a) 〜(21c)と
同様の接点(21d)の出力とによって速度指令信号(
22a)を発するパターン発生装置、(23)は速度指
令信号(22a)と速度信号(14a)を入力してイン
バータ(20)の制御信号(23a)を発生する速度制
御装置、(24)は電動機(13)の回生運転を検出す
る回生制御装置、(25)はコンバータ(18)と並列
に接続された電力回生用インバータ、(26)は回生制
御装置(24)及び油温検出器(16)の出力によりヒ
ータ(17)を制御する油温制御装置である。
In the figure, (1) is a hoistway, (2) is a hydraulic cylinder installed at the bottom of the hoistway (1) and filled with hydraulic oil (3), and (4) is a hydraulic cylinder installed at the bottom of the hoistway (1) and filled with hydraulic oil (3).
) is a plunger that moves up and down by controlling the amount of oil in the hydraulic cylinder (2), (5) is a cage connected to the head of plunger (4), (7) is a landing, and (8) is a heel to (5). The provided cam (9) is installed in the hoistway (1) and the cam (8
) is engaged with the deceleration command switch, and (lO) is the same stop command switch ((9) and (10) in the figure are for lowering,
A lift is also provided in the same way. ), (11) is a solenoid valve provided between the hydraulic pump (12) and the cylinder (2), (13) is an induction motor that drives the pump (12),
(14) is directly connected to the electric motor (13) and the speed signal (14a
), and (15) is an oil tank connected to the pump (12), which is equipped with an oil temperature detector (16) and a heater (17). (18) is a three-phase AC power supply R
, S, and T to direct current, (19) is a capacitor that smoothes the output of converter (18), and (20) is a converter that controls the pulse width of the smoothed direct current to make it variable voltage/variable. Inverters (21a) to (21c) that generate frequency alternating current power are inserted between the inverter (20) and the electric motor (13), and close when a running command is issued to the car (5), just before landing stops. (22) is the deceleration command switch (9)
The speed command signal (
(23) is a speed control device that inputs the speed command signal (22a) and speed signal (14a) to generate a control signal (23a) for the inverter (20); (24) is an electric motor (13) is a regeneration control device that detects regenerative operation; (25) is an inverter for power regeneration connected in parallel with the converter (18); (26) is a regeneration control device (24) and an oil temperature detector (16) This is an oil temperature control device that controls the heater (17) based on the output of the oil temperature control device.

すなわち、上昇指令が発せられると、接点(21a)〜
(21cl)は閉成し、電動機(13)にインバータ(
20)の出力が供給されると共に、パターン発生装置(
22)から速度指令信号(22a)が出力される。これ
で、速度制御装置(23)から制御信号(23a)が出
力されて、インバータ(20)の出力は制御され、電動
機(13)はポンプ(12)を駆動する。ポンプ(12
)の旋動により、タンク(15)内の油は電磁弁(11
)を介してシリンダ(2)に送られ、プランジャ(4)
を介してかご(5)を上昇させる。
That is, when a rising command is issued, the contacts (21a) to
(21cl) is closed, and the inverter (
20) is supplied, and the pattern generator (
22) outputs a speed command signal (22a). The control signal (23a) is now output from the speed control device (23), the output of the inverter (20) is controlled, and the electric motor (13) drives the pump (12). Pump (12
), the oil in the tank (15) flows through the solenoid valve (11).
) to the cylinder (2) and the plunger (4)
The car (5) is raised via the .

次に、下降指令が発せられると、電磁弁(11)が付勢
され、シリンダ(2)内の油(3)を除々にポンプ(1
2)へ送り始める。同時に、電動機(13)は上昇時と
逆方向へ起動し、ポンプ(12)を逆転させる。このと
き、シリンダ(2)から送られる油量は、電動機(13
)で制御する油量よりも多いので、電動機(13)はポ
ンプ(12)により回生制動されて運転する。
Next, when a descending command is issued, the solenoid valve (11) is energized and the oil (3) in the cylinder (2) is gradually pumped to the pump (1).
Start sending to 2). At the same time, the electric motor (13) is activated in the opposite direction to the upward direction, causing the pump (12) to reverse. At this time, the amount of oil sent from the cylinder (2) is
), the electric motor (13) is operated under regenerative braking by the pump (12).

このとき、電動機(13)からの回生電力は、インバー
タ(20)を経て逆変換されて直流となり、コンデンサ
(19)は充電される。そして、この回生電力は電力回
生用インバータ(25)を介して交流側へ返還される。
At this time, the regenerated power from the electric motor (13) is reversely converted into direct current through the inverter (20), and the capacitor (19) is charged. This regenerated power is then returned to the AC side via the power regeneration inverter (25).

