JPH03150223A - Oxide-based high-temperature superconducting substance - Google Patents

Oxide-based high-temperature superconducting substance

Info

Publication number
JPH03150223A
JPH03150223A JP1287475A JP28747589A JPH03150223A JP H03150223 A JPH03150223 A JP H03150223A JP 1287475 A JP1287475 A JP 1287475A JP 28747589 A JP28747589 A JP 28747589A JP H03150223 A JPH03150223 A JP H03150223A
Authority
JP
Japan
Prior art keywords
atoms
superconducting material
sites
crystal
originally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1287475A
Other languages
Japanese (ja)
Inventor
Toshiya Doi
俊哉 土井
Atsuko Soeda
添田 厚子
Seiji Takeuchi
瀞士 武内
Takaaki Suzuki
孝明 鈴木
Yuichi Kamo
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1287475A priority Critical patent/JPH03150223A/en
Publication of JPH03150223A publication Critical patent/JPH03150223A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To readily synthesize a single phase and consequently enhance the Tc by stabilizing a crystal structure of a Tl-based oxide superconducting substance utilizing mutual substitution of constituent elements thereof. CONSTITUTION:The aforementioned oxide-based high-temperature superconducting substance is expressed by the composition formula Tl2+xBa2+yCu3O10+delta (¦x¦<0.6; ¦y¦<0.6, provided that x and y are not simultaneously 0; ¦delta¦<1.0). In the above-mentioned superconducting substance, e.g. <=30% Tl atomic sites are preferably substituted with Ca atoms.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はTIl系酸化物超電導物質の結晶構造を。[Detailed description of the invention] [Industrial application field] The present invention relates to the crystal structure of a TIl-based oxide superconducting material.

その構成元素同士の相互置換を利用して安定化すること
によって、単一相を容易に得ることができるようにした
物質に関する。
The present invention relates to a substance whose single phase can be easily obtained by stabilizing the substance through mutual substitution of its constituent elements.

〔従来の技術〕[Conventional technology]

これまでに知られているTl系酸化物超電導物質のうち
、超電導臨界温度TcがIIOK以上のものとしては、
T Q zBazcaxcusoxo 。
Among the Tl-based oxide superconducting materials known so far, those with a superconducting critical temperature Tc of IIOK or higher are:
T Q zBazcaxcusoxo.

T I BazCazCuaOss (T Q o、a
Pbo、a) SrzCazCuaOeが知られている
T I BazCazCuaOss (T Q o, a
Pbo, a) SrzCazCuaOe is known.

前の2種類については、アプライド フイジイツクス 
レターズ 53巻(1988年)432頁から434頁
(App1. Phys、 Lett、、 53 (1
988)PP432−?434)において論じられてい
る。最後の物質については、サイエンス 24巻(19
88年)249頁から252頁(Science、 5
3 (1988)PP249−252)において論じら
れている。
For the first two types, applied physics
Letters Vol. 53 (1988) pp. 432-434 (App1. Phys, Lett, 53 (1)
988) PP432-? 434). Regarding the last substance, see Science Volume 24 (19
1988) pp. 249-252 (Science, 5
3 (1988) PP 249-252).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

T Q −B a −Ca −Cu −0系、Ti−P
b−Sr−Ca−Cu−0系には複数の超電導物質相が
存在し、目的とする物質を単一な相(純粋な物質)とし
て合成することは非常に困難であった。
T Q -B a -Ca -Cu -0 system, Ti-P
A plurality of superconducting material phases exist in the b-Sr-Ca-Cu-0 system, and it has been extremely difficult to synthesize the target material as a single phase (pure material).

例えば、T I −B a −Ca −Cu −0系に
おいて最も高い超電導臨界温度(Tc)を有する物質は
、T 112LBazca2Lcuaotoであること
が知られている。しかしこの物質の単一相を合成しよう
と試みても、T 11 zBazcacuxoa e丁
41 zBazcuOe等の物質が共存しやすく、純物
質として合成することは非常に難しかった。T悲Bat
CazCusOs、 (Tffio、sPbo、s)S
rzCazCuaOeの単一相を合成することも同様に
困鑑であった。
For example, it is known that the substance having the highest superconducting critical temperature (Tc) in the T I -B a -Ca -Cu -0 system is T 112LBazca2Lcuaoto. However, even if an attempt was made to synthesize a single phase of this substance, substances such as T 11 zBazcuxoa et 41 zBazcuOe tend to coexist, making it extremely difficult to synthesize it as a pure substance. T sad Bat
CazCusOs, (Tffio,sPbo,s)S
Synthesizing a single phase of rzCazCuaOe was similarly difficult.

本発明は、Tl系酸化物超電導物質の単一相を容易に合
成することを目的としており、さらに物質の持つキャリ
ア濃度をコントールすることによって、Tcの値を改善
することも同時に目的としている。
The present invention aims to easily synthesize a single phase of a Tl-based oxide superconducting material, and also aims to improve the Tc value by controlling the carrier concentration of the material.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明はTffl系酸化物超電導
物質に関する発明であり、物質を構成する元素同士を相
互に置換せしめ、物質の結晶構造を安定化することによ
り、上記目的を達成することにある。
To summarize the present invention, the present invention relates to a Tffl-based oxide superconducting material, and achieves the above object by stabilizing the crystal structure of the material by mutually replacing elements constituting the material. It is in.

