JPH03150453A - Measuring instrument for concentration of snow in snow and water mixed body - Google Patents

Measuring instrument for concentration of snow in snow and water mixed body

Info

Publication number
JPH03150453A
JPH03150453A JP29038989A JP29038989A JPH03150453A JP H03150453 A JPH03150453 A JP H03150453A JP 29038989 A JP29038989 A JP 29038989A JP 29038989 A JP29038989 A JP 29038989A JP H03150453 A JPH03150453 A JP H03150453A
Authority
JP
Japan
Prior art keywords
snow
conductivity
concentration
water
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29038989A
Other languages
Japanese (ja)
Other versions
JPH0726926B2 (en
Inventor
Takuo Kitahara
北原 拓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1290389A priority Critical patent/JPH0726926B2/en
Publication of JPH03150453A publication Critical patent/JPH03150453A/en
Publication of JPH0726926B2 publication Critical patent/JPH0726926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To handle snow and ice pieces rationally by calculating the ratio of the apparent conductivity of the snow and ice mixed body by a conductivity detecting device A and the conductivity of only the water or liquid phase by a conductivity detecting device B, and calculating and displaying the concentration of the snow or ice pieces. CONSTITUTION:This instrument is equipped with the conductivity detecting device A which detects the apparent conductivity of the snow and water mixed body and is provided opposite a 1st electrode 1, the conductivity detecting device B which detects the conductivity of only the water or liquid phase in the snow and water mixed body and is provided with a 2nd electrode 2 additionally, and a concentration output device 3 using a conductivity method which calculates the ratio of the apparent conductivity of the snow and water mixed body detected by the conductivity detecting device A and the conductivity of only the water or liquid phase detected by the conductivity detecting device B and calculates and displays or outputs the concentration of the snow or ice pieces in the snow and water mixed body from the ratio. Therefore, real-time continuous measurement and measurement at an optional place irrelevantly in a tube or tank are possible and the shape of the electrode at a detection part is made small. Consequently, local concentration can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、克雪・利雪の技術分野または空調・冷蔵の技
術分野において利用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is utilized in the technical field of snow clearing/snow utilization or the technical field of air conditioning/refrigeration.

〔従来の技術〕[Conventional technology]

従来の雪の濃度測定技術としては、例えば、「雪の水力
輸送における流体工学的諸問題」、第6回混相流シンポ
ジウム講演論文集、混相流の流動機構・流動特性、P6
2〜63、に示されているように熱量法、遠心脱水法、
単管法、撹拌抵抗法などの方法が用いられていた。
Conventional snow concentration measurement techniques include, for example, "Fluid engineering problems in hydraulic transport of snow," Proceedings of the 6th Multiphase Flow Symposium, Flow Mechanism and Flow Characteristics of Multiphase Flow, p.6
2 to 63, calorimetric method, centrifugal dehydration method,
Methods such as the single tube method and the stirring resistance method were used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来は、上記のような諸方法が用いられていたが、それ
ぞれ実用」二便利とは言い難い特徴をも伴っていた。
Conventionally, the above-mentioned methods have been used, but each has its own characteristics that make it hard to say that they are practical or convenient.

即ち、熱量法および遠心脱水法は、試料を採取する方法
のため、連続測定が不可能であると同時に測定に多くの
手間を要した。単管法は、雪水混合体を輸送する管路の
中途にて、鉛直管内の水力勾配を測定することによる方
法のため、ある程度の連続測定は可能なものの、管内の
流速の大きさ、測定場所、測定部分の形状などの制約を
受けざるを得なかった。撹拌抵抗法は、連続測定が可能
であり、測定場所の面で受ける制約も小さいが、雪水混
合体中でリングを回転させる構造のため、管路内の閉塞
の原因とならないよう対策が必要であった。
That is, since the calorimetric method and the centrifugal dehydration method are methods for collecting samples, continuous measurements are not possible, and at the same time they require a lot of effort. The single-pipe method is a method that measures the hydraulic gradient in the vertical pipe midway through the pipe that transports the snow-water mixture, so although continuous measurement is possible to some extent, it is difficult to measure the magnitude of the flow velocity in the pipe. We had no choice but to be subject to constraints such as the location and the shape of the measurement part. The stirring resistance method allows continuous measurement and has fewer restrictions in terms of measurement locations, but since the ring is rotated in the snow/water mixture, measures must be taken to prevent it from causing blockages in the pipes. Met.