一方、コンデンサ(19)の電圧が一定値よりも高くな
ると、回生制御装置(24)は出力を発する。油温制御
装置(26)は、油温検出器(16)による検出温度が
所定温度よりも低く、かつ回生制御装置(24)からの
出力が入力されると、ヒータ(17)に通電し、油温を
適正範囲内に保つように動作する。
On the other hand, when the voltage of the capacitor (19) becomes higher than a certain value, the regeneration control device (24) outputs an output. The oil temperature control device (26) energizes the heater (17) when the temperature detected by the oil temperature detector (16) is lower than a predetermined temperature and the output from the regeneration control device (24) is input. It works to keep the oil temperature within the appropriate range.

なお、かご(5)のカム(8)が減速指令スイッチ(9
)及び停止指令スイッチ(10)と係合することにより
、減速及び停止するが、詳細は省略する。
Note that the cam (8) of the car (5) is the deceleration command switch (9).
) and a stop command switch (10) to decelerate and stop, but the details will be omitted.

[発明が解決しようとする課題] 上記のように構成された油圧エレベータ−の制御装置で
は、口割電力を交流側へ返還し、かつ回生制動時油温が
低下していると、タンク(15)内の油を加熱するよう
にしているため、回生制御装置(24)、電力回生用イ
ンバータ(25)、油温制御装置(26)、ヒータ(1
7)等が必要となり高価になるという問題点がある。ま
た、ヒータ(17)の高温加熱部がタンク(15)内の
油に直接接触するため、油温が局部的に上昇して、油が
急速に劣化し、かつ安全の面にも影響を及ぼすという問
題点もある。
[Problems to be Solved by the Invention] In the hydraulic elevator control device configured as described above, when the split power is returned to the AC side and the oil temperature is low during regenerative braking, the tank (15 ), the regeneration control device (24), power regeneration inverter (25), oil temperature control device (26), and heater (1
7) etc. are required and are expensive. Furthermore, since the high-temperature heating part of the heater (17) comes into direct contact with the oil in the tank (15), the oil temperature rises locally, causing rapid deterioration of the oil and also affecting safety. There is also a problem.

なお、第3図はポンプ(12)及び電動機(13)が空
気中に設置される、いわゆるトライタイプで示されてい
るが、両者が油中に設置されるサブマージタイプでも同
様の問題がある。
Although FIG. 3 shows a so-called tri-type in which the pump (12) and electric motor (13) are installed in the air, a submerged type in which both are installed in oil has similar problems.

この発明は上記問題点を解決するためになされたもので
、安価な構成でしかも安全に油の温度を上昇することが
できるようにした油圧エレベータ−の制御装置を提供す
ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a control device for a hydraulic elevator that is inexpensive and can safely raise the temperature of oil.

口課題を解決するための手段] この発明に係る油圧エレベータ−の制御装置は、ポンプ
及び電動機がタンク内に収納され、上昇及び下降時共電
動機をVVVF制御し、回生制動時電動機の速度信号に
より周波数指令信号を制御して、電動機の回生電力が零
となる周波数指令信号を出力するようにしたものである
[Means for Solving the Problems] A control device for a hydraulic elevator according to the present invention includes a pump and an electric motor housed in a tank, performs VVVF control on both electric motors during ascending and descending, and uses a speed signal of the motor during regenerative braking. The frequency command signal is controlled to output a frequency command signal that makes the regenerative power of the motor zero.

[作 用] この発明においては、サブマージタイプの油圧エレベー
タ−で、電動機の回生電力が零となるような周波数指令
信号を出力するようにしたため、回生電力はすべて電動
機内部で消費される。
[Function] In the present invention, in a submerged type hydraulic elevator, a frequency command signal is output such that the regenerated power of the electric motor becomes zero, so that all the regenerated electric power is consumed inside the electric motor.

[実施例コ 第1図及び第2図はこの発明の一実施例を示す図で、第
1図は全体回路図、第2図は速度制御装置のブロック回
路図であり、従来装置と同様の部分は同一符号で示す。
[Embodiment] Figures 1 and 2 are diagrams showing an embodiment of the present invention. Figure 1 is an overall circuit diagram, and Figure 2 is a block circuit diagram of a speed control device, which is similar to the conventional device. Parts are indicated by the same reference numerals.

第1図中、油圧ポンプ(12)、電動機(13)及び速
度検出器(14)は油タンク(15)内の油中に収納さ
れており、第3図の回生制御装置(24)及び電力回生
用インバータ(25)は使用されていない。
In Fig. 1, the hydraulic pump (12), electric motor (13), and speed detector (14) are housed in oil in the oil tank (15), and the regeneration control device (24) and electric power The regeneration inverter (25) is not used.