本発明者らは、”rl系酸化物超電導物質群において、
IIOK以上の高いTcを有する物質を容易に合成する
ことを目的とし、主にこれらの物質の安定性について結
晶構造を詳細に解析することによって研究してきた。そ
の結果、IIOK以上の高いTcを有するTffi系酸
化物超電導物質には共通して、(l)本来Tl原子が完
全に占有すべき結晶サイトに、Ca原子あるいはTa3
+イオンとイオン半径がほぼ等しい希土類元素等を一部
置換する、(2)本来Ca原子が完全に占有すべき結晶
サイトに、Tll原子あるいはイオン化した時3価が最
も安定でかつCa”÷イオンとイオン半径がほぼ等しく
なる原子、例えば希土類元素等、を一部置換する、  
(3) (1)、(2)を単独あるいは同時に生じせし
める。ことにより結晶構造が安定化し、高いTcを有す
る物質の単一相を容易に合成することを発見し本発明に
至った。この時は、各結晶サイトの置換率の上限は30
%付近にある。置換率をこれ以上にしようとしても、自
由エネルギーが上昇して、IE換せずに、置換させよう
とした元素酸化物あるいは複合酸化物が異相として出現
することになり、好ましくない。
The present inventors have discovered that in the rl-based oxide superconducting material group,
With the aim of easily synthesizing substances having a high Tc higher than IIOK, we have mainly studied the stability of these substances by analyzing their crystal structures in detail. As a result, Tffi-based oxide superconducting materials with a high Tc of IIOK or higher have a common problem: (l) Ca atoms or Ta3
(2) Substituting a rare earth element, etc. whose ionic radius is almost the same as that of the + ion, (2) At the crystal site that should originally be completely occupied by a Ca atom, a Tll atom or a Tll atom, which is the most stable when ionized and has a trivalent ion, and Ca"÷ ion Partial substitution of atoms whose ionic radius is almost equal to that of , such as rare earth elements,
(3) Cause (1) and (2) to occur singly or simultaneously. We have discovered that this stabilizes the crystal structure and easily synthesizes a single phase of a substance with high Tc, leading to the present invention. At this time, the upper limit of the substitution rate for each crystal site is 30
It is around %. Even if the substitution rate is attempted to be higher than this, the free energy will increase and the elemental oxide or composite oxide to be substituted will appear as a different phase without IE exchange, which is not preferable.

〔作用〕[Effect]

Tffi原子サイトをCa原子あるいは希土類原子で置
換することにより、Tl原子サイト周辺の結晶内歪が緩
和され、結晶が安定化される。Ca原子サイトをTl原
子あるいは希土類原子等で置換することにより、Ca原
子サイト周辺の結晶内歪が緩和され、結晶が安定化さ九
る。元素の置換により物質の結晶構造が安定化されそれ
によって単一相合成の容易な超電導材料を得ることがで
きる。
By replacing the Tffi atomic site with a Ca atom or a rare earth atom, the strain in the crystal around the Tl atomic site is relaxed and the crystal is stabilized. By replacing Ca atomic sites with Tl atoms, rare earth atoms, etc., the strain in the crystal around the Ca atomic sites is relaxed, and the crystal is stabilized. Substitution of elements stabilizes the crystal structure of the substance, thereby making it possible to obtain a superconducting material that can be easily synthesized in a single phase.

また安定原子価の異なった元素で置換する場合には、置
換率の変化によって物質の持つキャリア濃度をコントロ
ールすることが出来、その結果従来報告されている値よ
り数度高いTcを持つ超電導物質を得ることができる。
In addition, when substituting elements with different stable valences, it is possible to control the carrier concentration of the material by changing the substitution rate, and as a result, superconducting materials with Tc several degrees higher than previously reported values can be created. Obtainable.

本発明では、 (1)T 11 z+xBazcaz÷ycua01+
令δ 。
In the present invention, (1) T 11 z+xBazcaz÷ycua01+
Order δ.

(2) 丁j! t”xBazcat÷ycu30@+
δ 。
(2) Ding j! t"xBazcat÷ycu30@+
δ.

(3)τj! zBazcazcuxOto÷δからな
る超電導物質を提案する。
(3) τj! We propose a superconducting material consisting of zBazcazcuxOto÷δ.

(1)の物質は第1図に示す結晶構造を有し、(2)の
物質は第2図に示す結晶構造を有し、(3)の物質は第
3図の結晶構造を有することが望ましい。
The substance (1) has the crystal structure shown in Figure 1, the substance (2) has the crystal structure shown in Figure 2, and the substance (3) has the crystal structure shown in Figure 3. desirable.

表1に、T 11 zBaxcazcusO*o+δ。Table 1 shows T11zBaxcazcusO*o+δ.

7 IIBazCazCuxOs+δ、 T I Sr
zCazCusO@+δ。
7 IIBazCazCuxOs+δ, T I Sr
zCazCusO@+δ.

7 Q zBah、asro、acazcusOxo÷
δすTl Bat、aSro、aCazCuaOs+ 
δ 。
7 Q zBah, asro, acazcusOxo÷
δS Tl Bat, aSro, aCazCuaOs+
δ.

τ11 o、sPbo、asrzcazcusoe÷δ
のTl原子サイトに位置するTl原子の熱振動パラメー
タの値を示す。
τ11 o, sPbo, asrzcazcusoe÷δ
The value of the thermal vibrational parameter of the Tl atom located at the Tl atom site is shown.

いずれの物質においてもその値は2.0(人2)以上と
非常に大きな値となっており、結晶はこの部分で不安定
になっていることがbかる。
In all substances, the value is extremely large, over 2.0 (person 2), indicating that the crystal is unstable in this region.

なお、Xの値は、このTl原子サイトをCa原子によっ
て置換していった時の置換率を表わす。
Note that the value of X represents the substitution rate when this Tl atom site is replaced by a Ca atom.

