JPH03151635A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03151635A
JPH03151635A JP29025689A JP29025689A JPH03151635A JP H03151635 A JPH03151635 A JP H03151635A JP 29025689 A JP29025689 A JP 29025689A JP 29025689 A JP29025689 A JP 29025689A JP H03151635 A JPH03151635 A JP H03151635A
Authority
JP
Japan
Prior art keywords
embedding material
oxide film
etching
polycrystalline silicon
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29025689A
Other languages
Japanese (ja)
Inventor
Shoji Usui
臼井 章二
Takao Miura
隆雄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29025689A priority Critical patent/JPH03151635A/en
Publication of JPH03151635A publication Critical patent/JPH03151635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To eliminate recessed parts on the periphery of a trench of a thermal oxide film of buried material and realize positive flatness, by forming a protective film against etching on the periphery of the trench above the buried material. CONSTITUTION:A protective film 33 for the protection from etching on the periphery of a trench above buried material 31 after etching-back. By etching the buried material 31, the upper part of the buried material 31 is constituted in a recessed form. After the upper part of the buried layer 31 is constituted in the recessed form, the buried material 31 is thermally oxidized, so that a swelling on the central upper part of the trench 30a after thermal oxidation is relieved, recessed parts as the conventional example are not formed, and the step-difference between the surface and a thermal oxide film 32 is reduced. Thereby the surface is flattened, the short circuiting between adjacent gate wiring layers is not caused. Further the decrease of reliability caused by the disconnection of the gate wiring layer or the result that the resistance of this part becomes high can be avoided.

Description

【発明の詳細な説明】 (概要〕 半導体基板に形成された溝に埋込み材を充填した後その
表面を平坦化する方法に関し、埋込み材熱酸化後の溝周
辺部に凹部をなくして更に平坦化を確実にすることを目
的とし、即込み材上部の溝周辺部に1ツヂング保護膜を
形成し、埋込み材をエツチングしてその上部を凹状に形
成する■程、又は、埋込み材上部の溝周辺部に埋込み材
と同じ材質の膜を形成してその上部を凹状に形成する。
[Detailed Description of the Invention] (Summary) Regarding a method for flattening the surface of a trench formed in a semiconductor substrate after filling it with a embedding material, the method further flattens the surface by eliminating a recess around the trench after thermal oxidation of the embedding material. For the purpose of ensuring this, a protective film is formed around the groove on the top of the ready-to-mount material, and the top of the potting material is etched to form a concave shape. A film made of the same material as the embedding material is formed on the part, and the upper part thereof is formed into a concave shape.

■程、又は、埋込み材充填後、異方性のエッチバックを
行なってその上部の溝周辺部に埋込み材(31)を残し
、その上部を凹状に形成する1稈を含む。
In step 2, or after filling the embedding material, an anisotropic etchback is performed to leave the embedding material (31) around the groove in the upper part, and one culm is included in which the upper part is formed into a concave shape.

〔産業上の利用分野〕 本発明は、半導体基板に形成された溝に埋込み材を充填
した後その表面を平坦化する方法に関する。
[Industrial Application Field] The present invention relates to a method for filling a trench formed in a semiconductor substrate with a filling material and then flattening the surface thereof.

MOSトランジスタ等の半導体装置には、互いに隣接す
る素子の間を分離するいわゆるI・レンチアイソレーシ
ョンが用いられている。1この場合、溝(トレンチ)の
中には例えば多結晶シリコンを埋込み材として充填し、
この多結晶シリ」ン上部を熱酸化することによって絶縁
膜に変え、隣接の素子のゲート配線層とのショートを防
いでいる。
2. Description of the Related Art In semiconductor devices such as MOS transistors, so-called I-wrench isolation is used to isolate adjacent elements from each other. 1 In this case, the trench is filled with, for example, polycrystalline silicon as a filling material,
By thermally oxidizing the upper part of this polycrystalline silicon, it is turned into an insulating film to prevent short circuits with gate wiring layers of adjacent devices.

この多結晶シリ」ン上部の熱酸化膜が平坦になっていな
いと溝周辺部にゲート配線層形成用の多結晶シリ」ン層
が残って隣接ゲート配線層とショートを起すため、熱酸
化膜は平坦にしておく必要がある。
If the thermal oxide film on top of this polycrystalline silicon is not flat, the polycrystalline silicon layer for forming the gate wiring layer will remain around the trench, causing a short circuit with the adjacent gate wiring layer. must be kept flat.