第2図は例えば特開昭59−17879号公報第3図に
示されたもので、図中、(31)は速度指令信号(22
a)と速度信号(14a)の偏差信号を出力する加算器
、(32)は加算器(31)に接続され速度制御系の応
答を良好にするための補償要素で、G (S)は伝達関
数、(32a)は補償要素(32)の出力で、滑り周波
数指令信号、 (33)は滑り周波数指令信号(32a
)と速度信号(14a)の加算値を出力する加算器、 
(34)は加算器(33)の出力から電圧指令信号(3
4a)を発する電圧指令発生器、(35)は同じく周波
数指令信号(35a)を発する周波数指令発生器、(3
6)は電圧指令信号(34a)と周波数指令信号(35
a)に基きインバータ(20)の出力電圧及び出力周波
数を制御する制御信号(23a)を発するインバータ制
御装置、(37)は滑り周波数指令信号(32a)が正
(零を含む)のときは接触子(37a) (37b)を
接点(a)に接触させ、信号(32a)が負になるとこ
れを接点(b)に接触させる切換装置、 (38)は接
触子(37a)の接点(b)と制御装置(36)の間に
接続され入力の値に応じて設定された値の出力を発す−
る利得変換器、(39)は接触子(37b)の接点(b
)と制御表! (36)の間に接続され回生電力が零と
なるような周波数指令信号を発する電力制御装置である
Figure 2 is shown, for example, in Figure 3 of Japanese Unexamined Patent Publication No. 59-17879, in which (31) is the speed command signal (22
a) and the speed signal (14a), (32) is a compensation element connected to the adder (31) to improve the response of the speed control system, and G (S) is the transmission The function (32a) is the output of the compensation element (32), which is the slip frequency command signal, and (33) is the slip frequency command signal (32a).
) and a speed signal (14a);
(34) is the voltage command signal (3) from the output of the adder (33).
4a); (35) is a frequency command generator that also issues a frequency command signal (35a);
6) is a voltage command signal (34a) and a frequency command signal (35
(37) is in contact when the slip frequency command signal (32a) is positive (including zero); (38) is the contact (b) of the contactor (37a); and (38) is the contact (b) of the contactor (37a). and the control device (36), and outputs a set value according to the input value.
The gain converter (39) is the contact (b) of the contact (37b).
) and control table! (36) is a power control device that emits a frequency command signal such that the regenerated power becomes zero.

次に、この実施例の動作を説明する。Next, the operation of this embodiment will be explained.

電動機(13)のカ行運転時は、速度指令信号(22a
)と速度信号(14a)の偏差は正となるため、滑り周
波数指令信号(32a)も正となり、切換装置(37)
は動作せず、接触子(37a) (37b)はいずれも
接点(a)に接触している。そのため、速度指令信号(
22a)と速度信号(14a)の偏差に対応する滑り周
波数指令信号(32a)が出力されるが、この滑り周波
数指令信号(32a)はトルク指令信号に相当する。こ
れに、加算器(33)によって速度信号(14a)が加
えられることにより、電圧/周波数がほぼ一定になる関
係を満足させるように、電圧指令信号(34a)と周波
数指令信号(35a)が決められる。これらの指令値に
よって、制御装置(36)はインバータ(20)(コン
バータ(18)がサイリスタ等で構成されているときは
、場合によってコンバータ(18)も)の素子をスイッ
チング制御し、滑り周波数指令信号(32a)に相当す
るトルクを電動機(13)に発生させる。これで、電動
機(13)は起動してかと(5)は走行し、その速度は
精度高く自動制御される。
When the electric motor (13) is in continuous operation, the speed command signal (22a
) and the speed signal (14a) is positive, so the slip frequency command signal (32a) is also positive, and the switching device (37)
does not operate, and both contacts (37a) and (37b) are in contact with contact point (a). Therefore, the speed command signal (
A slip frequency command signal (32a) corresponding to the deviation between the speed signal (14a) and the speed signal (14a) is output, and this slip frequency command signal (32a) corresponds to a torque command signal. By adding the speed signal (14a) by the adder (33), the voltage command signal (34a) and frequency command signal (35a) are determined so as to satisfy the relationship that the voltage/frequency is approximately constant. It will be done. Based on these command values, the control device (36) controls the switching of the elements of the inverter (20) (or the converter (18) depending on the case when the converter (18) is composed of a thyristor, etc.), and generates the slip frequency command. The electric motor (13) is caused to generate torque corresponding to the signal (32a). Now, the electric motor (13) is started and the car (5) runs, and its speed is automatically controlled with high precision.

