JPH03150498A - Plant operation assisting device for time of sea water leakage in condenser heat transfer pipe - Google Patents

Plant operation assisting device for time of sea water leakage in condenser heat transfer pipe

Info

Publication number
JPH03150498A
JPH03150498A JP1288904A JP28890489A JPH03150498A JP H03150498 A JPH03150498 A JP H03150498A JP 1288904 A JP1288904 A JP 1288904A JP 28890489 A JP28890489 A JP 28890489A JP H03150498 A JPH03150498 A JP H03150498A
Authority
JP
Japan
Prior art keywords
conductivity
condenser
plant
heat transfer
sea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1288904A
Other languages
Japanese (ja)
Inventor
Toshihiko Fukumoto
俊彦 福本
Hiroo Igarashi
五十嵐 裕夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP1288904A priority Critical patent/JPH03150498A/en
Publication of JPH03150498A publication Critical patent/JPH03150498A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To reduce complicate operation by an operator in charge in the case of a sea water leakage by detecting an increase in the conductivity of condensed water or reactor water in case of a leakage of sea water in the heat transfer pipe of a condenser, judging the continuation or scram of plant operation auto matically, and placing the plant in a scram state automatically. CONSTITUTION:When the sea water leaks from the condenser heat conduction pipe 3 and the conductivity of the exit of the condenser 2, the exit of a con densed water desalting tower 4, and the reactor water exceeds a predetermined reference value, a scram signal can be supplied automatically to the nuclear reactor emergency stop system circuit consisting of a purifying pump 9, a regen erative heat exchanger 10, a nonregenerative heat exchanger 11, and a purifying device 12. Therefore, even if the increase in the conductivity is extremely fast owing to the large-scale sea water leakage and the person in charge can not handle it, the plant can be put in the scram state speedily. Consequently, the complicate operation by the person in charge in case of the sea water leakage in the condenser heat transfer pipe 3 is reducible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力発電所復水器伝熱管の海水漏えい発生時
におけるプラント運転支援装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plant operation support device when seawater leaks from a condenser heat transfer tube of a nuclear power plant.

〔従来の技術〕[Conventional technology]

沸騰水型原子力発電所(BWR)の復水器は、蒸気ター
ビンの排蒸気を熱交換により冷却、凝縮した復水にする
設備である。日本の場合、冷却水として海水を使用して
おり、復水器伝熱管内に海水を通水して排蒸気を冷却し
ている。復水は最終的には原子炉へ流入するため、伝熱
管から復水系統内へ海水の漏えいが発生した場合には、
海水中の塩素が原子炉へ混入して炉内構造材の応力腐食
割れの原因となる。従って、これを防止するため、冷却
水として海水を使用するBWRでは、復水器下流に塩素
等の不純物イオンを除去する目的でイオン交換樹脂を装
荷した復水脱塩塔(CD)を複数基(110TjKWe
クラスて約十基)設置している。しかし、CD樹脂のイ
オン交換容量を上廻る海水漏えいが発生した場合には、
CDで塩素を除去できなくなり、CD下流へ塩素が流出
することになるため、イオン交換能力が早く無くなった
塔から、順次、隔離して薬品による再生(イオン交換能
力の回復)作業を行い、再び、通水に戻す必要がある。
A condenser in a boiling water nuclear power plant (BWR) is a device that cools exhaust steam from a steam turbine through heat exchange and converts it into condensed water. In Japan, seawater is used as cooling water, and the seawater is passed through the condenser heat transfer tubes to cool the exhaust steam. Condensate ultimately flows into the reactor, so if seawater leaks from the heat transfer tubes into the condensate system,
Chlorine in seawater enters the reactor and causes stress corrosion cracking of structural materials inside the reactor. Therefore, to prevent this, BWRs that use seawater as cooling water install multiple condensate demineralizers (CDs) loaded with ion exchange resin downstream of the condenser to remove impurity ions such as chlorine. (110TjKWe
Approximately 10 units per class) have been installed. However, in the event of seawater leakage that exceeds the ion exchange capacity of CD resin,
Since the CD cannot remove chlorine and the chlorine will flow downstream of the CD, we will sequentially isolate the towers that lost their ion exchange capacity early and regenerate them using chemicals (restore the ion exchange capacity). , it is necessary to return the water to water.

