JPH03149756A - Thermal battery - Google Patents

Thermal battery

Info

Publication number
JPH03149756A
JPH03149756A JP28819689A JP28819689A JPH03149756A JP H03149756 A JPH03149756 A JP H03149756A JP 28819689 A JP28819689 A JP 28819689A JP 28819689 A JP28819689 A JP 28819689A JP H03149756 A JPH03149756 A JP H03149756A
Authority
JP
Japan
Prior art keywords
power generating
generating blocks
discharge
power generation
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28819689A
Other languages
Japanese (ja)
Other versions
JPH0782860B2 (en
Inventor
Masanao Terasaki
正直 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP28819689A priority Critical patent/JPH0782860B2/en
Publication of JPH03149756A publication Critical patent/JPH03149756A/en
Publication of JPH0782860B2 publication Critical patent/JPH0782860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Abstract

PURPOSE:To allow discharging for a long period without increasing a heat insulator for heat insulation by making the number of laminated cells of power generating blocks on both ends larger than the number of laminated cells of power generating blocks on the inside. CONSTITUTION:The number of cells of power generating blocks 1 and 4 on both ends is larger than the number of cells of power generating blocks 2 and 3 on the inside, and power generating blocks 1-4 are electrically connected in parallel. Since the number of laminated cells of power generating blocks 1 and 4 on both ends is larger, the discharge voltage is higher, power generating blocks 1 and 4 are more preferentially discharged than power generating blocks 2 and 3 on the inside, and the discharge is completed earlier. The discharge rate of power generating blocks 2 and 3 on the inside is small at the initial stage, but the rate of the discharging current is increased as the discharge capabilities of power generating blocks 1 and 4 on both ends are reduced and the terminal voltage is reduced. The discharge of power generating blocks 1 and 4 on both ends is completed before the temperature of power generating blocks 1 and 4 on both ends becomes the operating temperature or below, and power generating blocks 2 and 3 on the inside are continuously discharged thereafter. A long life is obtained without increasing the quantity of a heat insulator.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電池内部に発熱剤を内蔵し、電池使用時に発熱
剤に点火することにより、電池内部を高温に加熱して活
性化させる熱電池に関するもので、高容量で長時間放電
可能な、エネルギー密度の高い熱電池を提供するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermal battery that contains a heat generating agent inside the battery and activates the battery by heating the inside of the battery to a high temperature by igniting the heat generating agent when the battery is used. The present invention provides a thermal battery with high energy density that has a high capacity and can be discharged for a long time.

従来の技術 熱電池とは発熱剤を内蔵した、溶融塩を電解質とする電
池である。保存中は電解質が非電導性の固体塩であるた
めに、電池として不活性状態にあるが、発熱剤を燃焼さ
せて電池内部を高温に加熱することにより、電解質が溶
融して電導性を示すようになり、電池が活性化される。
BACKGROUND OF THE INVENTION A thermal battery is a battery that contains a heat generating agent and uses molten salt as an electrolyte. During storage, the electrolyte is a non-conductive solid salt, so the battery remains inactive, but by burning the exothermic agent and heating the inside of the battery to a high temperature, the electrolyte melts and becomes conductive. The battery will be activated.

熱電池は保存中の自己放電がほとんどなく、長期間の保
存が可能であり、必要なときは瞬時に活性化させること
ができる貯蔵型電池の一種である。
A thermal battery is a type of storage battery that has almost no self-discharge during storage, can be stored for a long time, and can be activated instantly when needed.

また、−55〜100℃というような広l!囲な環境温
度下でも使用が可能な、高エネルギー密度の電池である
。不活性状態の熱電池は内部抵抗が高いために、負荷を
端子に接続した状態で機器に組み込むことが可能である
。このような多くの特徴を備えているために、熱電池は
、ミサイル、ロケット等の飛しよう体用の電源や各種緊
急用電源として欠かせないものとなっている。
Also, the temperature range is -55 to 100℃! It is a high energy density battery that can be used even under ambient environmental temperatures. Since thermal batteries in an inactive state have a high internal resistance, they can be incorporated into equipment with a load connected to their terminals. Because of these many features, thermal batteries have become indispensable as power sources for flying objects such as missiles and rockets, and as power sources for various emergencies.