一方、電動機(13)が制動運転に入ると、滑り周波数
指令信号(32a)は負になるので、切換装置(37)
は動作し、接触子(37a) (37b)はいずれも接
点(b)に切り換えられる。これで、電力制御装置(3
9)は、速度信号(14a)を入力とし、回生電力が零
となるような周波数指令信号が制御装置(36)へ出力
される。一方、滑り周波数指令信号(32a)は、利得
変換器(38)へ入力され、その出力が電圧指令信号と
して制御装置(36)へ出力されることになる。
On the other hand, when the electric motor (13) enters braking operation, the slip frequency command signal (32a) becomes negative, so the switching device (37)
operates, and both contacts (37a) and (37b) are switched to contact (b). Now the power control device (3
9) inputs the speed signal (14a) and outputs a frequency command signal such that the regenerated power becomes zero to the control device (36). On the other hand, the slip frequency command signal (32a) is input to the gain converter (38), and its output is output to the control device (36) as a voltage command signal.

ここで、上記特開昭59−17879号公報にも示され
ているように、電動機(13)の内部で消費される電力
をPl、回生電力として発生する電力をPgとすると、 P1+Pg=O・・・■ となるように、滑りSを制御すれば、機械的エネルギー
はすべて電動機(13)内部で消費されることになる。
Here, as shown in the above-mentioned Japanese Unexamined Patent Publication No. 59-17879, if the power consumed inside the electric motor (13) is Pl, and the power generated as regenerative power is Pg, then P1+Pg=O・If the slip S is controlled so that...■, then all the mechanical energy will be consumed inside the electric motor (13).

ここで、滑りSは 9 二二に、r’ l +1電動機(13)の−次抵抗r2
=電動機(13)の二次抵抗(−次換算値)go;励磁
コンダクタンス Z :電動機(13)の総合インピーダンスとなる。た
だし、Z = Z (S)となり、入力電圧と関係なく
0式を満たすことによって、電力授受がなくて制動力を
発生させる滑りSが求められる。
Here, the slip S is 9 22, r' l +1 -order resistance r2 of the motor (13)
= Secondary resistance (-order conversion value) of the electric motor (13) go; Excitation conductance Z: Total impedance of the electric motor (13). However, by setting Z = Z (S) and satisfying the equation 0 regardless of the input voltage, the slip S that generates braking force without power transfer can be found.

これで、回生電力はすべて電動機(13)内で消費され
ることになる。
All of the regenerated power will now be consumed within the electric motor (13).

この回生電力は、電動機(13)の発熱として現われる
が、電動機(13)はタンク(15)内の油中に収納さ
れているので、電動機(13)の発熱は、油の温度を上
昇させることになる。
This regenerated power appears as heat generated by the electric motor (13), but since the electric motor (13) is housed in oil in the tank (15), the heat generated by the electric motor (13) does not increase the temperature of the oil. become.

更に、電動機(13)の回転により、油をタンク(15
)内でかくはんすることができるので、油の局部的な温
度上昇を招くこともない。
Furthermore, the rotation of the electric motor (13) causes the oil to be pumped into the tank (15).
), it does not cause a local temperature rise of the oil.

なお、第1図の接触子(37a)の接点(b)の出力を
、更に電力制御装置(39)へも入力し、印加電圧及び
速度を入力として、有効電力の授受のない滑りを、電力
制御装置(39)で演算させるようにしてもよい。
The output of the contact point (b) of the contactor (37a) in Fig. 1 is further input to the power control device (39), and the applied voltage and speed are used as inputs to control the slippage without transfer of active power to the power control device (39). The calculation may be performed by the control device (39).

また、エレベータ−の長時間停止時の油温低下が問題に
なる場合は、油温を検出し、所定の温度以下になったと
き、強制的にエレベータ−を運転させることにより、回
生電力で油温を上昇させることも可能である。
In addition, if a drop in oil temperature becomes a problem when the elevator is stopped for a long time, the oil temperature can be detected and when the temperature drops below a predetermined temperature, the elevator can be forcibly operated using regenerative power. It is also possible to increase the temperature.