但し、大規模漏えいの場合は、再生によるイオン交換能
力の回復作業が間に合わなくて、炉水へ塩素が混入し炉
水導電率が上昇するケースもあり、プラントを停止する
必要がでてくる。
However, in the case of a large-scale leak, the restoration of ion exchange capacity through regeneration may not be done in time, and chlorine may enter the reactor water, increasing the conductivity of the reactor water, making it necessary to shut down the plant.

従来より、海水漏えい発生時には、発電所の当直員が復
水型出[1、CD出[1、及び、炉水導電率の変化を時
々刻々監視し、海水漏えいを確認して、あらかじめ定め
た導電率の基準値を超える場合には、手動で原子炉をス
クラムすることとしている。
Traditionally, when a seawater leak occurs, power plant duty personnel monitor condensate discharge [1], CD discharge [1], and changes in reactor water conductivity from time to time, confirm seawater leakage, and perform predetermined measures. If the conductivity exceeds the standard value, the reactor will be manually scrammed.

このように、海水漏えい発生時の当直員の作業は煩雑で
多忙であり、復水、炉水の導電率」−Hの経時変化を予
想し、最適なCD再生のスケジュールを検討する等の時
間的余裕はとりにくい状況となる。
In this way, when a seawater leak occurs, the work of the on-call staff is complicated and busy, and they have to spend a lot of time predicting changes over time in the conductivity of condensate and reactor water and considering the optimal CD playback schedule. This creates a situation where it is difficult to have any leeway.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

−:3− 上記従来方法は、海水漏えい発生時、発電所の当直員が
復水器出口、CD出rZI、及び、復水導電率の変化を
時々刻々監視しながら、海水漏えいを確認して対応処置
を調整し、あらかじめ定めた導電率の基準値を超える場
合には、手動で原子力4をスクラムすることとしている
。また、復水、炉水の導電率が基準値に達するまでの時
間を予想したり、導電率の上昇を抑制するための最適な
Or)再生スケジュールを検討することも必要である。
-:3- In the above conventional method, when a seawater leak occurs, the duty staff at the power plant checks the seawater leakage while monitoring the condenser outlet, CD output rZI, and changes in condensate conductivity from time to time. Measures will be adjusted, and if the conductivity exceeds a predetermined standard value, nuclear power 4 will be manually scrammed. It is also necessary to predict the time it will take for the conductivity of condensate and reactor water to reach standard values, and to consider the optimal regeneration schedule for suppressing increases in conductivity.

このように、海水漏えい発生時の当直員の作業は煩雑で
多忙を極める。
As described above, the work of the duty staff when a seawater leak occurs is complicated and extremely busy.

本発明の目的は、復水器伝熱管の海水漏えい時の当直員
の煩雑な作業を自動化して軽減することにある。
An object of the present invention is to automate and reduce the complicated work of a duty staff when seawater leaks from a condenser heat exchanger tube.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、復水器出口、C1)出口、
及び、炉水導電率を検出して、基準値登超えた場合には
原子炉緊急停止系にスクラム信号を与える機能を持つと
共に、炉水、CD出口導電率の経時変化を予想し、さら
に、炉水導電率の任意=4 の値以上に維持するための最適なCD再生スケジュール
を検討して当直員に対処方法をガイドするプラント診断
機能を持つプラント運転支援装置を設置する。
To achieve the above purpose, the condenser outlet, C1) outlet,
It also has the function of detecting the reactor water conductivity and providing a scram signal to the reactor emergency shutdown system if it exceeds the standard value, and predicting changes over time in the reactor water and CD exit conductivity. A plant operation support system will be installed that has a plant diagnosis function that will study the optimal CD playback schedule to maintain the reactor water conductivity above the arbitrary value of 4 and guide shift staff on countermeasures.