従来、この種の熱電池の活物質として、負極にカルシウ
ムを、正極にクロム酸カルシウムを用いた系が用いられ
てきたが、さらに高容量、高出力用として負極にリチウ
ムやリチウム合金を、正極に硫化物を用いた熱電池が間
発されている。
Conventionally, systems using calcium for the negative electrode and calcium chromate for the positive electrode have been used as active materials for this type of thermal battery, but for higher capacity and higher output, lithium or lithium alloys have been used for the negative electrode and lithium alloy for the positive electrode. Thermal batteries using sulfides have been developed intermittently.

リチウム合金として、リチウムとホウ素、アルミニウム
、ケイ素、鉄、ガリウム、ゲルマニウム等との合金とし
たものが使用可能である。
As the lithium alloy, an alloy of lithium and boron, aluminum, silicon, iron, gallium, germanium, etc. can be used.

正極活物質の硫化物として、耐熱性の高い二硫化銑がお
もシこ使用されているが、ニッケル、クロム、コバルト
、銅、タングステン、モリブデン等の硫化物や、これら
の金属を含むシュブレル相の硫化物も使用可能である。
Pig disulfide, which has high heat resistance, is mostly used as the sulfide in the positive electrode active material, but sulfides of nickel, chromium, cobalt, copper, tungsten, molybdenum, etc., and the Chevrel phase containing these metals are also used. sulfides can also be used.

電解質としてはLiCl−59モル%、にCl−41モ
ル%の共晶塩が一般に用いられている。この共晶塩は比
較的に安価で、融点が352℃と低く、常温での絶縁抵
抗が高いという特徴がある。電解質は負極のリチウムに
耐食性のある酸化マグネシウム、酸化ホウ緊、酸化ジル
コニウム等の絶縁体粉末を混合して流動性をなくしたも
のが使用される。電解質層は、熱電池作動時のイオンの
伝導体であると同時に、正極と負極のセパレータとして
も作用している。
As the electrolyte, a eutectic salt containing 59 mol % of LiCl and 41 mol % of Cl is generally used. This eutectic salt is relatively inexpensive, has a low melting point of 352° C., and has high insulation resistance at room temperature. The electrolyte used is lithium for the negative electrode mixed with insulating powder such as magnesium oxide, boron oxide, or zirconium oxide, which has corrosion resistance, to eliminate fluidity. The electrolyte layer is an ion conductor during thermal battery operation, and at the same time acts as a separator between the positive and negative electrodes.

発熱剤として、鉄粉と過塩葉酸カリウムの混合物を成形
したものがセルと交互に積層して用いられている。発熱
剤は電池活性化時に点火されることにより、酸化還元反
応を起こして発熱し、電池内を作動温度まで加熱する。
As the exothermic agent, a molded mixture of iron powder and potassium perchlorate folate is used by laminating the cells alternately. When the exothermic agent is ignited during battery activation, it causes an oxidation-reduction reaction and generates heat, heating the inside of the battery to the operating temperature.

この発熱剤は鉄が発熱反応に必要な量よりも過剰に含ま
れており、発熱反応後も導電性が高く、隣接する業電池
間の接続体としても作用している。
This exothermic agent contains iron in excess of the amount required for the exothermic reaction, has high conductivity even after the exothermic reaction, and also acts as a connector between adjacent cells.

熱電池の活性化手段として一般に点火玉が用いられてい
る。熱電池使用時に外部電源より熱電池に内蔵された点
火玉に通電することにより発火させ、発熱剤に点火する
ことができる。撃鉄の打撃により発火する撃発言管によ
る活性化も可能である。この方式は外部電源が不要であ
り、機械的作用により熱電池の活性化が可能である。
Ignition balls are commonly used as a means of activating thermal batteries. When the thermal battery is used, an external power supply energizes the ignition ball built into the thermal battery to ignite the heat generating agent. It can also be activated by a percussion tube that is ignited by a hammer blow. This method does not require an external power source, and the thermal battery can be activated by mechanical action.