[発明の効果] 以上説明したとおりこの発明では、サブマージタイプの
油圧エレベータ−で、電動機の回生電力が零となるよう
な周波数指令信号を出力するようにしたので、回生電力
はすべて電動機内部で消費され、その発熱で油温が上昇
し、特別な機器を必要とせず、安価な構成で、しかも安
全に油温を上昇させることができる効果がある。
[Effects of the Invention] As explained above, in this invention, a submerged type hydraulic elevator outputs a frequency command signal that makes the regenerated power of the motor zero, so all the regenerated power is consumed inside the motor. The generated heat raises the oil temperature, which has the effect of safely increasing the oil temperature without the need for special equipment, with an inexpensive configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による油圧エレベータ−の制御装置の
一実施例を示す全体回路図、第2図は第1図の速度制御
装置のブロック回路図、第3図は従来の油圧エレベータ
−の制御装置を示す全体回路図である。 図中、(2)は油圧シリンダ、(5)はかご、(12)
は油圧ポンプ、(13)は誘導電動機、 (14a)は
速度信号、(15)は油タンク、(18)はコンバータ
、(20)はインバータ、(22a)は速度指令信号、
(23)は速度制御装置、(34a)は電圧指令信号、
(35a)は周波数指令信号、(36)はインバータ制
御装置、(39)は電力制御手段(電力制御装置)であ
る。 なお、図中同一符号は同−又−は相当部分を示す。 第2図
FIG. 1 is an overall circuit diagram showing an embodiment of a hydraulic elevator control system according to the present invention, FIG. 2 is a block circuit diagram of the speed control system shown in FIG. 1, and FIG. 3 is a conventional hydraulic elevator control system. FIG. 1 is an overall circuit diagram showing the device. In the figure, (2) is a hydraulic cylinder, (5) is a cage, and (12)
is a hydraulic pump, (13) is an induction motor, (14a) is a speed signal, (15) is an oil tank, (18) is a converter, (20) is an inverter, (22a) is a speed command signal,
(23) is a speed control device, (34a) is a voltage command signal,
(35a) is a frequency command signal, (36) is an inverter control device, and (39) is a power control means (power control device). Note that the same reference numerals in the figures indicate the same or corresponding parts. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 油圧ポンプ及びこれを駆動する電動機が油タンク内に収
納され、上昇及び下降時共電圧指令信号及び周波数指令
信号により上記電動機を制御して、上記油圧ポンプを駆
動してかごを走行させるエレベーターにおいて、上記電
動機の回生制動時に上記電動機の速度信号により制御さ
れ上記電動機の回生電力が零となる上記周波数指令信号
を出力する電力制御手段を備えたことを特徴とする油圧
エレベーターの制御装置。
In an elevator in which a hydraulic pump and an electric motor for driving the hydraulic pump are housed in an oil tank, the electric motor is controlled by a voltage command signal and a frequency command signal during ascending and descending, and the hydraulic pump is driven to drive the car, A control device for a hydraulic elevator, comprising power control means for outputting the frequency command signal that is controlled by a speed signal of the electric motor so that regenerative power of the electric motor becomes zero during regenerative braking of the electric motor.
JP1288460A 1989-11-06 1989-11-06 Hydraulic elevator control device Pending JPH03152070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288460A JPH03152070A (en) 1989-11-06 1989-11-06 Hydraulic elevator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288460A JPH03152070A (en) 1989-11-06 1989-11-06 Hydraulic elevator control device

Publications (1)

Publication Number Publication Date
JPH03152070A true JPH03152070A (en) 1991-06-28

Family

ID=17730500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288460A Pending JPH03152070A (en) 1989-11-06 1989-11-06 Hydraulic elevator control device

Country Status (1)

Country Link
JP (1) JPH03152070A (en)

Similar Documents

Publication Publication Date Title
KR860000664B1 (en) A.c elevator control system
JPH0231594B2 (en)
JPS6219351B2 (en)
JP2505644B2 (en) Hydraulic elevator drive controller
KR840002352B1 (en) Ac elevator control circuit
JPS61258695A (en) Speed controller of elevator
JPH0724467B2 (en) Elevator control device
JPH03152070A (en) Hydraulic elevator control device
JPS61224888A (en) Controller of ac elevator
JPS597679A (en) Controller for alternating current elevator
JPS597680A (en) Controller for alternating current elevator
JPH045636B2 (en)
KR860000338B1 (en) A.c.elevator control system
JPH04153173A (en) Speed control unit for hydraulic elevator
JPH05155551A (en) Controller of hydraulic elevator
JP2578111B2 (en) Hydraulic elevator device
JPH05286671A (en) Control device of hydraulic elevator
JPS6231675A (en) Controller for hydraulic elevator
JPH04217569A (en) Controller for hydraulic elevator
JPH075238B2 (en) Control device for hydraulic elevator
JP2516672Y2 (en) AC elevator control device
JPH04213571A (en) Elevator control device
JPS61254086A (en) Controller for ac elevator
JPH0225819Y2 (en)
JPS63288878A (en) Controller for elevator