(従来の1技術〕 第6図は従来の一例の製造工程図を示す。同図(A)に
おいて、半導体基板1上に熱酸化膜2゜窒化膜3を形成
し、これをパターニングして溝4を形成し□、熱酸化に
よって溝4の側壁に熱酸化膜5を形成する。次に、溝4
内に多結晶シリボン6を充填ら、エッチバックを行なう
。この場合、表面に多結晶シリコン6が残らないように
オーバエッチを行なう。次に、同図(B)において、多
結晶シリコン6上部を熱酸化してここに熱酸化膜7を形
成する。更に、窒化膜3を除去し、同図(C)に示す如
く、全面に多結晶シリコン8を成長し、これをパターニ
ングしてゲート配線層8+ 、82を形成する。このよ
うにして、隣接する素子間を分離するトレンチアイソレ
ーションが形成される。
(One Conventional Technology) Fig. 6 shows a manufacturing process diagram of an example of the conventional technology. In Fig. 6 (A), a thermal oxide film 2° and a nitride film 3 are formed on a semiconductor substrate 1, and this is patterned to create grooves. 4 is formed □, and a thermal oxide film 5 is formed on the side wall of the groove 4 by thermal oxidation.
The interior is filled with polycrystalline silicon ribbon 6 and etched back. In this case, overetching is performed so that no polycrystalline silicon 6 remains on the surface. Next, in FIG. 2B, the upper part of the polycrystalline silicon 6 is thermally oxidized to form a thermal oxide film 7 thereon. Furthermore, the nitride film 3 is removed, and polycrystalline silicon 8 is grown over the entire surface as shown in FIG. In this way, trench isolation is formed that separates adjacent elements.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の方法では、多結晶シリクン6をオーバエッチした
後でそのままその上部を熱酸化するだけであるので、表
面と熱酸化膜7との段差が大きいままである。これに加
えて、一般に、W44の周辺部は熱酸化膜7形成時にお
けるストレスが強く働くのであまり熱酸化膜が形成され
ず、溝4の中央部のみ熱酸化膜7が盛上る。この結果、
溝4の周辺部には凹部9を生じ、ゲート配線層8+ 、
82形成のための前処理におけるノッ酸による洗浄で更
に凹部9が大きく、深くなる。
In the conventional method, after over-etching the polycrystalline silicon 6, only the upper part thereof is thermally oxidized, so that the difference in level between the surface and the thermal oxide film 7 remains large. In addition to this, in general, the stress at the time of forming the thermal oxide film 7 acts strongly around the W44, so that not much thermal oxide film is formed, and the thermal oxide film 7 rises only in the central part of the trench 4. As a result,
A recess 9 is formed around the groove 4, and a gate wiring layer 8+,
The recess 9 becomes larger and deeper due to cleaning with noic acid in the pretreatment for forming the recess 82.

このため、第6図(C)に示す如く、ゲート配線層8+
 、82形成のために多結晶シリコン8を成長すると、
多結晶シリコンは一般にカバレッジがよいので凹部9に
も4分に入り込み、このため、ゲート配線層8+ 、8
2を形成するべくパターニングした場合、四部9に多結
晶シリコン8′が残ってしまい、隣接のゲート配線層8
+、82がショートしてしまう問題点があった。
Therefore, as shown in FIG. 6(C), the gate wiring layer 8+
When growing polycrystalline silicon 8 to form , 82,
Since polycrystalline silicon generally has good coverage, it penetrates into the recess 9 by 4 minutes, so that the gate wiring layers 8+, 8
2, polycrystalline silicon 8' remains in the four parts 9, and the adjacent gate wiring layer 8
There was a problem that + and 82 were short-circuited.