発明が解−決しようとする課題 熱電池は必要なときに瞬時に電力を得ることができる貯
成型の電池であり、高い信頼性を有するためlこ、その
用途、使用量はますます増加の傾向にあり、更に高容量
、長時間放電可能なものが要求されている。しかし構造
的な制約により大面積のセルは製造が困難であり、高容
量、高出力の用途に対しては複数個の発電ブロック積層
体を電気的に並列に接続したものが使用されている。
Thermal batteries are storage type batteries that can obtain power instantaneously when needed, and because they have high reliability, their applications and usage are increasing rapidly. There is a demand for higher capacity and longer discharge time. However, it is difficult to manufacture large-area cells due to structural constraints, and for high-capacity, high-output applications, a stack of multiple power generation blocks electrically connected in parallel is used.

熱電池の放電容量は、活物質の放電容量とともに電池内
の作動温度によっても制限されている。
The discharge capacity of a thermal battery is limited not only by the discharge capacity of the active material but also by the operating temperature within the battery.

このため、熱電池の設計は活物質の使用量のみでなく、
断熱保温の方法についても最適化を図らなければならな
い、熱電池の内部は活性化時に均一に加熱されるが、時
閉が経過するにつれ中心部が高く、周囲が低いという温
度分布を生じてくる。
For this reason, thermal battery design is not only based on the amount of active material used;
The heat insulation method must also be optimized.The inside of a thermal battery is heated uniformly during activation, but as time passes, a temperature distribution develops in which the temperature is higher in the center and lower at the periphery. .

長時間放電の熱電池は両端のセルの温度低下によりその
放電寿命が制限される。放電時間の長い熱電池を設計す
るために両端のセルの温度低下を防ぐ必要があるが、そ
のために多くの断熱体を使用すれば、容積効率の低下を
招く結果となフた。
The discharge life of a thermal battery that discharges for a long time is limited by the temperature drop of the cells at both ends. In order to design a thermal battery with a long discharge time, it is necessary to prevent the temperature of the cells at both ends from dropping, but if a large number of insulators are used for this purpose, this results in a decrease in volumetric efficiency.

課題を解決するための手段 本発明は保温のための断熱体を増やすことなく長11r
rA放電可能な熱電池を提供するもので、各々電気的に
並列に接続された381以上の発電ブロックからなり、
これらの発電プロ・フりを同一容器内りこ積層した熱電
池において、両端の発電ブロックの積層セル数は内側の
発電ブロックの積層セル数より多いことを特徴とするも
のである。
Means for Solving the Problems The present invention has a length of 11 r without increasing the number of heat insulators for heat retention.
It provides a thermal battery capable of rA discharge, and consists of more than 381 power generation blocks each electrically connected in parallel.
A thermal battery in which these power generating units are laminated in the same container is characterized in that the number of stacked cells in the power generating blocks at both ends is greater than the number of stacked cells in the inner power generating block.

作用 本発明は、活性化後の熱電池内部の温度分布の変化に着
目したものである。熱電池を活性化後、時閉が経過する
につれて積層体両端から温度が徐々gこ低下し、中央部
の温度低下は最も緩やかである。すなわち、発電ブロッ
ク積層体の両端の温度が作動温度以下に低下したあとも
、中央部は依然として高温であり、放電が可能である。
Function The present invention focuses on changes in temperature distribution inside a thermal battery after activation. After activating the thermal battery, the temperature gradually decreases from both ends of the stack as time passes, and the temperature decrease at the center is the slowest. That is, even after the temperature at both ends of the power generation block laminate falls below the operating temperature, the central portion remains at a high temperature and discharge is possible.

したがって、両端の発電ブロックの放電を先におこない
、内側の発電ブロックの放電を後からおこなうようにす
れば保温のための断熱体を増やすことなく長時間の放電
が可能となる。
Therefore, by discharging the power generating blocks at both ends first and discharging the inner power generating blocks later, it is possible to discharge for a long time without increasing the number of heat insulators.

