JPH03149907A - Array antenna - Google Patents
Array antennaInfo
- Publication number
- JPH03149907A JPH03149907A JP28781289A JP28781289A JPH03149907A JP H03149907 A JPH03149907 A JP H03149907A JP 28781289 A JP28781289 A JP 28781289A JP 28781289 A JP28781289 A JP 28781289A JP H03149907 A JPH03149907 A JP H03149907A
- Authority
- JP
- Japan
- Prior art keywords
- antenna
- energy
- array antenna
- radiation
- radiating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005855 radiation Effects 0.000 claims abstract description 24
- 230000005284 excitation Effects 0.000 claims description 18
- 238000004891 communication Methods 0.000 abstract description 5
- 239000002699 waste material Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000001629 suppression Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利川分野》
本発明はラジオ、テレビ、通信機、レーダなどの広い分
野で用いられているダイポールアンテナ、八木アンテナ
、レフレクタ−アンテナなどに適用し、アンテナ利得の
向上や不要方向放射又は受信の抑圧に効果がある。[Detailed Description of the Invention] (Industrial field in Icheon) The present invention is applicable to dipole antennas, Yagi antennas, reflector antennas, etc. used in a wide range of fields such as radio, television, communication equipment, and radar, and can improve the antenna gain. It is effective in improving radiation and suppressing radiation or reception in unnecessary directions.
(従来の技術)
従来よりアンテナの指向特性を向上するためアレイアン
テナが用件が厳しくなることが知られている。また不要
方向への放射(受信)の抑圧が難しかった。(Prior Art) It has been known that the requirements for array antennas have become stricter in order to improve the directivity characteristics of the antenna. Furthermore, it was difficult to suppress radiation (reception) in unnecessary directions.
(本発明が解決しようとする問題点》
本発明はアンテナ素子配列と励振方法を従来と異なる設
計原理により構成することから不要方向へ放射される電
波エネルギーを有効に目的方向に向けることから従来よ
り高い利得と指向特性の抑圧を実現するものであり、本
発明のアレイアンテナによりテレビアンテナなどの単一
指向特性を要求される利川に対して受信機の高感度化や
ゴースト干渉除去などに効果がある。(Problems to be Solved by the Present Invention) The present invention configures the antenna element arrangement and excitation method using a design principle different from that of the conventional one, so that radio wave energy radiated in unnecessary directions can be effectively directed toward the target direction. The array antenna of the present invention achieves high gain and suppression of directional characteristics, and is effective in increasing receiver sensitivity and eliminating ghost interference for TV antennas that require unidirectional characteristics. be.
(発明の目的)
本発明はアンテナの目的方向への利得を増加させ、さら
に不要方向への電波放射又は不要方向からの電波の到来
を抑圧する特性を向上させるアレイアンテナの実現にあ
る。(Object of the Invention) The present invention is to realize an array antenna that increases the gain of the antenna in the target direction and further improves the characteristics of suppressing radio wave radiation in unnecessary directions or arrival of radio waves from unnecessary directions.
(問題点を解決する手段》
目的方向へ電波を能率よく放射するには鋭い指向性が要
求される。(Means for solving the problem) Sharp directivity is required to efficiently radiate radio waves in the target direction.
従来はアンテナの指向特性を考えるとき電波を放射する
方向を含む面内の特性のみに着目されてきていた。また
設計方針としては目的方向に指向特性を増加させる原理
がとられてきた。Conventionally, when considering the directional characteristics of an antenna, attention has been focused only on the in-plane characteristics including the direction in which radio waves are radiated. Furthermore, the design policy has been to increase the directional characteristics in the target direction.
本発明は従来よりの設計原理を逆の方向から着目するも
ので、もしアンテナから放射され一合エネルギーを一定
とすれば、不要方向への放射を抑圧すればそれだけ目的
方向への放射が増加する原理によるものであり、不要方
向としては三次元空間で考えて上空や地面に向かう放射
エネルギーを有効に目的方向(水平方向)に向けること
が出来るアレイアンテナを実現することにある。The present invention focuses on the conventional design principle from the opposite direction.If the combined energy radiated from the antenna is constant, suppressing radiation in unnecessary directions will increase radiation in the target direction. This is based on the principle, and the goal is to realize an array antenna that can effectively direct radiated energy toward the sky or the ground in a three-dimensional space, in the desired direction (horizontal direction).