又、凹部9が大きく、深いために、凹部9上のゲート配
線層8+ 、82  (多結晶シリコン)がくびれて紺
くなり、高抵抗となってしまい、信頼性が低下する問題
点もあった。更に、ゲート配線層に金属を用いた場合に
は四部9の部分に空洞を生じ、断線の心配があり、歩留
りが低下し、又、信頼性が低下する問題点があった。
In addition, because the recess 9 is large and deep, the gate wiring layers 8+ and 82 (polycrystalline silicon) on the recess 9 become constricted and turn dark blue, resulting in high resistance, resulting in lower reliability. . Furthermore, when metal is used for the gate wiring layer, cavities are formed in the four portions 9, causing the risk of wire breakage, lowering yield, and lowering reliability.

本発明は、埋込み材熱酸化後の溝周辺部に凹部をなくし
て更に平坦化を確実にできる半導体装置の製造方法を提
供することを目的とする9゜(課題を解決するための手
段〕 第1図は本発明の原理図を示す。前記従来の問題点は、
第1図<A)に示す如く、エッチバック後の埋込み材3
1の上部の溝周辺部にエツチングから保護する保護膜3
3を形成し、埋込み材31をエツチングして埋込み材3
1の上部を凹状に形成する工程を含むことを特徴とする
半導体装置の製造方法、又は、同図(B)に示す如く、
エッチバック後の埋込み材31の上部の溝周辺部に埋込
み材31と同じ材質の膜31aを形成して実買上、埋込
み材31の上部を凹状に形成する工程を含むことを特徴
とする半導体装置の製造方法、又は、同図(C)に示す
如く、埋込み材31を充填後、異方性のエッチバックを
行なって埋込み材31の上部の溝周辺部に埋込み材31
を残し、実質上、埋込み材31の上部を凹状に形成する
工程を含むことを特徴とする半導体装置の製造方法によ
って解決される。
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can further ensure planarization by eliminating concave portions around the trench after thermal oxidation of the embedding material. Figure 1 shows the principle diagram of the present invention.The problems of the conventional method are as follows.
As shown in Fig. 1<A), the embedded material 3 after etchback
Protective film 3 to protect from etching around the groove on top of 1
3, and etched the embedded material 31 to form the embedded material 3.
A method for manufacturing a semiconductor device, comprising the step of forming the upper part of the semiconductor device in a concave shape, or as shown in FIG.
A semiconductor device characterized by including a step of forming a film 31a made of the same material as the embedding material 31 around the groove above the embedding material 31 after etching back, and forming the upper part of the embedding material 31 in a concave shape after actual purchase. Alternatively, as shown in the same figure (C), after filling the embedding material 31, anisotropic etch-back is performed to form the embedding material 31 around the groove above the embedding material 31.
This problem is solved by a semiconductor device manufacturing method characterized by including a step of substantially forming the upper part of the embedding material 31 into a concave shape.

〔作用〕[Effect]

埋込み材31の上部の形状を凹状にした後に埋込み材3
1を熱酸化しているので、熱酸化後の満30a中央上部
の膨らみが緩和され、又、溝周辺部に従来例のような四
部が形成されず、表面と熱酸化膜との段差が少なくなり
、これらにより、従来例に比して表面をより平坦化でき
る。従って、ゲート配線層を形成するべく表面に多結晶
シリコンを成長してバターニングを行なった場合、溝上
部周辺部に従来例のような四部がないのでここに多結晶
シリコンが入り込むことはなく、隣接するゲート配線層
間でショートを生じることはなく、更に、従来例のよう
にゲート配線層の断線やここが高抵抗になって信頼性が
低下するようなこともない。
After making the upper part of the embedding material 31 into a concave shape, the embedding material 3
1 is thermally oxidized, the bulge in the upper center of the groove 30a after thermal oxidation is alleviated, and four parts are not formed around the groove as in the conventional example, and there is less level difference between the surface and the thermal oxide film. As a result, the surface can be made more flat than in the conventional example. Therefore, when polycrystalline silicon is grown on the surface to form a gate wiring layer and buttering is performed, the polycrystalline silicon will not get into this area because there are no four parts like in the conventional example around the upper part of the trench. There is no possibility of short-circuiting between adjacent gate wiring layers, and further, there is no possibility of disconnection of the gate wiring layer or high resistance of the gate wiring layer, which deteriorates reliability, as in the conventional example.