表     1 ITfl z(rJBa2caz(t+x)CuaOt
o+δ       l  2.中、a  l  1.
71 1.41 1.31IT n x−xBa2ca
z÷、ICU70g÷δ    12.中、ti、中、
申、31署T Q x−xsr2Caz+*cuslJ
a+ δ         12.912.2  l 
1.8 巨、申、41ITn z(z−x)Bat、a
Sro、aCaz(t+x)CuaOxo÷δし、巾、
811、中、中、lIIT Q x−xF3ax、as
ro、scaz(x+x)Cす3o−δ 12.中、8
11、中、中、11表1には、Tl原子サイトのTlm
原子を一部Ca原子で置換していった時の熱振動パラメ
ータの値も示している。H換率Xが大きくなるのに従っ
て、熱振動パラメータの値が小さくなっていることがわ
かる。このことより、TJI原子サイトの一部をCa原
子で置換してゆくことにより、この結晶サイトが安定化
され、ひいては結晶全体が安定化されることがわかる。
Table 1 ITfl z(rJBa2caz(t+x)CuaOt
o+δ l 2. Medium, a l 1.
71 1.41 1.31IT n x-xBa2ca
z÷, ICU70g÷δ 12. inside, ti, inside,
Shin, 31st Precinct T Q x-xsr2Caz+*cuslJ
a+ δ 12.912.2 l
1.8 Giant, Monkey, 41ITn z(z-x)Bat, a
Sro, aCaz(t+x) CuaOxo÷δ, width,
811, middle, middle, lIIT Q x-xF3ax, as
ro, scaz(x+x)Cs3o-δ 12. Middle, 8
11, middle, middle, 11 Table 1 shows the Tlm of the Tl atom site.
The values of thermal vibration parameters when some atoms are replaced with Ca atoms are also shown. It can be seen that as the H conversion rate X increases, the value of the thermal vibration parameter decreases. This shows that by replacing some of the TJI atomic sites with Ca atoms, this crystal site is stabilized, and by extension, the entire crystal is stabilized.

置換率を0.4以上とした試料を作製してその時の熱振
動パラメータを求めることも試みたが−Ca元素が十分
に固溶せず、CaOとして析出し、置換率が0.4 の
試料をつくることはできなかった。尚、表1に示した結
晶は、試料粉末のX線回折測定結果をリートベルト解析
することによって求めた結晶である。また。各試料の作
製は、各成分元素の酸化物を出発原料とした固相反応法
によっている。
An attempt was made to prepare a sample with a substitution rate of 0.4 or more and to determine the thermal vibration parameters at that time, but the -Ca element was not sufficiently dissolved and precipitated as CaO, resulting in a sample with a substitution rate of 0.4. could not be created. The crystals shown in Table 1 were obtained by Rietveld analysis of the X-ray diffraction measurement results of the sample powder. Also. Each sample was prepared by a solid phase reaction method using oxides of each component element as starting materials.

表2に、τ11 zBazcazcuaoto÷δ。In Table 2, τ11 zBazcazcuaoto÷δ.

7 jl BatCazCusOs令δ 、  T l
 SrzCazCusO会+ δ 。
7 jl BatCazCusOsorderδ , T l
SrzCazCusOkai + δ.

111 zBax、iSro、tsCazCusOlo
÷δ。
111 zBax, iSro, tsCazCusOlo
÷δ.

771 Bam、aSro、sCazCuaO@+ δ
 。
771 Bam, aSro, sCazCuaO@+ δ
.

7 a o、sPbo、ssrzcazcuxoo÷δ
 の結晶中のCu −0−Cuの結合角度を示す、こ九
らの超電導物質は。
7 ao, sPbo, ssrzcazcuxoo÷δ
These superconducting materials show the bond angle of Cu -0-Cu in the crystal.

Cu原子に関して2種類の結晶サイトが存在するが、両
側をCa原子によって挾まれたC u −0平面部分の
Cu原子に関してのCu −0−Cuの結合角度は常に
180度であるので、ここに示したのは、もう一方の結
晶サイトに位置するCu原子に関してのCu −0−C
uの結合角度である。いずれの物質においても、この結
合角度は174度〜176度となっている。本来、Cu
 −0−Cuの結合角度は180度になるべきものであ
り、この角度が180度でないことは、結晶のこの部分
に何らかの歪が存在していることを示している。
There are two types of crystal sites for Cu atoms, but the bond angle of Cu -0-Cu with respect to Cu atoms in the Cu -0 plane portion sandwiched by Ca atoms on both sides is always 180 degrees, so here What is shown is Cu -0-C with respect to the Cu atom located at the other crystal site.
is the bond angle of u. In any substance, this bond angle is 174 degrees to 176 degrees. Originally, Cu
The bond angle of -0-Cu should be 180 degrees, and the fact that this angle is not 180 degrees indicates that some strain exists in this part of the crystal.

そしてこの大きな内部歪は、結晶の安定性を下げている
と考えられる。表2は併せて、これらの物質のCa原子
サイトのCa原子を一部Tlm原子で置換していった時
の、Cu −0−Cu結合角度を示している。置換率y
が大きくなるのに従って。
This large internal strain is thought to reduce the stability of the crystal. Table 2 also shows the Cu-0-Cu bond angles when some of the Ca atoms at the Ca atom sites of these substances are replaced with Tlm atoms. Substitution rate y
as it grows larger.

Cu −0−Cu結合角度が180度に近づいてゆき、
歪が緩和されて結晶全体が安定化してゆくことがわかる
。If操車yを0.4以上にした試料を作製しようと試
みたが、異相が生成し、yを0.4以上とした試料を得
ることはできなかった。
As the Cu -0-Cu bond angle approaches 180 degrees,
It can be seen that the strain is relaxed and the entire crystal is stabilized. Although an attempt was made to produce a sample in which If steering y was 0.4 or more, a different phase was generated and it was not possible to obtain a sample in which y was 0.4 or more.

なお表2においてyの値は、CaJif子サイトをTl
原子によって置換していった時の置換率を表わす。
Note that in Table 2, the value of y is Tl for the CaJif child site.
Represents the substitution rate when atoms are substituted.