発明者は、これら従来の方法に本質的に付随していた難
点を解決した実用的で応用性のある方法を見い出した。
The inventors have discovered a practical and applicable method that overcomes the difficulties inherently associated with these conventional methods.

即ち本発明は、実時間での連続測定、管内であるか、タ
ンク内であるかを問わない任意の場所での測定が可能で
、管路内にあっては閉塞の原因になり得るような突起物
を持たず、更に、検出部分の電極の形状を小形化するこ
とにより、局所的な濃度の測定が可能であるような、雪
水混合体中の雪の濃度の測定装置を提供するものである
In other words, the present invention enables continuous measurement in real time and measurement at any location, whether inside a pipe or a tank, and is capable of measuring any part of the pipe that may cause blockage. To provide a device for measuring the concentration of snow in a snow-water mixture, which does not have protrusions and can measure the concentration locally by reducing the shape of the electrode of the detection part. It is.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を実施の一例を示す図面と対比し易いように図面
の符号を付して説明すると次の通りである。
The present invention will be described below with reference numerals used in the drawings for easy comparison with the drawings showing an example of implementation.

天然または人工の雪または氷片と水とを混合した雪水混
合体の中の雪または氷片の濃度を測定する方法において
、雪水混合体の見掛けの導電率を検出する第1の電極I
を対設した導電率検出装置Aと、雪水混合体中の水また
は液相のみの導電率を検出する第2の電極2を対設した
導電率検出装置Bと、導電率検出装置Aにより検出され
た雪水混合体の見掛けの導電率と導電率検出装置Bによ
り検出された水または液相のみの導電率との比を演算し
、この比の値より雪水混合体中の雪または氷片の濃度を
演算し表示または出力する導電度法を用いた濃度出力装
置3とにより構成したことを特徴とする雪水混合体中の
雪の濃度の測定装置に係るものである。
In a method for measuring the concentration of snow or ice flakes in a snow/water mixture in which natural or artificial snow or ice flakes are mixed with water, a first electrode I for detecting the apparent conductivity of the snow/water mixture.
conductivity detection device A, which has a conductivity detection device A facing each other; and a conductivity detection device B, which has a second electrode 2 facing each other that detects the conductivity of only the water or liquid phase in the snow-water mixture, and the conductivity detection device A. The ratio of the apparent conductivity of the detected snow-water mixture to the conductivity of only the water or liquid phase detected by the conductivity detection device B is calculated, and from this ratio value, the snow or liquid phase in the snow-water mixture is calculated. The present invention relates to an apparatus for measuring the concentration of snow in a snow-water mixture, characterized in that it is constituted by a concentration output device 3 using a conductivity method that calculates and displays or outputs the concentration of ice flakes.

また、第2の電極2を少なくとも一側に網、格子、スリ
ットまたは多孔板4を付設したケース5に収納したこと
を特徴とする雪水混合体中の雪の濃度の測定装置に係る
ものである。
The present invention also relates to a device for measuring the concentration of snow in a snow-water mixture, characterized in that the second electrode 2 is housed in a case 5 provided with a net, a grid, a slit, or a perforated plate 4 on at least one side. be.