〔実施例〕〔Example〕

第2図は本発明の第1実施例の製造、r程図を示す。同
図(A)において、半導体基板10に酸化シリコンの熱
酸化l!11を300への厚さに形成し、その上にCV
D法にて窒化シリコン膜12を1000人の厚さに形成
し、更にその上にCVD法によりPSG膜13を500
0人の厚さに成長する。次に、通常のホトリソグラフィ
1程を用いてパターニングを行ない、異り性1ツチング
によって基板10に開口幅1μm、深さ3μ精の溝14
を形成する。。
FIG. 2 shows a manufacturing process diagram of the first embodiment of the present invention. In the same figure (A), thermal oxidation l! of silicon oxide on the semiconductor substrate 10 is shown. 11 to a thickness of 300, and CV
A silicon nitride film 12 is formed to a thickness of 1000 mm using the D method, and a PSG film 13 is further formed thereon to a thickness of 500 mm using the CVD method.
Grows to the thickness of 0 people. Next, patterning is performed using ordinary photolithography, and grooves 14 with an opening width of 1 μm and a depth of 3 μm are formed in the substrate 10 by patterning.
form. .

次に、フッ化水素の水溶液によってPSG膜13を除去
し、同図(B)に示すように溝14の側壁に厚さ100
0人の熱酸化膜15を成長する。次に、同図(C)にお
いて、多結晶シリ」ンを12μ鋼の厚さに成長しく破線
)、等り性のドライエラチャを用いてエッチバックを行
ない、溝14内に多結晶シリ」ン層16を形成する。こ
の場合、表面に多結晶シリコンが残らないようにオーバ
エッチを行なう。
Next, the PSG film 13 is removed using an aqueous solution of hydrogen fluoride, and as shown in FIG.
A thermal oxide film 15 of 0 is grown. Next, in the same figure (C), the polycrystalline silicon is grown to a thickness of 12μ steel (broken line), and etched back using a uniform dry etching process to form a polycrystalline silicon layer in the groove 14. form 16. In this case, overetching is performed so that no polycrystalline silicon remains on the surface.

次に、同図(D)において、CVD法により酸化シリコ
ン17aを3000人成長しく破線)、異方性エツチン
グによって溝14の上部の周辺部にサイドウオール(酸
化シリコン)17を形成する1゜この場合、サイドウオ
ールの材質としては窒化シリコンを用いてもよい。次に
、同図(E)において、サイドウオール17をマスクに
して多結晶シリ」ン層16を異方性のドライエツチング
してここに凹部16aを形成する。この場合のエツチン
グがとしては、多結晶シリコンの酸化量にもよるが0.
1μm〜0,4μm程度でよい。
Next, in the same figure (D), silicon oxide 17a is grown by the CVD method (broken line), and a sidewall (silicon oxide) 17 is formed around the upper part of the groove 14 by anisotropic etching. In this case, silicon nitride may be used as the material for the sidewall. Next, in FIG. 1E, the polycrystalline silicon layer 16 is anisotropically dry etched using the sidewall 17 as a mask to form a recess 16a therein. In this case, the etching rate varies depending on the amount of oxidation of the polycrystalline silicon, but the etching rate is 0.
It may be about 1 μm to 0.4 μm.