従来のブロードサイドアレイやエンドファイヤアレイの
配列は目的方向を含む面内に配列していた。すなわち地
上用のテレビアンテナは水平方向にアンテナ素子が配列
されている。アンテナ素子からは上下方向にも電波放射
特性があるのにこの方向への放射または受信エネルギー
については全く考慮されていなかった。Conventional broadside arrays and end-fire arrays are arranged in a plane that includes the target direction. That is, in a terrestrial television antenna, antenna elements are arranged horizontally. Although antenna elements have radio wave radiation characteristics in the vertical direction as well, no consideration has been given to radiation or reception energy in this direction.
図4はよく知られているダイポールアンテナの8字指向
特性である。FIG. 4 shows the figure-8 directivity characteristic of a well-known dipole antenna.
アンテナ素子1を含む面内の指向特性2として表わされ
ている。It is expressed as a directional characteristic 2 in a plane including the antenna element 1.
図2は図1のダイポールアンテナからの指向特性をアン
テナ素子と直交した面内で表わした図で、この面内の指
向性は無指向性となっている。このことからダイポール
素子を姐み合わせた八木アンテナなどのアレイアンテナ
は放射目的方向を水平方向とすると上下方向に無駄なエ
ネルギーを放射していることになる。FIG. 2 is a diagram showing the directivity characteristic from the dipole antenna of FIG. 1 in a plane orthogonal to the antenna element, and the directivity in this plane is omnidirectional. This means that an array antenna such as a Yagi antenna that combines two dipole elements will radiate wasteful energy in the vertical direction if the intended direction of radiation is the horizontal direction.
この無駄な指向特性を三次元的に抑圧すればその分だけ
目的方向への利得が向上てきるという原理に着目して本
発明では三次元的な素子配列による共振形アレイアンテ
ナを構成した。Focusing on the principle that if this useless directional characteristic is suppressed three-dimensionally, the gain in the target direction will be improved accordingly, the present invention has constructed a resonant array antenna using a three-dimensional element arrangement.
図3は本発明による基本的な素子配列と指向特性を示す
。図2で示した単一グイポールの上下に励振素子3と4
を配置し、3と4は共に1に対して放射器となるように
1との間隔と3および4の寸法を調節すると、3と4で
共振器作用が生じ上下方向の放射が抑圧されて水平方向
Xへより強い放射が生じ指向性5のごとく「まゆ形」の
放射となり、単一素子によるX方向の放射に対して約5
dbの増加となることが実験で確認できた。モーメント
法を用いた計算に本ると、放射素子lに半波長ダイポー
ル、励振放射素子3と4に同じ半波長素子を用いると約
7デシベル増加、3と4に0.55波長の素子を用いる
と約5.7デシベルの半波長グイポールに対するX方向
への利得増加となることが示される。FIG. 3 shows the basic element arrangement and directivity characteristics according to the present invention. Excitation elements 3 and 4 are placed above and below the single Goupole shown in Figure 2.
, and adjust the distance from 1 and the dimensions of 3 and 4 so that both 3 and 4 act as radiators for 1, a resonator effect occurs between 3 and 4, suppressing the radiation in the vertical direction. Stronger radiation occurs in the horizontal direction
It was confirmed through experiments that this resulted in an increase in db. When calculating using the method of moments, if we use a half-wavelength dipole for the radiating element l and the same half-wavelength elements for the excitation radiating elements 3 and 4, there will be an increase of about 7 dB, and if we use elements with a wavelength of 0.55 for 3 and 4. It is shown that the gain in the X direction for the half-wavelength Gypole increases by about 5.7 dB.
給電点インピーダンスについては標準半波長グイポール
の76+142オームに対して約33+j25オームと
なるのでインピーダンス整合が必要である。The feed point impedance is approximately 33+j25 ohms compared to 76+142 ohms of the standard half-wavelength Guypole, so impedance matching is required.