〔作用〕[Effect]

ブラント運転支援装置を設置することにより、復水器伝
熱管の海水漏えい時、復水型出1]、CI’)出口、及
び、炉水の導電率があらかしめ定めた基準値を超える場
合には、自動的に原子炉緊急停止系回路にスクラム信号
を与えることができろため。
By installing a blunt operation support system, in the event of seawater leakage from the condenser heat transfer tube, the condensate mold exit 1], CI') outlet, and the conductivity of the reactor water exceed a predetermined standard value. Because it can automatically give a scram signal to the reactor emergency shutdown system circuit.

大規模海水漏えいにより導電率のL[が極めて「1(く
、当直員が対応できないような状況でも確実にプラント
スクラムが行える。また、この装置では、スクラム上に
は至らない程度の海水漏えいの場合にも、CD出l」、
炉水導電率の経時変化予想、及び、最適CD再生スケジ
ュールを当直員に表示すると共に、CD再生が間に合わ
ない場合の復水器氷室隔離やプラント通常停止等の処置
を出直員にガイダンス表示することにより、当直員は手
計算による導電率変化予想の時間を短縮でき正確な対応
処置が行える。
A plant scram can be performed reliably even in situations where the electrical conductivity is extremely low due to a large-scale seawater leak, and the on-duty personnel cannot respond.In addition, with this device, even if the conductivity is extremely low, the plant scram can be performed even in situations where the on-duty staff cannot respond. In case of CD release,
In addition to displaying predicted changes in reactor water conductivity over time and the optimal CD regeneration schedule to the on-call staff, it also displays guidance to the on-call staff on measures such as isolating the condenser icebox or shutting down the plant in the event that CD regeneration cannot be completed in time. This allows the duty staff to reduce the time it takes to manually calculate changes in conductivity and take accurate countermeasures.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。蒸気
タービン1の排蒸気は、復水器2内の伝熱管3の内部を
流れる海水により冷却されて復水となる。
An embodiment of the present invention will be described below with reference to FIG. Exhaust steam from the steam turbine 1 is cooled by seawater flowing inside the heat exchanger tubes 3 in the condenser 2 and becomes condensed water.

復水はCD4で浄化された後、給水加熱器5で昇温され
、給水ポンプ6で昇圧されて原子炉7へ供給される。原
子炉7には、炉水を浄化するため、原子炉再循環ポンプ
8の人口より分岐し、浄化ポンプ9、再生熱交換器10
、非再生熱交換器1]、及び、浄化装置12より構成さ
れる原子炉冷却材浄化系統が設置されている。また、復
水器2出口、CD4の出1」及び再生熱交換器10の出
口には、それぞれ、導電率計13.1−4.15が設置
されており、復水器伝熱管3で海水漏えいが発生した場
合には、これらの導電率計で、当直員が復水器出口、C
D出口、及び、炉水導電率製監視する。
After the condensate is purified by the CD 4 , its temperature is raised by the feed water heater 5 , the pressure is increased by the feed water pump 6 , and the water is supplied to the nuclear reactor 7 . In order to purify reactor water, the reactor 7 is equipped with a purification pump 9, a regenerative heat exchanger 10, which branches off from the reactor recirculation pump 8.
, a non-regenerative heat exchanger 1], and a purification device 12. A reactor coolant purification system is installed. In addition, conductivity meters 13.1-4.15 are installed at the condenser 2 outlet, CD4 output 1'', and regenerative heat exchanger 10 outlet, respectively, and the condenser heat exchanger tube 3 In the event of a leak, these conductivity meters will allow duty personnel to check the condenser outlet, C
Monitor D outlet and reactor water conductivity.