次に、同図(F)に示す如く、熱酸化膜18を6000
人成長する。この場合、満14の中央部は多結晶シリコ
ン層16が露出しているので6000人の熱酸化膜18
が形成されるが、周辺部はサイドウオール17があるた
めに熱酸化膜の形成が阻止されて約3000人程度しか
形成されない。つまり、満14の中央部は予め凹部16
aが形成されており、かつ、その周辺部はサイドウオー
ル17が形成されているので、熱酸化による熱酸化膜1
8の盛上りがあっても熱酸化後の渦中央部の膨らみは緩
和 0 され、又、従来例のような凹部9(第6図(8))が形
成されず、表面と熱酸化膜18との段差が少なくなり、
これらにより、全体として熱酸化膜18の表面を従来例
に比してより平坦面とすることができる。従って、窒化
膜12を除去後、第5図(C)で説明したようなゲート
配線層81゜82を形成するための多結晶シリコンを成
長してパターニングを行なった場合、溝上部の周辺部に
従来例のような凹部9が生じていないのでここに多結晶
シリコンが入り込むことはなく、隣接するゲート配線層
8+ 、82間でシコートを生じることはない。又、従
来例のような凹部9(第6図(B))がなく、段差がな
いのでゲート配線層8+ 、82がくびれで高抵抗にな
ることはなく、信頼性を向上でき、又、ゲート配線層に
金属を用いた場合にも従来例のような断線を生じること
はなく、歩留りを向上でき、信頼性も向上する。
Next, as shown in FIG.
People grow. In this case, since the polycrystalline silicon layer 16 is exposed in the center of the 14th layer, the thermal oxide film 18 of 6000 people is exposed.
However, the presence of the sidewall 17 in the peripheral area prevents the formation of a thermal oxide film, and only about 3,000 layers are formed. In other words, the center part of 14 is pre-determined by the recess 16.
a is formed, and the sidewall 17 is formed around it, so the thermal oxide film 1 is formed by thermal oxidation.
8, the bulge in the center of the vortex after thermal oxidation is relaxed, and the recess 9 (FIG. 6 (8)) unlike the conventional example is not formed, and the surface and thermal oxide film 18 are not formed. The difference between the
As a result, the surface of the thermal oxide film 18 as a whole can be made flatter than in the conventional example. Therefore, when polycrystalline silicon is grown and patterned to form gate wiring layers 81 and 82 as explained in FIG. Since the recess 9 unlike the conventional example is not formed, polycrystalline silicon does not enter into the recess 9, and there is no occurrence of a thin coat between the adjacent gate wiring layers 8+ and 82. In addition, unlike the conventional example, there is no recess 9 (FIG. 6(B)) and there is no step, so the gate wiring layers 8+ and 82 are not constricted and have high resistance, improving reliability. Even when metal is used for the wiring layer, there is no disconnection as in the conventional example, and the yield and reliability can be improved.

なお、現在のエッチバック技術では、第2図(C)に示
すように多結晶シリコンをエッチバックする時に中央部
にかけてやや沈み込みを生じるが、将来、エッヂバック
特性が良好な技術が開発されて第3図<A)に示すよう
に中央部にかけて沈み込みを生じない形状に形成できる
場合は、第2図(D)に示すサイドウオールを除去して
から熱酸化を行なうようにしてもよい。つまり、本発明
の第2実施例として、第3図<A)において多結晶シリ
コン層16′を形成した後、CVD法にて酸化シリコン
17a′を成長しく破線)、異方性1ツチングによって
同図(B)に示すようなサイドウオール(112化シリ
コン)17′を形成し、このサイドウオール17′をマ
スクにして賃方性■ツチング6て凹部16a′を形成す
る。次に、サイドウオール17′を除去して熱酸化を行
ない、同図(C)に示すような熱酸化膜18′を形成す
る。この場合、エッヂバック特性が良好なために多結晶
シリコン層16′の中央部にかけて沈み込みを生じてい
ないので、シイドウオール17′を除去すでから熱酸化
を行なっても溝周辺部に熱酸化膜を十分に形成でき、従
来例のような四部9(第6図(B))を生じることなく
表面をより平1 2 坦面とすることができる。
In addition, with the current etch-back technology, when polycrystalline silicon is etched back, a slight depression occurs toward the center, as shown in Figure 2 (C), but in the future, a technology with good edge-back characteristics will be developed. If the shape can be formed without sinking toward the center as shown in FIG. 3<A), thermal oxidation may be performed after removing the sidewalls shown in FIG. 2(D). That is, as a second embodiment of the present invention, after forming a polycrystalline silicon layer 16' in FIG. A side wall (silicon 112) 17' as shown in Figure (B) is formed, and using this side wall 17' as a mask, a recess 16a' is formed by cutting 6. Next, the sidewall 17' is removed and thermal oxidation is performed to form a thermal oxide film 18' as shown in FIG. In this case, because the edge-back characteristics are good, there is no sinking toward the center of the polycrystalline silicon layer 16', so even if the side wall 17' is removed and thermal oxidation is performed, a thermal oxide film is not formed around the trench. can be formed sufficiently, and the surface can be made more flat 1 2 without producing the four portions 9 (FIG. 6(B)) as in the conventional example.