また、濃度出力装置3を導電率検出装置Aにより検出さ
れた雪水混合体の見掛けの導電率と導電率検出装置Bに
より検出された水または液相のみの導電率との比をアナ
ログ回路またはデジタル回路により演算し、この比の値
より雪水混合体中の雪または氷片の濃度を演算し実時間
で表示または出力する導電度法を用いた濃度出力装置3
としたことを特徴とする雪水混合体中の雪の濃度の測定
装置に係るものである。
In addition, the concentration output device 3 is connected to the analog circuit or Concentration output device 3 using the conductivity method, which calculates the concentration of snow or ice flakes in the snow-water mixture using a digital circuit and displays or outputs it in real time from the value of this ratio.
The present invention relates to a device for measuring the concentration of snow in a snow-water mixture, characterized in that:

〔作 用〕[For production]

本発明はいわゆる電導度法を利用したもので、この電導
度法を雪水混合体中の雪の濃度の測定に利用する場合の
原理・要点は次の通りである。
The present invention utilizes the so-called conductivity method, and the principles and key points when this conductivity method is used to measure the concentration of snow in a snow-water mixture are as follows.

雪水混合体中の水は、自然界の通常の水を用いる場合、
その導電率はおよそlO〜100μS/cmのオーダで
ある。これに対して雪または氷片はほぼ不導体に近い固
体で、その導電率はおよそ10− μS/cm  程度
のオーダであり、それらの比は極めて大きい。これより
、雪の濃度が高いほど雪水混合体のいわゆる見掛けの導
電率は小さくなり、逆に、雪の濃度が小さいほど水のみ
の場合の導電率に近い値となる。従って、水のみの導電
率と雪水混合体の見掛けの導電率の両方が測定できれば
、それらを比較することにより雪の濃度が判明する。
When using normal water in nature as the water in the snow water mixture,
Its conductivity is on the order of approximately lO to 100 μS/cm. On the other hand, snow or ice flakes are solids that are almost nonconducting, and their electrical conductivity is on the order of about 10-μS/cm 2 , which is an extremely large ratio. From this, the higher the concentration of snow, the lower the so-called apparent conductivity of the snow-water mixture, and conversely, the lower the concentration of snow, the closer the conductivity is to the case of only water. Therefore, if both the conductivity of water alone and the apparent conductivity of the snow-water mixture can be measured, the concentration of snow can be determined by comparing them.

本発明においては、第1の電極1を対設した導電率検出
装置Aにより雪水混合体の見掛けの導電率が検出され、
第2の電極2を対設した導電率検出装置Bにより水また
は液相のみの導電率が検出され、濃度出力装置3により
この双方の導電率の比が演算され雪の濃度への換算が行
われ雪水混合体中の雪の濃度が表示または出力される。
In the present invention, the apparent conductivity of the snow-water mixture is detected by the conductivity detection device A having the first electrode 1 installed oppositely,
The conductivity of only the water or liquid phase is detected by the conductivity detection device B with the second electrode 2 placed oppositely, and the concentration output device 3 calculates the ratio of both conductivities and converts it to the snow concentration. The concentration of snow in the snow-water mixture is displayed or output.

また第2の電極2を少なくとも一側に網、格子、スリッ
トまたは多孔板4を付設したケース5に収納して雪水混
合体を浸漬または接液すると、雪などはそのケースS内
に入り込まず第2の電極2間に介入しないため、水また
は液相のみの導電率を検出することができる。
Furthermore, if the second electrode 2 is housed in a case 5 equipped with a net, a grid, a slit, or a perforated plate 4 on at least one side, and the snow-water mixture is immersed or in contact with the liquid, snow etc. will not enter the case S. Since there is no intervention between the second electrodes 2, the conductivity of only the water or liquid phase can be detected.

〔実施例〕〔Example〕

流路の途中にて雪の濃度を測定する場合の例であって、
導電率検出装置A及び導電率検出装置Bを濃度出力装置
3内に設けた場合の例を第1図に示す。第1の電極1は
、流路内壁6に対向して設置した金属板で構成し、管路
内の流れを妨げる恐れのある突起物を設けることなく測
定が可能としたもので、雪水混合体の見掛けの導電率を
検出するための電極である。第2の電極2は、水または
液相のみの導電率を検出するための電極であり、第1図
の電極の近傍に設置される。第2の電極2の構造例を第
2図に示す。
This is an example of measuring snow concentration in the middle of a flow path,
FIG. 1 shows an example in which the conductivity detection device A and the conductivity detection device B are provided in the concentration output device 3. The first electrode 1 is composed of a metal plate installed facing the inner wall 6 of the flow channel, and is capable of measuring the snow and water mixture without installing any protrusions that may impede the flow inside the channel. This is an electrode for detecting the apparent conductivity of the body. The second electrode 2 is an electrode for detecting the conductivity of only water or a liquid phase, and is installed near the electrode in FIG. 1. An example of the structure of the second electrode 2 is shown in FIG.