本発明では、これら復水器出口導電率計B、C。In the present invention, these condenser outlet conductivity meters B and C are used.

D出口導電率8114、及び、炉水導電率計15の導電
率の信号を、新たに設置する復水器伝熱管海水漏えい時
のプラント運転支援装置16に入力して、第2図に示す
フローで処理する9、つまり、CD出[」、あるいは、
炉水導電率があらかじめ設定しである基準値を超える場
合はプラントを停止させるものとし、炉水導rPL率の
−1,昇が大きい場合には、プラントスクラム信号を原
子炉緊急停止系へ発信して、自動的にプラントを緊急停
止させる。
The D outlet conductivity 8114 and the conductivity signal from the reactor water conductivity meter 15 are input to the newly installed plant operation support device 16 for condenser heat transfer tube seawater leakage, and the flow shown in FIG. 2 is performed. 9, that is, CD output['', or
If the reactor water conductivity exceeds a preset standard value, the plant will be shut down, and if the reactor water conductivity rPL rate -1 or increase is large, a plant scram signal will be sent to the reactor emergency shutdown system. automatically brings the plant to an emergency stop.

基準値を下廻っている場合は、1毎水漏えい量、復水中
塩素濃度、及び、復水器伝熱管漏えい穴径を計算し、さ
らに、それらを画面表示できるようにする。海水中1:
、成分であるCQ−、Na十等のイオンが海水漏えいに
より流入すると、CD樹脂の貫流イオン交換容量は減少
し、CI−)出[」、ひいては、炉水の導電率が上昇し
て行くことになる。貫流イオン交換容量はあらかじめプ
ラント起動前の定期点検時にC1)樹脂を採取して測定
しておくため、この貫流イオン交換容量測定値を使用し
て、起動後、海水漏えいが発生するまでの通常運転中、
イオン負荷、及び、樹脂劣化による貫流イオン交CD−
、Na+のイオン負荷による貫流イオン交換容量の減少
からCD出口に流出するCQ、Na+の濃度を計算し、
CD出口導電率−上昇の経時変化を計算して予想するも
のとする。さらに、炉水に流入するCQ″、Na+の濃
度から、蒸気中へのキャリオーバー、及び、浄化装置1
2での除去を考慮じて炉水中心電率の経時変化も泪算し
予想するものとする。これらの導電率経時変化の予想結
果は第3図、第4図に示すようなグラフで表示できるも
のとする。
If the value is below the standard value, calculate the amount of water leaked per hour, the chlorine concentration in condensate water, and the leakage hole diameter of the condenser heat transfer tube, and display them on the screen. Under seawater 1:
When ions such as CQ-, Na, etc., which are components, flow in due to seawater leakage, the once-through ion exchange capacity of the CD resin decreases, and the conductivity of the reactor water increases. become. Since the once-through ion exchange capacity is measured in advance by sampling C1) resin during periodic inspections before plant startup, this once-through ion exchange capacity measurement value can be used to determine normal operation after startup until seawater leakage occurs. During,
Through-flow ion exchange CD- due to ion loading and resin deterioration
, calculate the concentration of CQ and Na+ flowing out to the CD outlet from the decrease in the through-flow ion exchange capacity due to the ion loading of Na+,
The change in CD exit conductivity-rise over time shall be calculated and predicted. Furthermore, from the concentration of CQ'' and Na+ flowing into the reactor water, there is a carryover into the steam, and the purification device 1
Taking into account the removal in step 2, we will also calculate and predict the change in the reactor water central electric rate over time. The predicted results of these changes in conductivity over time can be displayed in graphs as shown in FIGS. 3 and 4.