第4図は本発明の第3実施例の製造、r程図を示す。同
図(A)において、多結晶シリコン層16を形成するま
での工程は第2図(A)〜(C)に示す工程と全く同様
である。第4図(A>において、表面に多結晶シリ」ン
20aを300OA成長しく破線)、異方性エツチング
によって満14の上部の周辺部にサイドウオール(多結
晶シリコン)20を形成する。このサイドウオール20
及び多結晶シリコン層16の上面により、実質上、第2
図(E)に示す凹部16aと同様の形状とすることがで
きる。次に、第4図(B)において、熱酸化を行なって
熱酸化膜21を形成する。この場合、溝周辺部には多結
晶シリコンのサイドウオール20が形成されているので
、従来例のような四部9(第6図(B))を生じること
はなく、全体と6て熱酸化膜21の表面をより平坦面と
することができる。
FIG. 4 shows a manufacturing process diagram of a third embodiment of the present invention. In FIG. 2A, the steps up to the formation of polycrystalline silicon layer 16 are exactly the same as the steps shown in FIGS. 2A to 2C. In FIG. 4 (in A>, polycrystalline silicon 20a is grown on the surface to a thickness of 300 OA (broken line)), and a sidewall (polycrystalline silicon) 20 is formed in the upper peripheral part of the 14th layer by anisotropic etching. This side wall 20
and the upper surface of the polycrystalline silicon layer 16, substantially the second
It can be made into the same shape as the recessed part 16a shown in FIG.(E). Next, in FIG. 4(B), thermal oxidation is performed to form a thermal oxide film 21. In this case, since the polycrystalline silicon sidewall 20 is formed around the groove, the four parts 9 (FIG. 6(B)) unlike the conventional example do not occur, and the entire thermal oxide film 6 is removed. The surface of 21 can be made more flat.

第5図は本発明の第4実施例の製造°[程図を示す。第
2図(A)、(B)に示す方法と同様の方法によって溝
14を形成し、第5図<A)に丞ず如く、多結晶シリコ
ン層25を1.2μ−の厚さに成長する。次に、異り性
のエッチバックを行ない、同図(B)に示す如く、溝1
4の上部の周辺部にサイドウオール(多結晶シリコン)
25aを形成する。つまり、異方性エツチング及びサイ
ドウオール形成を同時に行ない、満14の上部に四部2
5bを形成する。この場合、異方性による1ツチング」
は、表面から凹部25bの底までが3000人i?度と
なるようにする。次に、同図(C)において、熱酸化を
行なって熱酸化膜26を6000人成長する。このもの
も溝周辺部は多結晶シリコンのサイドウオール25aが
形成されているので、従来例のような四部9(第6図(
B))を生じることはなく、全体として熱酸化膜26の
表面をより平坦面とすることができる。
FIG. 5 shows a manufacturing process diagram of a fourth embodiment of the present invention. Grooves 14 are formed by a method similar to that shown in FIGS. 2(A) and (B), and a polycrystalline silicon layer 25 is grown to a thickness of 1.2 .mu.m as shown in FIG. 5<A). do. Next, the groove 1 is etched back as shown in the same figure (B).
Sidewall (polycrystalline silicon) around the top of 4
25a is formed. In other words, anisotropic etching and sidewall formation are performed at the same time, and 2 parts are formed on the top of 14 parts.
Form 5b. In this case, ``one twisting due to anisotropy''
Is there 3000 people from the surface to the bottom of the recess 25b? degree. Next, in the same figure (C), thermal oxidation is performed to grow a thermal oxide film 26 of 6000 layers. In this case as well, a polycrystalline silicon sidewall 25a is formed around the groove, so that the fourth part 9 (see FIG. 6) is different from the conventional example.
B)) does not occur, and the surface of the thermal oxide film 26 can be made more flat as a whole.

なお、溝内部に埋込む材料(31)は、多結晶シリコン
に限定されるものでなく、アモルノ?スシリ」ンや早結
晶シリコンでもよい。更に、これら各種のシリコン膜に
Ge 、P、B、A8などがドープされていない。
The material (31) to be filled inside the groove is not limited to polycrystalline silicon, but may be Amorno? Sushirin or fast-crystal silicon may also be used. Furthermore, these various silicon films are not doped with Ge, P, B, A8, etc.