本発明電池においては両端の発電ブロックの積層セル数
が多いために、放電電圧が高く、内側の発電ブロックよ
り優先的に放電され、先に放電が終了する。内側の発電
プロフクの放電割合は初期には少ないが、両端の発電ブ
ロックの放電能力が低下し、端子電圧が低下するにつれ
て放電電流の割合が増加してくる。両端の発電ブロック
の温度が作動温度以下になるまでに両端の発電ブロック
の放電を終了し、それ以後は内側の発電ブロックが放電
を続けるものである。両端の発電ブロックの保温時間が
短くてもよいので断熱体を減らすこともでき、熱電池の
小型化も可能である。
In the battery of the present invention, since the power generation blocks at both ends have a large number of laminated cells, the discharge voltage is high, and the power generation blocks on the inside are discharged preferentially, and the discharge ends first. Initially, the discharge rate of the inner power generation block is small, but as the discharge capacity of the power generation blocks at both ends decreases and the terminal voltage decreases, the discharge current rate increases. Discharging of the power generating blocks at both ends is completed until the temperature of the power generating blocks at both ends becomes equal to or lower than the operating temperature, and thereafter the inner power generating block continues discharging. Since the heat retention time of the power generation blocks at both ends may be short, the number of heat insulators can be reduced, and the thermal battery can be made smaller.

従来、発電ブロックのセル数は端も中央部も同じものが
用いられていた。そのため、並列構成の発電ブロックは
同じ割合で放電示進行し、両端の発電ブロックは温度低
下により活物質が残っているにもかかわらず放電不能と
なった。また、内側の発電ブロックも同じ割合で放電し
ているために、放電可能な温度状態にあるにもかかわら
ず、放電が早期に終了した。
Conventionally, power generation blocks had the same number of cells at both the ends and the center. As a result, the power generation blocks in the parallel configuration proceeded to discharge at the same rate, and the power generation blocks at both ends were unable to discharge due to temperature drop, even though active material remained. In addition, because the inner power generation block was also discharging at the same rate, the discharging ended early even though the temperature was such that it could be discharged.

一般の電池系においては、積層セル数の異なる、すなわ
ち電圧の異なる積層セルを並列に接続するということは
考えられないことである。しかしながら熱電池において
は、溶融塩を電解質に用いているために、活性化前の電
導性はほとんどなく、保存中に自己放電が起こることは
ない。また活性化時も負荷を端子に接続した状態で活性
化されるために、活性化時は常に外部にたいして放電杖
態にあり、内部の発電ブロック間での放電と充電による
自己放電は起こりにくい4′R態にある。すなわち、内
側の発電ブロックの間路電圧が両端の発電ブロックの放
電電圧以上であれば全く問題はない。
In a general battery system, it is unthinkable to connect stacked cells with different numbers of stacked cells, that is, stacked cells with different voltages in parallel. However, in thermal batteries, since molten salt is used as an electrolyte, there is almost no electrical conductivity before activation, and self-discharge does not occur during storage. In addition, since it is activated with the load connected to the terminal, it is always in a state of discharge to the outside during activation, and self-discharge due to discharging and charging between internal power generation blocks is unlikely to occur4. 'R state. That is, there is no problem at all as long as the voltage across the inner power generation block is equal to or higher than the discharge voltage of the power generation blocks at both ends.

しかし、積層セル数が少ない場合や放電電流が少ない場
合は、放電の初期において、内側の発電プロフクが両端
の発電ブロックの電流によって一時的に充電されること
がある。したがって、この場合はリチウム合金のような
充電可能な電極の使用が好ましい。
However, when the number of laminated cells is small or the discharge current is small, the inner power generation block may be temporarily charged by the current of the power generation blocks at both ends at the beginning of discharge. Therefore, the use of rechargeable electrodes such as lithium alloys is preferred in this case.

一般に内側の発電ブロックのセル数フセル以上について
、両端の発電ブロックのセル数を1セル増加させるのが
好ましい、しかし、二硫化鉄/リチウム合金系のような
充電可能な電極系を使用した場合は5セルについて1セ
ル増加させても問題は生じなかった。
In general, it is preferable to increase the number of cells in the power generation blocks at both ends by one cell for each cell number in the inner power generation block equal to or greater than the cell number in the inner power generation block.However, when using a rechargeable electrode system such as an iron disulfide/lithium alloy system, No problem occurred even when one cell was increased for every five cells.

実施例 以下、本発明を好適な実施例を用いて説明する。Example The present invention will be explained below using preferred embodiments.