次に、炉水導電率を任意の値以下に維持するためのCD
各塔の再生スケジュールを計算する。これは、CD各塔
出口の導電率経時変化予想から導電率上昇の早い順に6
塔の再生の順番を決め、炉水導電率が任意の値に達した
時点で最初の一塔を再生して導電率を下げ、再度、導電
率が任意の値に達したら次の塔を再生するという様に、
順次、再生して行く最適な再生スケジュールを計算する
再生により発生する廃樹脂は廃棄物処理系に受け入れて
処理されるが、処理容量に制限があるため、この制限も
考慮した再生間隔とするスケジュールにしている。この
再生スケジュール計算結果は、第5図に示すように、表
示できるものとする。
Next, CD to maintain the reactor water conductivity below an arbitrary value.
Calculate the regeneration schedule for each tower. This is based on the predicted change in conductivity over time at the outlet of each CD tower, and 6
The order of tower regeneration is determined, and when the reactor water conductivity reaches a desired value, the first tower is regenerated to lower the conductivity, and once the conductivity reaches the desired value, the next tower is regenerated. As if to do,
Calculate the optimal regeneration schedule for sequential regeneration. Waste resin generated through regeneration is accepted into a waste treatment system and processed, but since there is a limit to processing capacity, the regeneration interval is scheduled to take this limit into account. I have to. The reproduction schedule calculation result can be displayed as shown in FIG.

なお、海水漏えい量によってはCI)の再生が間に合わ
ない場合もあるため、復水器氷室の隔離や、プラント通
常停止等の対応処置もガイダンスとして表示できる。
Note that, depending on the amount of seawater leakage, it may not be possible to regenerate the CI in time, so countermeasures such as isolating the condenser icebox or shutting down the plant normally can also be displayed as guidance.

以」二の実施例によれば、復水器伝熱管海水漏えい発生
時の発電所当直員の煩雑で多忙な作業を軽減し、適切な
ガイダンス表示をすることにより人為的な誤動作のポテ
ンシャルを低減することができる。
According to the second embodiment, the complicated and busy work of power plant duty staff when a condenser heat transfer pipe seawater leak occurs, and the potential for human-induced malfunction is reduced by displaying appropriate guidance. can do.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、海水漏えい時、CD出11、あるいは
、炉水導電率が上昇し、あらかじめ設定しである基準値
を超えた場合、スクラム信号として自動的に原子炉緊急
停止系へ発信できる。また、海水漏えい量、復水中塩素
濃度、復水器伝熱管漏えい穴径、C1)出口、及び、炉
水の導電率予想経時変化、及び、炉水導電率を任意の値
以下に維持するためのCD各塔の再生スケジュールを当
直員に表示できる。さらに、海水漏えい量によっては、
CDの再生が間に合わない場合もあるため、その場合の
復水器氷室隔離やプラント通常停止等の対応処置も当直
員にガイダンスできる。これらにより、)17j水漏え
い発生時に、当直員の傾雑で多忙な作業を軽減し、当直
員に海水漏えいの規模、緊急性、及び、適切な対応処置
をガイダンスすることから人為的誤操作のポテンシャル
も低減される。
According to the present invention, in the event of a seawater leak, if the CD output 11 or the reactor water conductivity increases and exceeds a preset reference value, a scram signal can be automatically transmitted to the reactor emergency shutdown system. . In addition, the amount of seawater leakage, chlorine concentration in condensate, condenser heat exchanger tube leakage hole diameter, C1) exit, and expected changes in reactor water conductivity over time, and to maintain reactor water conductivity below an arbitrary value. The playback schedule for each CD tower can be displayed to the staff on duty. Furthermore, depending on the amount of seawater leakage,
In some cases, the CD may not be played in time, so the on-duty staff can be provided with guidance on countermeasures such as isolating the condenser icebox or shutting down the plant normally. As a result, in the event of a) 17j water leak, the tedious and busy work of the on-duty staff will be reduced, and the on-duty staff will be given guidance on the scale and urgency of the seawater leak, as well as appropriate response measures, thereby reducing the potential for human error. is also reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のBWRプラントに海水漏え
い発生時、プラント運転支援装置を追設した系統図、第
2図はプラント運転支援装置での実行フローチャート、
第3図、第4図および第5図は、それぞれ、上記支援装
置により表示される予想炉水導電率経時変化、CD出口
予想導電率経時変化、及び、CD再生予定スケジュール
の画面表示例図である。 1・・・蒸気タービン、2・復水器、3 ・復水器伝熱
管、4・・・復水脱塩塔(CD)、5・給水加熱器、6
・・・給水ポンプ、7・・原子炉、8・・・原子炉再循
環ポンプ、9・浄化ポンプ、10 再生熱交換器、11
・・・非再生熱交換器、12 浄化装置、13 ・−1
,1
Fig. 1 is a system diagram of a BWR plant according to an embodiment of the present invention in which a plant operation support device is added when a seawater leak occurs, and Fig. 2 is an execution flowchart of the plant operation support device.
Figures 3, 4, and 5 are screen display examples of the predicted reactor water conductivity change over time, CD exit expected conductivity change over time, and CD playback schedule displayed by the support device, respectively. be. 1... Steam turbine, 2. Condenser, 3. Condenser heat transfer tube, 4. Condensate demineralization tower (CD), 5. Feed water heater, 6
...Water pump, 7.. Nuclear reactor, 8.. Reactor recirculation pump, 9. Purification pump, 10. Regenerative heat exchanger, 11.
...Non-regenerative heat exchanger, 12 Purification device, 13 ・-1
,1