〔発明の効果〕〔Effect of the invention〕

以十説明した如く、本発明によれば、埋込み材の上部を
凹状にしてから熱酸化を行なっているので、従来例に比
して熱酸化膜表面をより平坦化でき、この場合、従来例
のような渦層辺部に凹部を生じることがないので、隣接
のゲート配線層間でシ]−1・を生じることはなく、又
、段差がないので断線やくびれを生じる心配もなく、従
来例に比0て歩留り及び信頼性を夫々向上できる。
As explained above, according to the present invention, since thermal oxidation is performed after making the upper part of the embedding material concave, the surface of the thermal oxide film can be made more planar than in the conventional example. Since there is no concave part formed on the edge of the vortex layer, there is no possibility of a gap between adjacent gate wiring layers, and since there is no step, there is no risk of disconnection or constriction, which is different from the conventional method. Yield and reliability can be improved compared to 0.

14.308は溝、 16.16’ 、25は多結晶シリコン層、16a、1
6a’ 、25bは四部、 17.17’ はりイドウオール(酸化シリコン)、1
8.18’ 、21.26.32は熱、酸化膜、20.
25aは勺イドウA−−ル(多結晶シリ−]ン)、 31は埋込み材、 318は埋込み材と同じ材質の膜、 33は保護膜 を示す。
14.308 is a groove, 16.16', 25 is a polycrystalline silicon layer, 16a, 1
6a', 25b are four parts, 17.17' Gluid wall (silicon oxide), 1
8.18', 21.26.32 is heat, oxide film, 20.
25a is a polycrystalline silicon; 31 is a embedding material; 318 is a film made of the same material as the embedding material; 33 is a protective film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図乃至第5図は夫々本発明の第1乃至第4実施例の
製造丁程図、 第6図は従来の一例の製造[程図である。
FIG. 1 is a diagram of the principle of the present invention, FIGS. 2 to 5 are manufacturing process diagrams of the first to fourth embodiments of the present invention, respectively, and FIG. 6 is a manufacturing process diagram of a conventional example.

Claims (6)

【特許請求の範囲】[Claims] (1)半導体基板(30)に形成された溝 (30a)に埋込み材(31)を充填した後エッチバッ
クを行ない、その後熱酸化を行なつて該埋込み材(31
)上部に熱酸化膜(32)を形成する方法において、 上記エッチバック後の埋込み材(31)の上部の溝周辺
部にエッチングから保護する保護膜(33)を形成し、
上記埋込み材(31)をエッチングして上記埋込み材(
31)の上部を凹状に形成する工程を含むことを特徴と
する半導体装置の製造方法。
(1) After filling the groove (30a) formed in the semiconductor substrate (30) with the embedding material (31), etching back is performed, and then thermal oxidation is performed to form the embedding material (31).
) a method of forming a thermal oxide film (32) on the top, forming a protective film (33) to protect from etching around the groove on the top of the embedding material (31) after the etchback;
The above-mentioned embedding material (31) is etched and the above-mentioned embedding material (31) is etched.
31) A method for manufacturing a semiconductor device, comprising the step of forming the upper part of the device into a concave shape.
(2)該凹状の部分を、ドライエッチングによつて形成
することを特徴とする請求項1記載の半導体装置の製造
方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the concave portion is formed by dry etching.
(3)該熱酸化を、該保護膜(33)を残したまま行な
うことを特徴とする請求項1記載の半導体装置の製造方
法。
(3) The method of manufacturing a semiconductor device according to claim 1, wherein the thermal oxidation is performed with the protective film (33) remaining.
(4)該熱酸化を、該保護膜(33)を除去してから行
なうことを特徴とする請求項1記載の半導体装置の製造
方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the thermal oxidation is performed after removing the protective film (33).
(5)半導体基板(30)に形成された溝 (30a)に埋込み材(31)を充填した後エッチバッ
クを行ない、その後熱酸化を行なって該埋込み材(31
)上部に熱酸化膜(32)を形成する方法において、 上記エッチバック後の埋込み材(31)の上部の溝周辺
部に上記埋込み材(31)と同じ材質の膜(31a)を
形成して実質上、上記埋込み材(31)の上部を凹状に
形成する工程を含むことを特徴とする半導体装置の製造
方法。
(5) After filling the groove (30a) formed in the semiconductor substrate (30) with the embedding material (31), etching back is performed, and then thermal oxidation is performed to perform the embedding material (31).
) In the method of forming a thermal oxide film (32) on the upper part, a film (31a) made of the same material as the filling material (31) is formed around the groove on the top of the filling material (31) after the etchback. A method for manufacturing a semiconductor device, comprising the step of substantially forming the upper part of the embedding material (31) into a concave shape.
(6)半導体基板(30)に形成された溝 (30a)に埋込み材(31)を充填した後エッチバッ
クを行ない、その後熱酸化を行なつて該埋込み材(31
)上部に熱酸化膜(32)を形成する方法において、 上記埋込み材(31)を充填後、異方性のエッチバック
を行なって上記埋込み材(31)の上部の溝周辺部に上
記埋込み材(31)を残し、実質上、上記埋込み材(3
1)の上部を凹状に形成する工程を含むことを特徴とす
る半導体装置の製造方法。
(6) After filling the groove (30a) formed in the semiconductor substrate (30) with the embedding material (31), etching back is performed, and then thermal oxidation is performed to form the embedding material (31).
) In the method of forming a thermal oxide film (32) on the upper part, after filling the embedding material (31), an anisotropic etch-back is performed to form the embedding material in the groove periphery of the upper part of the embedding material (31). (31), and substantially the above-mentioned embedding material (3).
A method for manufacturing a semiconductor device, comprising the step of 1) forming a concave upper part.
JP29025689A 1989-11-08 1989-11-08 Manufacture of semiconductor device Pending JPH03151635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29025689A JPH03151635A (en) 1989-11-08 1989-11-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29025689A JPH03151635A (en) 1989-11-08 1989-11-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03151635A true JPH03151635A (en) 1991-06-27