表   2 IT n z(m+y)Ba2cIz(t−y)Cu3
0to+δ    I 1741175 117611
7611771IT Q t+zyBafaz(z−y
)Cu70s÷δ  l 1741174117411
75117511T2】令zysr2Caz(n−y)
Cu30s÷δ         11741174 
11751 1751 17611Tffiz(t÷y
)Baz、aSro、eCaz(t−y)CuaOto
+δ117中76 1176117611771jTl
1 z+zyBau、asro、acaz(z−y)C
uaOs÷δI 174117511761176 +
 17711rQo、a+mPbo、asr龜(z−y
)Cu30s+δl 175117511751176
11761以上のように、TlすK子サイトの一部をC
a原子で、Ca原子サイトの一部をTi原子で置換する
ことによって超電導物質の結晶構造を安定化させ、従っ
てより単一相合成の容易な材料を得ることが可能となっ
た。
Table 2 IT n z(m+y)Ba2cIz(t-y)Cu3
0to+δ I 1741175 117611
7611771IT Q t+zyBafaz(z-y
)Cu70s÷δ l 1741174117411
75117511T2】Reizysr2Caz(ny)
Cu30s÷δ 11741174
11751 1751 17611Tffiz(t÷y
) Baz, aSro, eCaz(ty) CuaOto
+δ117 out of 76 1176117611771jTl
1 z+zyBau, asro, acaz(z-y)C
uaOs÷δI 174117511761176 +
17711rQo, a+mPbo, asr 龜(z-y
)Cu30s+δl 175117511751176
11761 As shown above, a part of the Tl child site is C
By substituting a part of the Ca atom site with a Ti atom, the crystal structure of the superconducting material is stabilized, and therefore it becomes possible to obtain a material that is easier to synthesize in a single phase.

また互いに結晶中での安定原子価の異なる原子で置換を
行うことによって、上記の結晶の安定の他に、物質の持
つキャリア濃度を変化させることができる。我々は本発
明の研究過程において。
Furthermore, by substituting atoms with different stable valences in the crystal, in addition to stabilizing the crystal as described above, it is possible to change the carrier concentration of the substance. We are in the process of researching this invention.

Tl系酸化物超電導体においても、キャリア濃度の変化
によって、Tcが変化することを見出した。
It has been found that even in Tl-based oxide superconductors, Tc changes with changes in carrier concentration.

第4図にT m zBazcazcuaoto÷δ。In Figure 4, T m zBazcazcuaoto÷δ.

T 11 BazCazCuaO@+δ のTl原子サ
イト、Ca原子サイトをCa原子あるいはTl原子で置
換した試料を作製し、そのTcとキャリア濃度の関係を
示した。尚キャリア濃度はホール係数測定より求め。
A sample was prepared in which the Tl atom site and the Ca atom site of T 11 BazCazCuaO@+δ were replaced with a Ca atom or a Tl atom, and the relationship between the Tc and the carrier concentration was shown. The carrier concentration is determined by measuring the Hall coefficient.

横軸は、結晶中のCu原子1個当りのキャリア数で取っ
ている。第4図から明らかなように、キャリア濃度が0
.23近傍で、最も高いTcが得られることがわかる。
The horizontal axis represents the number of carriers per Cu atom in the crystal. As is clear from Figure 4, the carrier concentration is 0.
.. It can be seen that the highest Tc is obtained near 23.

従って従来よりも知られている超電導体の一部を、価数
の違う別の原子で置換することによって、Tcの値を改
善することが可能になる。
Therefore, by substituting a part of a conventionally known superconductor with another atom with a different valence, it becomes possible to improve the Tc value.

〔実施例〕〔Example〕

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例1 原料として、T fl toa、 B a O,Ca 
O,Cu Oを用い、それぞれの金属元素の組成比が原
子比でTl:Ba:Ca:Cu=2.2:2.0:1.
8=3.0 になるように秤量する。まず最初にBaO
Example 1 As raw materials, T fl toa, B a O, Ca
O and Cu O were used, and the composition ratio of each metal element was Tl:Ba:Ca:Cu=2.2:2.0:1 in atomic ratio.
Weigh so that 8=3.0. First of all, BaO
.

CaO,CuOの3成分を混合し、大気中860℃の温
度で10時間焼成する。得られたものをメノウ乳鉢にて
十分に粉砕し、再び大気中、860℃の温度で10時間
焼成する。このようにして得られたものに先程のTlz
Osを加え、乳鉢にて十分に混合、粉砕した後、直径が
30m、厚さ21111の円板状に圧粉成型した後、密
封可能なるつぼに封入し、850℃で1時間焼成した。
The three components CaO and CuO are mixed and fired in the air at a temperature of 860° C. for 10 hours. The obtained product was thoroughly ground in an agate mortar and fired again in the air at a temperature of 860° C. for 10 hours. What was obtained in this way is the Tlz from earlier.
Os was added, thoroughly mixed and pulverized in a mortar, and then compacted into a disk shape with a diameter of 30 m and a thickness of 21111 mm, sealed in a sealable crucible, and fired at 850° C. for 1 hour.

この時、Tl元素の蒸発によって試料の組成が目的組成
からずれる可能性があるので、試料と同組成の粉末を適
量るつぼ内部に入れて、組成ずれを防止している。
At this time, since the composition of the sample may deviate from the target composition due to evaporation of the Tl element, an appropriate amount of powder having the same composition as the sample is placed inside the crucible to prevent composition deviation.

このようにして作製した試料の粉末X線回折パターンを
第5図に示す、この粉末Xa回折データをリートベルト
法によって解析したところ、7 jl z、zBazc
at、acuaOxo÷δ の単一相であることが確認
できた。またT Q zBazcazcuaOxo÷δ
 においては本来Ca原子が占有している結晶サイトの
Ca原子の10%がTJI原子によって置換されている
ことが確認できた。またこの時のCu −0−Cu結合
角度は176度であった。
The powder X-ray diffraction pattern of the sample thus prepared is shown in Figure 5. When this powder Xa diffraction data was analyzed by the Rietveld method, 7 jl z, zBazc
It was confirmed that it was a single phase of at, acuaOxo÷δ. Also T Q zBazcazcuaOxo÷δ
It was confirmed that 10% of the Ca atoms in the crystal sites originally occupied by Ca atoms were replaced by TJI atoms. Further, the Cu-0-Cu bond angle at this time was 176 degrees.

この試料の電気抵抗の温度依存性を第6図に示す、20
に近傍で超電導転移が起ったことを示す。
The temperature dependence of the electrical resistance of this sample is shown in Figure 6.
This indicates that a superconducting transition has occurred near .