濃度出力装置3内の第1導電率測定回路7を主要部とす
る導電率検出装置Aおよび第2導電率測定回路8を主要
部とする導電率検出装置Bは、それぞれ第1の電極1お
よび第2の電極2の電極間に一定の大きさの交流電流を
流すことにより、電極間に存在する雪水混合体または水
または液相のみの電気抵抗を測定し、それぞれの導電率
の大きさに対応した出力を得る機能を持っている。
A conductivity detection device A having a first conductivity measurement circuit 7 as a main part in the concentration output device 3 and a conductivity detection device B having a second conductivity measurement circuit 8 as a main part are connected to the first electrode 1 and the conductivity detection device B, respectively. By passing an alternating current of a constant magnitude between the electrodes of the second electrode 2, the electrical resistance of the snow-water mixture, water, or only the liquid phase existing between the electrodes is measured, and the magnitude of the respective electrical conductivity is measured. It has a function to obtain output corresponding to.

また、演算・出力・表示回路9は、上記の二つの出力の
大きさの比を演算し、これより雪または氷片の濃度を演
算し、結果を出力または表示する機能をもっている。
Further, the calculation/output/display circuit 9 has a function of calculating the ratio of the magnitudes of the above two outputs, calculating the concentration of snow or ice flakes from this, and outputting or displaying the result.

第1図に示す実施例の測定用ダク) 10の断面は内寸
50mmX50mmの大きさであり、第1の電極1は5
0mmX50mmのステンレスの薄板2枚で構成されて
おり、その電極定数は約0.]4cm−’である。また
、第2の電極2は面積が約2 cm’のステンレスの板
を5mmの間隔て対向して設置したもので、その電極定
数は約0.22cm−’である。それぞれの電極に5k
Hz、25μAの正弦波電流を流して電気抵抗の測定を
行う。
The cross section of the measuring duct 10 of the embodiment shown in FIG. 1 has an inner dimension of 50 mm x 50 mm, and the first electrode 1
It is composed of two thin stainless steel plates measuring 0 mm x 50 mm, and its electrode constant is approximately 0. ]4 cm-'. The second electrode 2 is made of stainless steel plates having an area of about 2 cm' and placed facing each other at an interval of 5 mm, and has an electrode constant of about 0.22 cm-'. 5k for each electrode
Electrical resistance is measured by passing a sine wave current of 25 μA at Hz.

水道水どざらめ雪とを混合した雪水混合体中の雪の濃度
と、導電率の比との関係を第3図に示す。
FIG. 3 shows the relationship between the snow concentration in a snow-water mixture prepared by mixing tap water with muddy snow and the electrical conductivity ratio.

第2の電極2で測定した液相の抵抗値は26にΩ、導電
率は86μS/cm、雪の濃度が例えば57%のとき、
第1の電極1で測定した抵抗値は458にΩ、見掛けの
導電率は3.0μS/cm、従って導電率の比は0.3
5である。
The resistance value of the liquid phase measured with the second electrode 2 is 26Ω, the conductivity is 86 μS/cm, and when the snow concentration is, for example, 57%,
The resistance value measured at the first electrode 1 is 458Ω, the apparent conductivity is 3.0 μS/cm, and therefore the conductivity ratio is 0.3
It is 5.

また、この測定用ダクト10に雪の濃度が連続的に変化
する雲水混合体を流した時の様子を第4図に示す。
Further, FIG. 4 shows the situation when a cloud water mixture whose snow concentration changes continuously is flowed through the measuring duct 10.