Family

ID=17753783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29025689A Pending JPH03151635A (en) 1989-11-08 1989-11-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03151635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290396A (en) * 1991-06-06 1994-03-01 Lsi Logic Corporation Trench planarization techniques
US5312770A (en) * 1991-06-06 1994-05-17 Lsi Logic Corporation Techniques for forming isolation structures
US5354706A (en) * 1993-03-02 1994-10-11 Lsi Logic Corporation Formation of uniform dimension conductive lines on a semiconductor wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290396A (en) * 1991-06-06 1994-03-01 Lsi Logic Corporation Trench planarization techniques
US5312770A (en) * 1991-06-06 1994-05-17 Lsi Logic Corporation Techniques for forming isolation structures
US5354706A (en) * 1993-03-02 1994-10-11 Lsi Logic Corporation Formation of uniform dimension conductive lines on a semiconductor wafer

Similar Documents

Publication Publication Date Title
US5945724A (en) Trench isolation region for semiconductor device
JPH0653314A (en) Semiconductor device and its manufacture
JPS63234534A (en) Manufacture of semiconductor element
JPH11297811A (en) Manufacture of semiconductor device
JPH10340950A (en) Trench isolation structure and fabrication thereof
JP2000012676A (en) Method of isolating elements through trenches of semiconductor device
JPH03151635A (en) Manufacture of semiconductor device
JPH09120989A (en) Formation of trench of semiconductor device using spacer
JP2000036536A (en) Structure and method for isolating semiconductor device
JPH1187490A (en) Semiconductor device and its manufacture
JPH10335445A (en) Manufacture of element isolating film of semiconductor element and semiconductor element utilizing the same
TW202042375A (en) Memory structure and manufacturing method thereof
JP2002237518A (en) Semiconductor device and manufacturing method therefor
JPS6054472A (en) Semiconductor memory and manufacture thereof
JPH07235594A (en) Manufacture of semiconductor device
CN108807278A (en) Semiconductor devices and its production method
JPS6246543A (en) Manufacture of semiconductor device
JPS63197365A (en) Manufacture of semiconductor device
JP3190144B2 (en) Manufacturing method of semiconductor integrated circuit
TWI246184B (en) Dynamic random access memory and fabrication thereof
JPS60164335A (en) Manufacture of semiconductor device
KR100355607B1 (en) Method for fabricating a semiconductor memory device having an inverse &#34;T&#34;type capacitor
JP3468920B2 (en) Element isolation method for semiconductor device
TW445648B (en) Manufacturing method of trench type power MOSFET
JP2003163262A (en) Semiconductor device and its manufacturing method