第1図は複数の発電ブロックを電気的に並列に接続した
構成の熱電池の断面図である。1.2.3.4は複数個
のセルと発熱剤とを交互に積層した発電ブロックで、1
.4は両端の発電ブロック、2.3は内側の発電ブロッ
クである。両端の発電ブロックのセル数は内側の発電ブ
ロックのセル数より多く用いられ、各発電ブロックは互
いに電気的に並列に接続されている。5は正極側の接続
リード線、6は負極側の接続リード線である。配線を簡
略化するために、各発電ブロックは同極が対向するよう
に配置されている。7は発電ブロックの中心軸に設けた
導火薬で点火玉8の点火エネルギーを発電ブロック内の
発熱剤に伝えるものである。9は点火用の端子で、外部
電源より点火電流を流すことにより、点火玉8を発火さ
せることができる、  10.11、は電流を取り出す
ための正極端子および負極端子である。12は熱電池の
容器であり、その内部には熱電池を保温するための断熱
体13が充填されている。
FIG. 1 is a sectional view of a thermal battery having a configuration in which a plurality of power generation blocks are electrically connected in parallel. 1.2.3.4 is a power generation block in which multiple cells and exothermic agents are alternately stacked.
.. 4 is a power generation block at both ends, and 2.3 is an inner power generation block. The number of cells in the power generation blocks at both ends is greater than the number of cells in the power generation blocks on the inside, and each power generation block is electrically connected to each other in parallel. 5 is a connection lead wire on the positive electrode side, and 6 is a connection lead wire on the negative electrode side. To simplify wiring, each power generation block is arranged so that the same poles face each other. Reference numeral 7 denotes a fuse provided on the center axis of the power generation block, which transmits the ignition energy of the ignition ball 8 to the exothermic agent inside the power generation block. 9 is a terminal for ignition, by which the ignition ball 8 can be ignited by passing an ignition current from an external power source; 10.11 is a positive terminal and a negative terminal for taking out the current. 12 is a container for the thermal battery, and the inside thereof is filled with a heat insulator 13 for keeping the thermal battery warm.

第2図は発電ブロックに使用したセルと発熱剤の組合せ
を示した図である。14はセルで、正極活物質Fj15
、電解質層16、負極活物質層17の3層で構成されて
いる。1Bは発熱剤、19はセルと発熱剤を分離する金
属板である。
FIG. 2 is a diagram showing the combination of cells and exothermic agents used in the power generation block. 14 is a cell, positive electrode active material Fj15
, an electrolyte layer 16, and a negative electrode active material layer 17. 1B is a heat generating agent, and 19 is a metal plate separating the cell and the heat generating agent.

本発明の実施例として、直列に接続された円板状セルと
発熱剤から構成される発電ブロックを同一容器内に48
1積層した熱電池について説明する。
As an embodiment of the present invention, a power generation block consisting of a disc-shaped cell and a heat generating agent connected in series is housed in a container for 48 hours.
A single-layer thermal battery will be explained.

正極に二硫化鉄を、負極にリチウム−アルミニウム合金
を使用し、電解質層としてしiCl−KCI共晶塩とM
2Oの混合物を使用して直径50+w+nのセルを構成
5た。このセルの活物質放電容量は150A・秒である
Iron disulfide is used for the positive electrode, lithium-aluminum alloy is used for the negative electrode, and iCl-KCI eutectic salt and M are used as the electrolyte layer.
A cell of diameter 50+w+n was constructed using a mixture of 2O. The active material discharge capacity of this cell is 150 A·sec.

両端の発電ブロックは6セルの直列構成であり、内側の
発電ブロックは5セルの直列構成である。各発電ブロッ
クは同一容器内に積層するが、電気的には並列に接続さ
れている。実施例熱電池の形状は、外径5B++++n
、高さ70++uw、公称電圧は8.8Vテ容量は60
0A・秒である。
The power generation blocks at both ends have a 6-cell series configuration, and the inner power generation block has a 5-cell series configuration. Although the power generation blocks are stacked in the same container, they are electrically connected in parallel. The shape of the example thermal battery is an outer diameter of 5B++++n
, height 70++uw, nominal voltage 8.8V, capacity 60
It is 0A・sec.