また、電極を小形、可搬形にすれば、雪水混合体中の局
所的な濃度の測定が可能である。その場合の電極の構成
例を第5図に示す。この実施例では第1の電極■は直径
30mmのステンレス板を約30mmの間隔で対向させ
た構成で、その電極定数は約0 、42 cm−’であ
る。また、この実施例において第2の電極2は、第6図
に示すように、内径4 mm、長さ9mmのステンレス
管の内部に直径O9mmのステンレス棒を設置した構成
で、その電極定数は約0.23cm−’である。この電
極により、第1の電極1間の容積に相当する分解能で、
雪の濃度分布の測定が可能である。
Furthermore, if the electrode is made small and portable, it is possible to measure the local concentration in the snow/water mixture. An example of the structure of the electrode in that case is shown in FIG. In this embodiment, the first electrode (2) has a structure in which stainless steel plates each having a diameter of 30 mm are opposed to each other at an interval of about 30 mm, and its electrode constant is about 0.42 cm-'. Further, in this embodiment, the second electrode 2 has a structure in which a stainless steel rod with a diameter of 09 mm is installed inside a stainless steel tube with an inner diameter of 4 mm and a length of 9 mm, as shown in FIG. 6, and the electrode constant is approximately It is 0.23 cm-'. With this electrode, with a resolution corresponding to the volume between the first electrodes 1,
It is possible to measure the snow concentration distribution.

尚、図中符号11はコネクタ用ピン、12は電極板支持
体、13はステム、14はケーブル、15は取付金具で
ある。
In the figure, reference numeral 11 is a connector pin, 12 is an electrode plate support, 13 is a stem, 14 is a cable, and 15 is a mounting bracket.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように構成したから、雪水混合体中の雪
の濃度を実時間で連続測定することができる。従って、
他の制御用機器と組み合わせることにより、従来技術よ
りも雪や氷片の合理的な取り扱いが可能となる。また更
に、局所的な濃度の測定ができることから同輸送機器の
研究・開発・設計の分野において、従来技術には見られ
なかった優れた効果を発揮する雪水混合体中の雪の濃度
の測定装置となる。
Since the present invention is configured as described above, it is possible to continuously measure the snow concentration in the snow-water mixture in real time. Therefore,
By combining it with other control equipment, it becomes possible to handle snow and ice flakes more rationally than with conventional technology. Furthermore, since the local concentration can be measured, the measurement of the concentration of snow in a snow-water mixture exhibits excellent effects not seen with conventional technology in the field of research, development, and design of transportation equipment. It becomes a device.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は本発明
の原理を示す基本的な構成で図示した概0 略構成図、第2図は第1図の第2の電極の細部を切り欠
いた斜視図、第3図は雪水混合体の見掛けの導電率とそ
の液相の導電率との比が雪の濃度に対応していることを
示すグラフ、第4図は雪の濃度が連続的に変化するとき
の実測グラフ、第5図は局所的な濃度を測定するための
電極構成の別例を示す斜視図、第6図は第5図の中の第
2の電極の細部を切り欠いた斜視図である。 A・導電率検出装置、B・・・導電率検出装置、1 第
1の電極、2・・・第2の電極、3・・濃度出力装置、
4・・網、格子、スリットまたは多孔板、5・ケース 平成元年11月8日
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic configuration diagram showing the basic configuration illustrating the principle of the present invention, and FIG. 2 is a detailed diagram of the second electrode shown in FIG. 1. Figure 3 is a graph showing that the ratio of the apparent conductivity of the snow water mixture to the conductivity of its liquid phase corresponds to the snow concentration, and Figure 4 is a graph showing that the ratio of the apparent conductivity of the snow water mixture to the conductivity of its liquid phase corresponds to the snow concentration. An actual measurement graph when the concentration changes continuously. Figure 5 is a perspective view showing another example of the electrode configuration for measuring local concentration. Figure 6 is a graph of the second electrode in Figure 5. FIG. 3 is a perspective view with details cut away. A. Conductivity detection device, B.. Conductivity detection device, 1. First electrode, 2.. Second electrode, 3.. Concentration output device,
4. Net, lattice, slit or perforated plate, 5. Case November 8, 1989