Claims (1)

【特許請求の範囲】 1、原子力発電所の復水器の伝熱管の海水漏えい時に、
復水及び炉水の導電率の上昇を検出し、プラント運転の
継続、あるいは、スクラムを自動的に判断すると共に、
必要な場合は、プラントを自動的にスクラムさせること
を特徴とする復水器伝熱管海水漏えい時のプラント運転
支援装置。 2、請求項1において、海水漏えい後の炉水及び復水脱
塩装置の出口の導電率変化を予想し、それを発電所当直
員にガイダンス表示する復水器伝熱管海水漏えい時のプ
ラント運転支援装置。 3、請求項1において、炉水、あるいは、復水脱塩装置
出口導電率を任意の値以下に維持するための復水脱塩装
置再生スケジュールを検討し、それを発電所当直員にガ
イダンス表示する復水器伝熱管海水漏えい時のプラント
運転支援装置。
[Claims] 1. When seawater leaks from a heat exchanger tube of a condenser at a nuclear power plant,
Detects increases in conductivity of condensate and reactor water and automatically determines whether to continue plant operation or scram.
A plant operation support system in the event of seawater leakage from a condenser heat transfer tube, which automatically scrams the plant if necessary. 2. In claim 1, the plant operation at the time of a seawater leak in a condenser heat transfer tube predicts changes in the conductivity of the reactor water and the outlet of the condensate desalination equipment after a seawater leak and displays it as guidance to power plant duty personnel. Support equipment. 3. In claim 1, consider a condensate desalination equipment regeneration schedule to maintain reactor water or condensate desalination equipment outlet conductivity below an arbitrary value, and display it as guidance to power plant duty staff. A plant operation support system in the event of a seawater leak from a condenser heat transfer tube.
JP1288904A 1989-11-08 1989-11-08 Plant operation assisting device for time of sea water leakage in condenser heat transfer pipe Pending JPH03150498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1288904A JPH03150498A (en) 1989-11-08 1989-11-08 Plant operation assisting device for time of sea water leakage in condenser heat transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1288904A JPH03150498A (en) 1989-11-08 1989-11-08 Plant operation assisting device for time of sea water leakage in condenser heat transfer pipe

Publications (1)

Publication Number Publication Date
JPH03150498A true JPH03150498A (en) 1991-06-26