比較例として、実施例と同じセルを使用し、全ての発電
ブロックを5セル直列とした従来構成の熱電池Aと、全
ての発電ブロックを6セル直列とした従来構成の熱電池
Bを作製した。比較例熱電池Aの形状は、外径58s+
m−高さ6511ml、公称電圧は8.Ovで容量は6
00A・秒である。比較例電池Bの形状は、外径58m
m、高さ751II+、公称電圧は9.6vで、容量は
同じ< 600A・秒である。使用したセル数の違い【
こより公称電圧と高さが異なっている。
As a comparative example, a thermal battery A with a conventional configuration in which all power generation blocks were connected in series with 5 cells and a thermal battery B with a conventional configuration in which all power generation blocks were connected in series with 6 cells were created using the same cells as in the example. . Comparative example thermal battery A has an outer diameter of 58s+
m-height 6511ml, nominal voltage 8. Ov has a capacity of 6
00A・sec. Comparative Example Battery B has an outer diameter of 58 m.
m, height 751II+, the nominal voltage is 9.6v, and the capacity is the same < 600A·s. Difference in the number of cells used [
This is why the nominal voltage and height are different.

環境温度−45℃において、公称電圧の85%の電圧ま
で40^の電流で放電したところ、本発明電池の放電時
間は155秒、比較例電池Aの放電時間は139秒、此
較#!jt!!Bの放電時間は141秒であった。この
ような放電時間の差は、比較例電池の両端の発電ブロッ
クの活物質利用率が温度低下により設計値の85%前後
しかないのに対し、実施例電池は100%放電したこと
による。容積効率で比較すると本発明電池は82vb/
Iとなり、比較例電池Aは72w11/1、比較例電池
Bは76w11/1であり、本発明電池が最も高い値を
示した。
When the battery of the present invention was discharged at a current of 40^ to a voltage of 85% of the nominal voltage at an environmental temperature of -45°C, the discharge time of the battery of the present invention was 155 seconds, and the discharge time of Comparative Example Battery A was 139 seconds. jt! ! The discharge time of B was 141 seconds. This difference in discharge time is due to the fact that the active material utilization rate of the power generation blocks at both ends of the comparative example battery was only around 85% of the designed value due to the temperature drop, whereas the example battery was 100% discharged. Comparing the volumetric efficiency, the battery of the present invention has a volumetric efficiency of 82vb/
Comparative Example Battery A had a value of 72w11/1, Comparative Example Battery B had a value of 76w11/1, and the battery of the present invention showed the highest value.

発明の効果 以上述べたように、本発明電池は断熱体の量を増加する
ことなく、高容量化に必要な並列構成の熱電池の長寿命
化が可能なものであり、作動温度の低下により放電が制
限されるような長時間放電タイプの熱電池において、よ
り優れた効果が発揮される。発電ブロック内の積層セル
数や、発電ブロックの並列数は必要とされる熱電池の電
圧と放電容量によって適宜変更可能である。従来熱電池
の放電電圧は発電ブロックの直列セル数に比例したのに
対し、本発明熱電池の放電電圧は各発電ブ0ツク内の直
列セル数の加重平均に比例する。従来熱電池の放電電圧
が素電池の電圧の整数倍で、等差数列であったのに対し
、本発明においては発電ブロックの並列数の変更により
、整数倍の中間の電圧も設計可能である。
Effects of the Invention As mentioned above, the battery of the present invention is capable of extending the life of thermal batteries in a parallel configuration, which is necessary for increasing capacity, without increasing the amount of heat insulating material, and by lowering the operating temperature. More excellent effects are exhibited in long-duration discharge type thermal batteries where discharge is limited. The number of laminated cells in a power generation block and the number of parallel power generation blocks can be changed as appropriate depending on the required voltage and discharge capacity of the thermal battery. While the discharge voltage of conventional thermal batteries is proportional to the number of cells in series in a power generation block, the discharge voltage of the thermal battery of the present invention is proportional to the weighted average of the number of cells in series in each power generation block. Conventionally, the discharge voltage of thermal batteries was an integer multiple of the voltage of the unit cell, which was an arithmetic progression, but in the present invention, by changing the number of power generation blocks in parallel, it is possible to design voltages in the middle of integer multiples. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複数の発電ブロックを電気的に並列に接続した
構成の熱電池の断面図である。第2図は発電ブロックに
使用したセルと発熱剤の組合せを示した図である。 1、4・・・両端の発電ブロック 2.3・・・内側の発電ブロック 10・・・・正極端子 11・・・・負極端子 14・・・・セル 18・・・・発熱剤 19・・・・金属板
FIG. 1 is a sectional view of a thermal battery having a configuration in which a plurality of power generation blocks are electrically connected in parallel. FIG. 2 is a diagram showing the combination of cells and exothermic agents used in the power generation block. 1, 4...Power generation blocks at both ends 2.3...Inner power generation block 10...Positive electrode terminal 11...Negative electrode terminal 14...Cell 18...Heat generating agent 19...・・Metal plate