急激な電気抵抗の減少が見られ、115Kにおいて、試
料の比抵抗は10−Ω・1以下であることが確認できた
。交流磁化率法によって試料中の超電導部分の体積率を
評価したところ、120に付近より超電導体に転移する
部分が現われ、IIOKにおいてほぼ100%の部分で
超電導体に転移していた。この試料のホール係数測定を
行ない、結晶中の#原子1個当りのキャリア数を計数し
たところ、0.22 個であった。
A rapid decrease in electrical resistance was observed, and it was confirmed that the specific resistance of the sample was 10 −Ω·1 or less at 115K. When the volume fraction of the superconducting portion in the sample was evaluated by the alternating current magnetic susceptibility method, a portion that transitioned to superconductor appeared near 120, and approximately 100% of the portion transitioned to superconductor at IIOK. The Hall coefficient of this sample was measured and the number of carriers per # atom in the crystal was counted and found to be 0.22.

比較例1 原料としてT QzOs、 B a O,Ca O,C
u Oを用い、れぞれの金属元素の組成比が原子比でT
a:Ba:Ca:Cu=2.0:2.0:2.0:3.
0になるように秤量し、以下実施例1と同一の条件で試
料を作製した。第7図に得られた試料の粉末xm回折パ
ターンを示す。
Comparative Example 1 T QzOs, B a O, Ca O, C as raw materials
Using uO, the composition ratio of each metal element is T in atomic ratio.
a:Ba:Ca:Cu=2.0:2.0:2.0:3.
The sample was prepared under the same conditions as in Example 1. FIG. 7 shows the powder xm diffraction pattern of the sample obtained.

711 zBazcazcusoto÷6 以外の結晶
相がかなりの割合で共存していることがわかる。この試
料の電気抵抗の温度依存性を第8図に示す、120に近
傍より試料中の一部分が超電導転移を起こしているが、
100Kにおいても試料の比抵抗は0.1mΩ・個程度
の値であり、超電導体としては特性の悪い試料であるこ
とがbかる。交流磁化率法によって、IIOKにおける
試料中の超電製部分の体積率を評価したところ、約30
%程度であった。
It can be seen that a considerable proportion of crystal phases other than 711 zBazcazcuso÷6 coexist. The temperature dependence of the electrical resistance of this sample is shown in Figure 8. A part of the sample near 120 has undergone superconducting transition, but
Even at 100K, the specific resistance of the sample was approximately 0.1 mΩ·, indicating that the sample had poor characteristics as a superconductor. When the volume fraction of the superelectric part in the IIOK sample was evaluated using the AC magnetic susceptibility method, it was found to be approximately 30
It was about %.

実施例1及び比較例1より、Ca原子サイトのTl原子
による部分置換により、超電導物質の単一相合成が容易
になることがわかる。
From Example 1 and Comparative Example 1, it can be seen that partial substitution of Ca atom sites by Tl atoms facilitates single-phase synthesis of superconducting materials.

実施例2゜ 表3に、T nzBazcazcuaOto÷δ。Example 2゜ Table 3 shows TnzBazcazcuaOto÷δ.

7 Q BazCazCuaO*+δ、 T 11 S
rzCazCuaOs+δ。
7 Q BazCazCuaO*+δ, T 11 S
rzCazCuaOs+δ.

7 El zBax、asro、scazcuaoxo
÷δ 。
7 El zBax, asro, scazcuaoxo
÷δ.

T 11 Bam、aSro、@CazCuaOe舎δ
 。
T 11 Bam, aSro, @CazCuaOeshaδ
.

T Q o、hPbo、ssrzcazcusOn+δ
のTl原子サイトをCa原子で置換していった試料の、
100Kにおける超電導部分の体積率を示す、Xの値は
、Tl原子サイトをCa 原子によって置換していった
時の置換率を表わす。
T Q o, hPbo, ssrzcazcusOn+δ
of the sample in which the Tl atom site of was replaced with Ca atom,
The value of X, which indicates the volume fraction of the superconducting portion at 100 K, represents the substitution rate when Tl atomic sites are replaced by Ca atoms.

表     3 1            1G 10.0510.l
lO,210,33μa x(z−JBa!caz(z
+x)Cua擢)10+ δ    目5−11 + 
l I  −11141−,8a龜+、CusOs+J
     13017019511001901ドQr
−Srxcaz+xcn30tr”8     l s
l 651751701651ITU z(t−JBa
t、aSro、eCaz(t+JcusOzo÷δl−
1−111118flTat−xBau、asr◎、龜
(l◆8)ωA1δ lωし5蛎10011一冊−X=
Oの場合は、従来から知ら九でいる組成に相当する。各
試料の具体的な作製方法は、すべての原料は各成分元素
の酸化物を用い、原料の配合組成が、試料によって異な
るのみで、それ以外はすべて実施例1に記載した条件に
すべて統一した。
Table 3 1 1G 10.0510. l
lO,210,33μa x(z-JBa!caz(z
+x) Cua 擢) 10+ δ 5-11 +
l I-11141-, 8a Cu+, CusOs+J
13017019511001901 DoQr
-Srxcaz+xcn30tr"8 l s
l 651751701651ITU z(t-JBa
t, aSro, eCaz(t+JcusOzo÷δl−
1-111118flTat-xBau, asr◎, 龜(l◆8)ωA1δ lωshi5 oyster 10011 one book-X=
In the case of O, this corresponds to a composition that is conventionally known. The specific preparation method for each sample was as follows: All raw materials used were oxides of each component element, and the only difference was the blended composition of the raw materials depending on the sample.Other than that, all conditions were unified as described in Example 1. .

この結果よりTIII原子サイトをCa JJ[子で置
換することにより100K以上の高いTcを有する超電
導物質の単一相を容易に合成可能となることがわかる。
This result shows that by replacing the TIII atomic site with Ca JJ, it is possible to easily synthesize a single phase of a superconducting material having a high Tc of 100 K or more.

表4に、これらの試料の電気抵抗が、10−aΩ・1以
下となった温度を示す、本発明による試料は、従来のも
のに比較して良質のものであることがわかる。
Table 4 shows the temperatures at which the electrical resistance of these samples became 10-aΩ·1 or less, indicating that the samples according to the present invention are of better quality than the conventional ones.