Family

ID=17736293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1288904A Pending JPH03150498A (en) 1989-11-08 1989-11-08 Plant operation assisting device for time of sea water leakage in condenser heat transfer pipe

Country Status (1)

Country Link
JP (1) JPH03150498A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016900A1 (en) * 1993-12-14 1995-06-22 Somerset Technical Laboratories Limited Leakage detection
GB2284674B (en) * 1993-10-02 1996-09-25 Somerset Technical Lab Ltd Leakage testing
US5739420A (en) * 1996-09-18 1998-04-14 Peterson; Roger Ground water infiltration detection system
US5872308A (en) * 1993-10-02 1999-02-16 Somerset Technical Laboratories Limited Method of testing a plate heat exchanger for leakage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2284674B (en) * 1993-10-02 1996-09-25 Somerset Technical Lab Ltd Leakage testing
US5872308A (en) * 1993-10-02 1999-02-16 Somerset Technical Laboratories Limited Method of testing a plate heat exchanger for leakage
WO1995016900A1 (en) * 1993-12-14 1995-06-22 Somerset Technical Laboratories Limited Leakage detection
GB2291192A (en) * 1993-12-14 1996-01-17 Somerset Technical Lab Ltd Leakage detection
GB2291192B (en) * 1993-12-14 1996-06-12 Somerset Technical Lab Ltd Leakage detection
US6044692A (en) * 1993-12-14 2000-04-04 Somerset Technical Laboratories Limited Ultrasonic method of testing a plate heat exchanger for leakage
US6062068A (en) * 1993-12-14 2000-05-16 Somerset Technical Laboratories Ltd. Leakage testing method for a plate heat exchanger
EP1003024A1 (en) * 1993-12-14 2000-05-24 Somerset Technical Laboratories Limited Leakage detection
US5739420A (en) * 1996-09-18 1998-04-14 Peterson; Roger Ground water infiltration detection system

Similar Documents

Publication Publication Date Title
JPS58120195A (en) Method of monitoring atomic power plant
RU2696819C1 (en) Chemical control system of power plant
CN108679355B (en) Method and device for dredging boron water pipeline of nuclear power station
JPH03150498A (en) Plant operation assisting device for time of sea water leakage in condenser heat transfer pipe
JPH0893995A (en) Monitoring device of drain trap for steam piping
US4075060A (en) Method for removing fission products from a nuclear reactor coolant
JP3481785B2 (en) Primary water leak detector for nuclear facilities
WO2023197462A1 (en) Monitoring method and system for accident working condition of nuclear power plant set
JP2922374B2 (en) Nuclear power plant accident response support system
JP5754953B2 (en) Nuclear power plant 1/2 primary drainage system and nuclear power plant
JPH03128496A (en) Water quality diagnosing system for power plant
JPH07305997A (en) Cooling system equipment
JP3032106B2 (en) Plant equipment health monitoring and diagnosis method
Tyas et al. The evaluation of postulated initiating events of RSG-GAS using HAZOP method
Igarashi et al. Development of water chemistry diagnostic system for BWRs using fuzzy reasoning
Santhosh et al. Diagnostic & Prognostic System for Identification of Accident Scenarios and Prediction of “Source Term” in Nuclear Power Plants under Accident Conditions
JPH06201892A (en) Nuclear power plant accident management support system
TW202225656A (en) Method of loop state detection suitable for power plant, system thereof and computer program product thereof
JPH0782107B2 (en) Purification system built-in decay heat removal device
CN115116634A (en) Device and method for checking heat exchange tube circulation in high-temperature gas cooled reactor waste heat discharge system
JPH06170361A (en) Condensation purification device
JPS6010597B2 (en) Reactor coolant purification system
Adamov et al. Basic safety principles and criteria for uranium-graphite channel type reactors
JPS62276607A (en) Plant operation supporting device
JPH0416795A (en) Iron injector for reactor feed water of boiling water reactor power plant