(作用)
本発明によるアレイアンテナの構成によれば、目的方向
以外の無駄な放射エネルギーを有効に利用することが出
来る。地上の通信やテレビ用に応用すれば上空や地上に
向けられるエネルギーを有効に水平方向に加えることに
なり、衛星通信のように上方に電波を放射又は受信する
アンテナに応用すれば水平方向の不要エネルギーを上方
に向けることができる。この結果、利得の増加が得られ
る。(Function) According to the configuration of the array antenna according to the present invention, wasteful radiation energy in directions other than the target direction can be effectively utilized. If applied to terrestrial communications or television, it will effectively add energy directed toward the sky or the ground in the horizontal direction; if applied to antennas that emit or receive radio waves upwards, such as in satellite communications, the horizontal direction will be unnecessary. Energy can be directed upwards. This results in an increase in gain.
不要方向の放射を抑圧することは指向性の改善となり、
単向性アンテナでは不要波への抑圧効果も向上出来る。Suppressing radiation in unnecessary directions improves directivity,
Unidirectional antennas can also improve the effect of suppressing unnecessary waves.
(実施例)
図4は良く知られている三素子八木アンテナの構成図を
示す。素子lは放射器、2は導波器、3は反射器である
。この八木アンテナは全素子配列を含むX方向の電波を
送信と受信するのに用いられているが、上下2袖方向に
対して無指向性と同様な不要電波を放射している。(Example) FIG. 4 shows a configuration diagram of a well-known three-element Yagi antenna. Element 1 is a radiator, 2 is a waveguide, and 3 is a reflector. This Yagi antenna is used to transmit and receive radio waves in the X direction including the entire array of elements, but it emits unnecessary radio waves similar to non-directional radio waves in the upper and lower directions.
図5は本発明による励振素子4と5を上下に加えた構成
を示す。・図6は図5の構成によるアレイアンテナの水
平面指向性を示す。図中点線1は従来の三素子八木アン
テナによる最適指向性で実線2が本発明による指向性で
ある。目的X方向に1デシベルの利得増加が得られたが
後方向特性が3デシベル増加してしまうことがわかる。FIG. 5 shows a configuration in which excitation elements 4 and 5 according to the present invention are added above and below. - Figure 6 shows the horizontal plane directivity of the array antenna with the configuration of Figure 5. In the figure, the dotted line 1 indicates the optimum directivity of the conventional three-element Yagi antenna, and the solid line 2 indicates the directivity of the present invention. It can be seen that although a gain increase of 1 dB was obtained in the target X direction, the rearward characteristic increased by 3 dB.
これは励振素子からの後方放射が増加するからである。This is because backward radiation from the excitation element increases.
図7は図5の構成を変形して励振素子を25度後方に傾
けた配列を示す。FIG. 7 shows an arrangement in which the arrangement of FIG. 5 is modified and the excitation elements are tilted backward by 25 degrees.
図8は図7の構成をY軸方向から眺めた図である。図8
の構成によれば図9のどと(指向性の前後比が著しく改
善される。FIG. 8 is a diagram of the configuration of FIG. 7 viewed from the Y-axis direction. Figure 8
According to the configuration shown in FIG. 9, the front-to-back ratio of directivity is significantly improved.
図9に水平面XY内と垂直面xzの指向性を示す。点線
が従来の5素子八木アンテナの指向性を、実線が本発明
による3素子八木に2励振素子を加えた合計5素子アレ
イアンテナの指向性を示す。5素子八木アンテナに対し
て利得は1デシベル増加し、さらに後方特性が約18デ
シベル改善されている。この様に同じ5素子八木アンテ
ナに対して本発明のアンテナは前方利得は+1デシベル
、後方抑圧は18デシベルも増加させることが可能とな
る。FIG. 9 shows the directivity in the horizontal plane XY and in the vertical plane xz. The dotted line shows the directivity of the conventional five-element Yagi antenna, and the solid line shows the directivity of the total five-element array antenna, which is the three-element Yagi plus two excitation elements according to the present invention. The gain is increased by 1 dB compared to the 5-element Yagi antenna, and the rear characteristics are further improved by about 18 dB. In this way, for the same five-element Yagi antenna, the antenna of the present invention can increase the forward gain by +1 dB and the rear suppression by 18 dB.