Xの値は、このTl原子サイトをCa原子によって置換
−していった時の置換率を表わす。
The value of X represents the substitution rate when this Tl atom site is replaced by a Ca atom.

表    4 1丁41 x(x−x)Baメ1x(x+w)Cu、I
Oxo÷δ     lsol  110111中18
1 Ill lITl1 t−xBa龜噛aOe+δ 
   1750051107110中国一1τl x−
Srム噛−一6   1川−10中川川lr11z(t
−x)Bat、aSro、aCaz(z+x)CuaO
zo+δl−1−11O中07し8―ITl x−xB
at、asro、8c1z(z+x)CuaO−δ 1
92110申0申川川実施例3゜ 表5に、 T m zIlazcazcusOto舎δ
Table 4 1 piece 41 x (x-x) Ba 1x (x + w) Cu, I
Oxo÷δ lsol 18 out of 110111
1 Ill lITl1 t-xBaKamagamiaOe+δ
1750051107110 China 11τl x-
Sr Mug-1 6 1 River-10 Nakagawa River lr11z (t
-x) Bat, aSro, aCaz(z+x)CuaO
07 and 8-ITl x-xB in zo+δl-1-11O
at, asro, 8c1z(z+x)CuaO-δ 1
92110 Monkey 0 Shinkawa River Example 3゜Table 5,
.

111 BazCazCuaOe+δ、 T II S
rzCazCusOta÷δ。
111 BazCazCuaOe+δ, T II S
rzCazCusOta÷δ.

7 II zBat、asro、acazcuaozo
÷δ 。
7 II zBat, asro, acazcuaozo
÷δ.

丁嚢Baz、aSro、aCazCuaO@+δ。Baz, aSro, aCazCuaO@+δ.

7 m o、sPbo、asrzcazcusOs+δ
のCa原子サイトをTlJl子で置換していった試料の
、100Kにおける超電湛部分の体積率を示す、yの値
は、Ca原子サイトをTn原子によって置換していった
時の置換率を表わす。
7 m o, sPbo, asrzcazcusOs+δ
The value of y indicates the volume fraction of the superelectric part at 100K of the sample in which the Ca atomic sites of are replaced with TlJl atoms.The value of y is the substitution rate when the Ca atomic sites are replaced with Tn atoms represent

表     5 1           w 換 率(y) lITf
A z(i+y)Ba龜(z−y)CuaOto÷6 
1501851−001−” ”11Tlt◆2JRa
龜(i−y)CuaO*+δ   13015  ”I
”l ”11Tffitすmst−2Caz(t−y)
CuaO*+δ           l  sl  
60 I  701 75+  6011Tffizb
÷y)Ban、aSro、eCaz(z−y)Cu30
to+6165+  85 1 1001 1001 
751ITl1 t+zyBaz、4Sro、scaz
(z−y)CuaOe+δ −90ltooltool
 701ITl1o−b+wPbo、I、Sr自cx−
y)r、uylJta+δ lsol as 1100
1951801y=Qの場合は、従来から知られている
組成に相当する。各試料の具体的な作製方法は、すべて
の原料は各成分元素の酸化物を用い、 E(料の配合組
成が試料によって異なるのみで、それ以外はすべて実施
例1に記載した実作にすべて統一した。
Table 5 1w conversion rate (y) lITf
A z(i+y)Ba龜(z-y)CuaOto÷6
1501851-001-” “11Tlt◆2JRa
Cua (i-y) CuaO*+δ 13015 ”I
"l"11Tffitsumst-2Caz(t-y)
CuaO*+δ l sl
60 I 701 75+ 6011Tffizb
÷y) Ban, aSro, eCaz(z-y)Cu30
to+6165+ 85 1 1001 1001
751ITl1 t+zyBaz, 4Sro, scaz
(z−y)CuaOe+δ −90ltooltool
701ITl1o-b+wPbo,I,Srselfcx-
y) r,uylJta+δ lsol as 1100
The case of 1951801y=Q corresponds to a conventionally known composition. The specific preparation method for each sample was as follows: All raw materials used were oxides of each component element, and the only difference was that the blending composition of the E (material) differed depending on the sample. unified.

この結果より、Tffi原子サイトをCa Jii子で
置換することにより100K以上の高いTcを有する超
電導物質の単一相を容易に合成可能となることがわかる
This result shows that by replacing Tffi atomic sites with Ca Jii atoms, it is possible to easily synthesize a single phase of superconducting material having a high Tc of 100 K or more.

表6に、これらの試料の電気抵抗が、10−60・1以
下となった温度を示す、本発明による試料は従来のもの
に比較して良質のものであることがわかる。
Table 6 shows the temperature at which the electrical resistance of these samples became 10-60.1 or less, indicating that the samples according to the present invention are of better quality than the conventional ones.

1の値は、Ca原子サイトをTn原子によって置換して
いった時の置換率を表わす。
A value of 1 represents the substitution rate when Ca atom sites are replaced by Tn atoms.