Claims (1)

【特許請求の範囲】[Claims] 1、各々電気的に並列に接続された3組以上の発電ブロ
ックからなり、これらの発電ブロックを同一容器内に積
層した熱電池において、両端の発電ブロックの積層セル
数は内側の発電ブロックの積層セル数より多いことを特
徴とする熱電池。
1. In a thermal battery that consists of three or more sets of power generation blocks each electrically connected in parallel and these power generation blocks are stacked in the same container, the number of stacked cells of the power generation blocks at both ends is equal to the number of stacked cells of the inner power generation blocks. A thermal battery characterized by having more cells than cells.
JP28819689A 1989-11-06 1989-11-06 Thermal battery Expired - Lifetime JPH0782860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28819689A JPH0782860B2 (en) 1989-11-06 1989-11-06 Thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28819689A JPH0782860B2 (en) 1989-11-06 1989-11-06 Thermal battery

Publications (2)

Publication Number Publication Date
JPH03149756A true JPH03149756A (en) 1991-06-26
JPH0782860B2 JPH0782860B2 (en) 1995-09-06

Family

ID=17727056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28819689A Expired - Lifetime JPH0782860B2 (en) 1989-11-06 1989-11-06 Thermal battery

Country Status (1)

Country Link
JP (1) JPH0782860B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236592B1 (en) * 2019-11-11 2021-04-06 주식회사 비츠로셀 Stacked guide of bipolar electrode stack parallel type and reserve battery having the same
KR20210056749A (en) * 2019-11-11 2021-05-20 주식회사 비츠로셀 Bipolar electrode stack type reserve battery having output characteristic enhancement structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102236592B1 (en) * 2019-11-11 2021-04-06 주식회사 비츠로셀 Stacked guide of bipolar electrode stack parallel type and reserve battery having the same
KR20210056749A (en) * 2019-11-11 2021-05-20 주식회사 비츠로셀 Bipolar electrode stack type reserve battery having output characteristic enhancement structure

Also Published As

Publication number Publication date
JPH0782860B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US7399554B2 (en) Hybrid rechargeable battery having high power and high energy density lithium cells
US4680241A (en) Method for restoring the lost capacity of nickel batteries and batteries formed thereby
JP5372495B2 (en) Secondary battery protection circuit and secondary battery having the same
US20190027790A1 (en) Leadless starting accumulator battery, processing method and its use, particularly for combustion engines and motor vehicles
US10665891B2 (en) Lithium-sulfur thermal battery
TW201011957A (en) Lithium ion battery pack charging system and device including the same
US5770329A (en) Thermal battery and improved cell therefor
Stassen et al. Metallic lithium batteries for high power applications
US20020025471A1 (en) Electrially heated thermal battery
JP3777582B2 (en) Thermal battery
JP3468015B2 (en) Lithium secondary battery
US4851306A (en) Molten salt electrolyte battery cell with overcharge tolerance
Juergens et al. A new high-rate, fast-charge lead/acid battery
JPH03149756A (en) Thermal battery
JPH0740489B2 (en) Thermal battery
Ritchie Military applications of reserve batteries
Cairns Batteries, overview
JPH04133267A (en) Thermal cell
JP3163197B2 (en) Collective battery
US5011750A (en) High temperature rechargeable molten salt cell
JPH03147266A (en) Thermal battery
US6384571B1 (en) Method of recharging a pyrotechnically actuated thermal battery
JPH03119660A (en) Combined thermal battery
CN220527159U (en) Battery monomer, battery and power consumption device
Connor Batteries for energy storage