Claims (1)

【特許請求の範囲】 1 天然または人工の雪または氷片と水とを混合した雪
水混合体の中の雪または氷片の濃度を測定する方法にお
いて、雪水混合体の見掛けの導電率を検出する第1の電
極を対設した導電率検出装置Aと、雪水混合体中の水ま
たは液相のみの導電率を検出する第2の電極を対設した
導電率検出装置Bと、導電率検出装置Aにより検出され
た雪水混合体の見掛けの導電率と導電率検出装置Bによ
り検出された水または液相のみの導電率との比を演算し
、この比の値より雪水混合体中の雪または氷片の濃度を
演算し表示または出力する導電度法を用いた濃度出力装
置とにより構成したことを特徴とする雪水混合体中の雪
の濃度の測定装置。 2 第2の電極を少なくとも一側に網、格子、スリット
または多孔板を付設したケースに収納したことを特徴と
する請求項1記載の雪水混合体中の雪の濃度の測定装置
。 3 導電率検出装置Aにより検出された雪水混合体の見
掛けの導電率と導電率検出装置Bにより検出された水ま
たは液相のみの導電率との比をアナログ回路またはデジ
タル回路により演算し、この比の値より雪水混合体中の
雪または氷片の濃度を演算し実時間で表示または出力す
る導電度法を用いた濃度出力装置としたことを特徴とす
る請求項1記載の雪水混合体中の雪の濃度の測定装置。
[Claims] 1. A method for measuring the concentration of snow or ice flakes in a snow/water mixture in which natural or artificial snow or ice flakes are mixed with water, in which the apparent conductivity of the snow/water mixture is measured. A conductivity detection device A has a first electrode arranged opposite to detect the conductivity, a conductivity detection device B has a second electrode opposed to detects the conductivity of only the water or liquid phase in the snow/water mixture, and The ratio of the apparent conductivity of the snow-water mixture detected by the rate detection device A to the conductivity of only water or liquid phase detected by the conductivity detection device B is calculated, and the snow-water mixture is calculated from the value of this ratio. 1. A device for measuring the concentration of snow in a snow-water mixture, comprising: a concentration output device using a conductivity method that calculates and displays or outputs the concentration of snow or ice flakes in the body. 2. The apparatus for measuring the concentration of snow in a snow-water mixture according to claim 1, wherein the second electrode is housed in a case provided with a net, a grid, a slit, or a perforated plate on at least one side. 3 Calculate the ratio of the apparent conductivity of the snow-water mixture detected by conductivity detection device A to the conductivity of water or only the liquid phase detected by conductivity detection device B using an analog circuit or a digital circuit, The snow water concentration output device according to claim 1, characterized in that the snow water concentration output device uses a conductivity method to calculate the concentration of snow or ice flakes in the snow water mixture from the value of this ratio and display or output it in real time. Device for measuring the concentration of snow in a mixture.
JP1290389A 1989-11-08 1989-11-08 Device for measuring the concentration of snow in snow-water mixtures Expired - Lifetime JPH0726926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1290389A JPH0726926B2 (en) 1989-11-08 1989-11-08 Device for measuring the concentration of snow in snow-water mixtures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290389A JPH0726926B2 (en) 1989-11-08 1989-11-08 Device for measuring the concentration of snow in snow-water mixtures

Publications (2)

Publication Number Publication Date
JPH03150453A true JPH03150453A (en) 1991-06-26
JPH0726926B2 JPH0726926B2 (en) 1995-03-29

Family

ID=17755381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290389A Expired - Lifetime JPH0726926B2 (en) 1989-11-08 1989-11-08 Device for measuring the concentration of snow in snow-water mixtures

Country Status (1)