表    6            IM 換 率(y)1jTll
 z(t+y)Ba2Caz(z−y)CuaOxo+
6    1801 1091125+1221 99
11 Ti t+bBaムz(t−y)CuJe+5 
  175110311231123111011Tl
x+zysr龜(t−y)CuaOe+5   123
1871109110019511 TIIz(l+y
)Baz、4Sro、eCaz(z−y)CuaOio
+δ 1901  uoluoln月 891jTm 
z+mBat、4Sro、ecaz(z−y)Cu30
e+δ 1921109110811051851jT
 41 o、s+mPbo、asr2Caz(i−y)
CuaOe+6 18111051109110119
31実施例4゜ 実施例1.2及び3において作製した試料を、大気中で
850℃の温度にlO分から1時間放置し、物質中のT
l元素を幾分蒸発させた。その結果T Q ff子サイ
トに生じる原子の欠損が−15%以下である場合には、
一度生成した100により高いTcを有する超電導物質
相の分解は観書されなかった。しかし、欠損量が20%
を越えると分解し、試料の特性が著しく劣下することが
Ml察された。
Table 6 IM conversion rate (y) 1jTll
z(t+y)Ba2Caz(z-y)CuaOxo+
6 1801 1091125+1221 99
11 Ti t+bBamuz(t-y)CuJe+5
175110311231123111011Tl
x+zysr龜(t-y)CuaOe+5 123
1871109110019511 TIIz(l+y
) Baz, 4Sro, eCaz(z-y)CuaOio
+δ 1901 uoluoln month 891jTm
z+mBat, 4Sro, ecaz(z-y)Cu30
e+δ 1921109110811051851jT
41 o, s+mPbo, asr2Caz(i-y)
CuaOe+6 18111051109110119
31 Example 4゜The samples prepared in Examples 1.2 and 3 were left at a temperature of 850°C in the atmosphere for 10 minutes to 1 hour to remove T in the substance.
Some of the element evaporated. As a result, if the number of atomic defects generated at the T Q ff child site is -15% or less,
No decomposition of the superconducting material phase with Tc higher than 100 once formed was observed. However, the missing amount is 20%
It was found that when the amount exceeds Ml, it decomposes and the characteristics of the sample deteriorate significantly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高いTcを有するTl系酸化物超電導
物質の単一相を容易に作製することができるので、特性
の良い超電導体を効率よく作製することが可能となる。
According to the present invention, a single phase of Tl-based oxide superconducting material having a high Tc can be easily produced, so that a superconductor with good characteristics can be efficiently produced.

また、元素の直換率を適切な値にすることによって、従
来知られていたものよりも数度、′rcの高い超電導材
料を得ることができ、応用上有利である。
In addition, by setting the direct conversion factor of the elements to an appropriate value, it is possible to obtain a superconducting material with a higher 'rc by several degrees than those conventionally known, which is advantageous in terms of application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は超電導物質の結晶構造を示す概略図、
第4図は超電導物質のキャリア濃度とTcの関係を示す
特性図、第5図は本発明の実施例1で作製した試料の粉
末X線回折パターンを示すグラフ、第6図は本発明の実
施例1で作製した試料の電気抵抗の温度依存性を示す特
性図、第7図は比較例1で作製した試料の粉末X線回折
パターンを示すグラフ、第8図は比較例1で作製した試
料の電気抵抗の温度依存性を示す特性図である。 (a)・・−本来Tit原子が完全に占有するべき結晶
サイト、(b)・・−本来Cam子が完全に占有する麻
1図 12り;  1d1 1、”01/ 1、01/ 帛λ日 帛3図   1 、傘ゝヤー1    I       ′X     l金日片子目司
当1)の′+ヤリア壽丈(f口)范50 −ロ轡−] 日仰山zO(劃 日m自 Z(9(良]
Figures 1 to 3 are schematic diagrams showing the crystal structure of superconducting materials;
FIG. 4 is a characteristic diagram showing the relationship between carrier concentration and Tc of a superconducting material, FIG. 5 is a graph showing a powder X-ray diffraction pattern of a sample prepared in Example 1 of the present invention, and FIG. A characteristic diagram showing the temperature dependence of electrical resistance of the sample prepared in Example 1, Figure 7 is a graph showing the powder X-ray diffraction pattern of the sample prepared in Comparative Example 1, and Figure 8 is a graph showing the sample prepared in Comparative Example 1. FIG. 3 is a characteristic diagram showing the temperature dependence of the electrical resistance of FIG. (a)...-Crystal sites that should originally be completely occupied by Ti atoms, (b)...-Crystal sites that should originally be completely occupied by Cam atoms; Daily Sheet 3 Diagram 1, Umbrella Yer 1 I' (good]

Claims (13)