(変形実施例)
本発明は不要な放射エネルギーを目的方向に有効に利用
しようとする原理によるもので、目的方向を含まぬ面内
に放射器の両側に反射器を配列することによるものであ
る。放射器で放射された電波が放射器に戻り放射を強め
合う効果を利用するものであるので励振素子は給電形素
子を用いても同様な効果が得られる。(Modified Embodiment) The present invention is based on the principle of effectively utilizing unnecessary radiant energy in the target direction, and is based on the principle of arranging reflectors on both sides of the radiator in a plane that does not include the target direction. . Since the radio waves radiated by the radiator return to the radiator and make use of the effect of reinforcing each other's radiation, the same effect can be obtained even if a feed type element is used as the excitation element.
励振素子は線形とは限らず、面状や立体上の形状によっ
ても本発明の原理による効果が期特出来る。The effect of the principle of the present invention can be seen depending on the shape of the excitation element, not only the linear shape but also the planar or three-dimensional shape.
一般の開[1面アンテナに対しても給電部に本発明の原
理による構成が適用できる。また励振素子数を二つ以上
に増加してもよい。The configuration according to the principles of the present invention can also be applied to the feed section for a general open single-sided antenna. Further, the number of excitation elements may be increased to two or more.
(発明の効果)
本発明の構成によるアレイアンテナを用いると不要方向
の電波放射を目的方向に向けることから利得向上が得ら
れる。(Effects of the Invention) When the array antenna having the configuration of the present invention is used, radio wave radiation in unnecessary directions is directed toward the target direction, so that gain can be improved.
本発明により構成される励振素子は反射器として作用す
るので、不要方向に対して励振素子を配列することから
不要方向抑圧効果が改善される。Since the excitation element configured according to the present invention acts as a reflector, the unnecessary direction suppression effect is improved by arranging the excitation element in the unnecessary direction.
八木アンテナのごと(放射器、導波器、反射器を組み合
わせた構成により素子数を増加して最適設計を行うには
、各素子長や素子間隔などの設計が困難となるが本発明
の構成では単なる放射器の組み合わせでよいので設計条
件が容易となる。Like the Yagi antenna (a configuration that combines a radiator, a waveguide, and a reflector increases the number of elements and performs an optimal design, which makes it difficult to design each element length and element spacing, etc.), but the configuration of the present invention Since a simple combination of radiators is sufficient, the design conditions are easy.
mlは半波長ダイポールアンテナとアンテナ素子を含む
平面上の八字指向性を示す。
図2は図1と同じ半波長グイポールの指向性をアンテナ
素子と直交した面内で無指向性となっていることを示す
。
図3は図2と同じ平面内において本発明の励振素子3と
4を加えることにより指向性が5のように変化すること
を示す。
図4は遥常用いられる3素子八木アンテナを示す。
図5は図4の3素子八木アンテナに本発明の励振素子4
と5を加え−た構成図を示す。
図6は図5の構成による指向特性を示す。点線は八木ア
ンテナ、実線が本発明によるアンテナの指向性を示す。
m)は図5の構成に対して励振素子を垂直線から25度
傾けた配列を示す。
図8は図7の配列をxz平面で表わした図である。
図9は5素子の八木アンテナの指向特性と比較した本発
明による同一の5素子構成アレイ(図7)の指向特性を
示す。
(符号・記号)
図3は本発明の基本原理による素子配列を示し、−図中
1は放射素子、2は垂直面内指向性、3と4は本発明に
よる励振素子、5は本発明のアンテナによる指向性およ
びXは放射目的方向を示す。
図7は本発明を八木アンテナと組み合わせた実施例の一
つを示す。
素子lは放射器、2は導波器、3は反射器、4と5は本
発明による励振素子を示す。ml indicates the eight-figure directivity on a plane including the half-wavelength dipole antenna and the antenna element. FIG. 2 shows that the directivity of the half-wavelength Goupole, which is the same as in FIG. 1, is omnidirectional in a plane orthogonal to the antenna element. FIG. 3 shows that the directivity changes as shown in 5 by adding excitation elements 3 and 4 of the present invention in the same plane as FIG. Figure 4 shows a three-element Yagi antenna commonly used. Figure 5 shows the excitation element 4 of the present invention in the three-element Yagi antenna of Figure 4.