Country Link
JP (1) JPH0726926B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265504A (en) * 1993-03-15 1994-09-22 Nkk Corp Apparatus for measuring mixing ratio of mixed-phase fluid
JPH08297108A (en) * 1995-04-27 1996-11-12 Sumitomo Chem Co Ltd Measuring method for slurry concentration
JP2010107487A (en) * 2008-11-01 2010-05-13 Tokyo Institute Of Technology Device and method for measuring multiphase flow

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135797A (en) * 1976-05-08 1977-11-14 Mitsubishi Electric Corp Apparatus for detecting phase change of liquid
JPS62147351A (en) * 1985-12-23 1987-07-01 Kajimoto Kikai Kogyo Kk Method for detecting freezing in water
JPS62172253A (en) * 1986-01-27 1987-07-29 Nippon Kokan Kk <Nkk> Method for measuring mixing amount of mixing substance in mixed phase stream within pipeline

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135797A (en) * 1976-05-08 1977-11-14 Mitsubishi Electric Corp Apparatus for detecting phase change of liquid
JPS62147351A (en) * 1985-12-23 1987-07-01 Kajimoto Kikai Kogyo Kk Method for detecting freezing in water
JPS62172253A (en) * 1986-01-27 1987-07-29 Nippon Kokan Kk <Nkk> Method for measuring mixing amount of mixing substance in mixed phase stream within pipeline

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265504A (en) * 1993-03-15 1994-09-22 Nkk Corp Apparatus for measuring mixing ratio of mixed-phase fluid
JPH08297108A (en) * 1995-04-27 1996-11-12 Sumitomo Chem Co Ltd Measuring method for slurry concentration
JP2010107487A (en) * 2008-11-01 2010-05-13 Tokyo Institute Of Technology Device and method for measuring multiphase flow

Also Published As

Publication number Publication date
JPH0726926B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
Webster An experimental study of turbulence in a density-stratified shear flow
Ferro et al. Applying hypothesis of self-similarity for flow-resistance law in Calabrian gravel-bed rivers
Thorn et al. Recent developments in three-phase flow measurement
CA2360256A1 (en) Measuring multiphase flow in a pipe
AU696704B2 (en) Apparatus and method for generating a signal representative of total harmonic distortion in waveforms of an A/C electrical system
ATE231977T1 (en) DETECTION SYSTEM FOR FROZEN PRECIPITATION ACCUMULATION
JPH11512831A (en) Monitoring method of three-phase fluid flow in pipe
JP2002513141A (en) Gas mass ratio measurement method
CN113389540B (en) Multiphase flow fluid measuring system
Carlander et al. Installation effects on an ultrasonic flow meter with implications for self diagnostics
CN101162165A (en) Low gas content gas-liquid two-phase flow measuring apparatus based on capacitance sensor and standard venturi tube
CN103148899B (en) A kind of liquid micro-flow detection method
JP5027244B2 (en) Method and apparatus for detecting and / or quantifying water leaks
CN2293799Y (en) Oil, gas &amp; water three-phase flowmeter
JPH03150453A (en) Measuring instrument for concentration of snow in snow and water mixed body
Maier et al. Onsets of entrainment during dual discharge from a stratified two-phase region through horizontal branches with centrelines falling in an inclined plane: Part 2–Experiments on gas and liquid entrainment
CN201032457Y (en) Low gas content gas-liquid dual-phase flow measuring apparatus based on standard Venturi tube and vortex flowmeter
Gottifredi et al. The growth of short waves on liquid surfaces under the action of a wind
Dimotakis et al. Investigations of turbulence in a liquid helium II counterflow jet
Roitberg et al. Hydrodynamic characteristics of gas–liquid slug flow in a downward inclined pipe
US4009614A (en) Apparatus for monitoring two-phase flow
CN209296036U (en) A kind of depth-adjustable Multi probe open-channel meter
CN112649054A (en) Oil-gas-water three-phase flow real-time online detection system
CN201032456Y (en) Low gas content gas-liquid dual-phase flow measuring apparatus based on capacity transducer and standard Venturi tube
JPH10281843A (en) Polyphase flowmeter