【特許請求の範囲】[Claims] 1. Tl_2+_xBa_2Ca_2+_yCu_3
O_1_0+δ(ここで|x|<0.6、|y|<0.
6、但しx+yは同時に0ではない。|δ|<1.0)
で表されることを特徴とする酸化物系高温超電導物質。
1. Tl_2+_xBa_2Ca_2+_yCu_3
O_1_0+δ (where |x|<0.6, |y|<0.
6, but x+y are not 0 at the same time. |δ|<1.0)
An oxide-based high-temperature superconducting material characterized by the following:
2. 請求項1において、Tl原子サイトの30%以下
がCa原子により置換されていることを特徴とする酸化
物系高温超電導物質。
2. 2. The oxide-based high-temperature superconducting material according to claim 1, wherein 30% or less of Tl atomic sites are substituted with Ca atoms.
3. 組成式が Tl_2Ba_2Ca_2Cu_3O_1_0+δ(こ
こで−1.0<δ<1.0) で表されることを特徴とする酸化物系高温超電導物質。
3. An oxide-based high-temperature superconducting material having a compositional formula of Tl_2Ba_2Ca_2Cu_3O_1_0+δ (where -1.0<δ<1.0).
4. 請求項3記載の超電導物質において、Tl原子サ
イトのCa原子による置換率が0.1%以上30%以下
であり、かつCa原子サイトのTl原子による置換率が
30%以下であることを特徴とする超電導物質。
4. The superconducting material according to claim 3, characterized in that the substitution rate of Tl atomic sites by Ca atoms is 0.1% or more and 30% or less, and the substitution rate of Ca atomic sites by Tl atoms is 30% or less. superconducting material.
5. 請求項1〜4のいずれか1項に記載の超電導物質
において、本来はTl原子が完全に占有すべき結晶サイ
トのトータルの席占有率が85%以上100%以下であ
ることを特徴とする超電導物質。
5. The superconducting material according to any one of claims 1 to 4, wherein the total occupancy of crystal sites that should originally be completely occupied by Tl atoms is 85% or more and 100% or less. material.
6. 請求項1〜5のいずれか1項記載の超電導物質に
おいて、物質中のCu原子1個当りのキャリア濃度が0
.1以上0.4以下であることを特徴とする超電導物質
6. The superconducting material according to any one of claims 1 to 5, wherein the carrier concentration per Cu atom in the material is 0.
.. A superconducting material characterized in that it is 1 or more and 0.4 or less.
7. 組成式が Tl_1+_xBa_2Ca_2+_yCu_3O_9
+δ(|x|<0.3、|y|<0.6、但しxとyが
同時に0であることはない。|δ|<1.0)で表され
ることを特徴とする超電導物質。
7. The composition formula is Tl_1+_xBa_2Ca_2+_yCu_3O_9
A superconducting material characterized by being represented by +δ (|x|<0.3, |y|<0.6, however, x and y are never 0 at the same time. |δ|<1.0) .
8. 請求項7記載の超電導物質において、本来はTl
原子が完全に占有すべき結晶サイトの一部を、Ca原子
が置換していることを特徴とする超電導物質。
8. In the superconducting material according to claim 7, originally Tl
A superconducting material characterized in that Ca atoms substitute part of crystal sites that should be completely occupied by atoms.
9. 請求項7記載の超電導物質において、本来はCa
原子が完全に占有すべき結晶サイトの一部をTl原子が
置換していることを特徴とする超電導物質。
9. In the superconducting material according to claim 7, originally Ca
A superconducting material characterized in that Tl atoms replace a portion of crystalline sites that should be completely occupied by atoms.
10. 請求項7記載の超電導物質において、本来はT
l原子が完全に占有すべき結晶サイトの一部をCa原子
が、本来はCa原子が完全に占有すべき結晶サイトの一
部をTl原子が置換していることを特徴とする超電導物
質。
10. In the superconducting material according to claim 7, originally T
A superconducting material characterized in that Ca atoms replace some of the crystal sites that should be completely occupied by L atoms, and Tl atoms replace some of the crystal sites that should originally be completely occupied by Ca atoms.
11. 請求項8記載の超電導物質において、Tl原子
サイトのCa原子による置換率が30%以下であること
を特徴とする超電導物質。
11. 9. The superconducting material according to claim 8, wherein the substitution rate of Tl atom sites by Ca atoms is 30% or less.
12. 組成式がTl_1Ba_2Ca_2Cu_3O
_9+δ(−1.0<δ<1.0)であり、かつ本来は
Tl原子が完全に占有すべき結晶サイトの一部をCa原
子が置換し、本来はCa原子が完全に占有すべき結晶サ
イトの一部をTl原子が置換していることを特徴とする
超電導物質。
12. The composition formula is Tl_1Ba_2Ca_2Cu_3O
_9+δ (-1.0<δ<1.0), and a crystal site in which Ca atoms replace a part of the crystal site that should originally be completely occupied by Tl atoms, and which should originally be completely occupied by Ca atoms. A superconducting material characterized in that some of the sites are replaced by Tl atoms.
13. 組成式が Tl_1+__xSr_2Ca_2+_yCu_3O_
9+δ(|x|<0.3、|y|<0.6、xとyは同
時には0でない。|δ|<1.0) で表されることを特徴とする超電導物質。
13. The composition formula is Tl_1+__xSr_2Ca_2+_yCu_3O_
9+δ (|x|<0.3, |y|<0.6, x and y are not 0 at the same time. |δ|<1.0).
JP1287475A 1989-11-06 1989-11-06 Oxide-based high-temperature superconducting substance Pending JPH03150223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287475A JPH03150223A (en) 1989-11-06 1989-11-06 Oxide-based high-temperature superconducting substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287475A JPH03150223A (en) 1989-11-06 1989-11-06 Oxide-based high-temperature superconducting substance

Publications (1)

Publication Number Publication Date
JPH03150223A true JPH03150223A (en) 1991-06-26

Family

ID=17717823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287475A Pending JPH03150223A (en) 1989-11-06 1989-11-06 Oxide-based high-temperature superconducting substance

Country Status (1)

Country Link
JP (1) JPH03150223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010047A1 (en) * 1991-11-13 1993-05-27 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010047A1 (en) * 1991-11-13 1993-05-27 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors
US5332721A (en) * 1991-11-13 1994-07-26 Midwest Superconductivity, Inc. Method of fabricating thallium-containing ceramic superconductors

Similar Documents

Publication Publication Date Title
Khasanova et al. Superconductivity at 10.2 K in the K–Bi–O system
US6281171B1 (en) MG-doped high-temperature superconductor having the superconducting anisotropy and method for producing the superconductor
JPH03150223A (en) Oxide-based high-temperature superconducting substance
Reller et al. Alternate structure for Ba 2 YCu 3 O 7
JPH04170318A (en) Lamellar copper oxide
Golben et al. Study of bulk and single crystal YBa2-xSrxCu3O7-delta superconducting materials
Rukang Pb2Sr2Cu2TaO8Cl, a new layered cuprate with hematophanite structure
DE68921138T2 (en) Process for producing an oxide compound superconductor of the Bi-Sr-Ca-Cu system.
Sekizawa et al. Magnetic properties of Pr ions in perovskite-type oxides
Pshirkov et al. A New Layered Bismuthate (Sr, K) 3Bi2O7: Synthesis and Crystal Structure
JPH03223151A (en) Superconducting material of oxide and its production
Evetts et al. The sputter deposition of superconducting ceramics
US5407908A (en) Method of manufacturing an oxide superconductor
JP2519337B2 (en) Substrate material for producing oxide superconductor and method for producing oxide superconductor
Zandbergen et al. The structure of BaCu3O4 particles occurring on thin HoBa2Cu3O7 films prepared by MOCVD
JP2556712B2 (en) Method for manufacturing oxide superconductor
Shigematsu et al. Preparation and structure of Sr0. 60Ca0. 40CuO2 single crystals
Pierre et al. Influence of lead substitution on the properties of BiSrCaCuO superconducting ceramics and crystals
Arakcheeva et al. Commensurate Variant of the A 14CU2404r Type Structure of a New (Nd, Y, Sr, Ca) liCu, Ca, Sr) 24041 Compound
JPH02124717A (en) Oxide superconductor
JP3073229B2 (en) Manufacturing method of oxide superconducting material
JP2820082B2 (en) Superconducting material
JPH0287421A (en) Oxide superconductor
JPH01290530A (en) Multiple oxides superconducting material and production thereof
Green et al. Zero resistance above 100 K in Bi-based superconductors