A configuration diagram with 5 and 5 added is shown. FIG. 6 shows the directional characteristics of the configuration shown in FIG. The dotted line shows the Yagi antenna, and the solid line shows the directivity of the antenna according to the present invention. m) shows an arrangement in which the excitation elements are tilted 25 degrees from the vertical line with respect to the configuration of FIG. FIG. 8 is a diagram showing the arrangement of FIG. 7 on the xz plane. FIG. 9 shows the directivity of the same five-element array according to the invention (FIG. 7) compared to the directivity of a five-element Yagi antenna. (Symbols/Symbols) Figure 3 shows an element arrangement according to the basic principle of the present invention, - In the figure, 1 is a radiation element, 2 is a directivity in the vertical plane, 3 and 4 are excitation elements according to the present invention, and 5 is a radiation element according to the present invention. The directivity due to the antenna and X indicate the radiation target direction. FIG. 7 shows one embodiment in which the present invention is combined with a Yagi antenna. Element l is a radiator, 2 is a waveguide, 3 is a reflector, and 4 and 5 are excitation elements according to the invention.
Claims (1)
方向を含まぬ面内に配置した複数個の反射形励振素子と
当該放射素子とが共振器を構成するごとく配列したアレ
イアンテナ。An array antenna in which a radiating element for radiating radio waves in a target direction, a plurality of reflective excitation elements arranged in a plane that does not include the target direction of radiation, and the radiating elements are arranged to form a resonator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28781289A JPH03149907A (en) | 1989-11-07 | 1989-11-07 | Array antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28781289A JPH03149907A (en) | 1989-11-07 | 1989-11-07 | Array antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03149907A true JPH03149907A (en) | 1991-06-26 |
Family
ID=17722078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28781289A Pending JPH03149907A (en) | 1989-11-07 | 1989-11-07 | Array antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03149907A (en) |
-
1989
- 1989-11-07 JP JP28781289A patent/JPH03149907A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109586043B (en) | Base station antenna with lens for reducing upwardly directed radiation | |
US7030831B2 (en) | Multi-polarized feeds for dish antennas | |
AU2009241388B2 (en) | Small aperture interrogator antenna system employing sum-difference azimuth discrimination techniques | |
US8519902B2 (en) | Wireless local area network antenna array | |
US5629713A (en) | Horizontally polarized antenna array having extended E-plane beam width and method for accomplishing beam width extension | |
US9991607B1 (en) | Circular array of ridged waveguide horns | |
CN116111320A (en) | Multi-band base station antenna with radome effect cancellation feature | |
US6429825B1 (en) | Cavity slot antenna | |
US8368608B2 (en) | Circularly polarized loop reflector antenna and associated methods | |
JP3029231B2 (en) | Double circularly polarized TEM mode slot array antenna | |
US7006053B2 (en) | Adjustable reflector system for fixed dipole antenna | |
US4186400A (en) | Aircraft scanning antenna system with inter-element isolators | |
US6483476B2 (en) | One-piece Yagi-Uda antenna and process for making the same | |
US11239544B2 (en) | Base station antenna and multiband base station antenna | |
US12051857B2 (en) | High frequency system using a circular array | |
KR101710803B1 (en) | Base Station Antenna Radiator for Isolation of Polarization Diversity | |
JP3793110B2 (en) | Monopole antenna with conductor reflector | |
JPH03149907A (en) | Array antenna | |
CN210692768U (en) | Base station antenna and multiband base station antenna | |
WO2021224584A1 (en) | Directional antenna. base station and method of manufacture | |
US5877729A (en) | Wide-beam high gain base station communications antenna | |
US5995056A (en) | Wide band tem fed phased array reflector antenna | |
US6225946B1 (en) | Method and apparatus for a limited scan phased array of oversized elements | |
Rohani et al. | Analysis of super directive array with switchable beam pattern | |
WO2024003695A1 (en) | Omnidirectional vehicle antenna apparatus |