JPH0314961A - Torque detection device of transmission - Google Patents

Torque detection device of transmission

Info

Publication number
JPH0314961A
JPH0314961A JP14911489A JP14911489A JPH0314961A JP H0314961 A JPH0314961 A JP H0314961A JP 14911489 A JP14911489 A JP 14911489A JP 14911489 A JP14911489 A JP 14911489A JP H0314961 A JPH0314961 A JP H0314961A
Authority
JP
Japan
Prior art keywords
torque
transmission
driving
rotation
driving shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14911489A
Other languages
Japanese (ja)
Inventor
Daisaku Moriki
森木 大策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP14911489A priority Critical patent/JPH0314961A/en
Publication of JPH0314961A publication Critical patent/JPH0314961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To accurately detect driving torque irrespective of aging deterioration or the like in the driving shaft by zero(0)-compensating the driving torque value calculated under operation where no deriving force is not acted on the driving shaft when the driving torque is calculated by the torsional rigidity of the driving shaft. CONSTITUTION:A torque detecting device comprises two sets of rotation signal detection means 30, 31 to detect the rotation signal of driving shaft at different two positions of driving shaft of transmission, torque calculation means 35 to calculate the drive torque of the transmission based on the phase difference between rotational signals detected by these means 30, 31. This device is also provided with an operation condition detection means 36 to detect the operation condition where no driving force is applied to the driving shaft of transmission, a correction means 37 to correct the drive torque of the torque calculation mean 35 zero(0) so as to make zero the driving torque value to be calculated based on the phase difference between the rotation signals of the means 30, 31 in the operation conditions detected by an operation condition detection means 36.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、変速機の駆動軸に作用するトルクを検出する
ようにした,変速機におけるトルク検出装置の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a torque detection device for a transmission, which detects torque acting on a drive shaft of the transmission.

(従来の技術) 従来、例えば自動変速機では、各種の摩擦要素の締結力
が不足する場合は摩擦要素に滑りが生じ駆動トルクを良
好に伝達できず、一方、摩擦要素の締結力が高い場合は
変速ショックがでる等の欠点が生じる。
(Prior Art) Conventionally, for example, in an automatic transmission, when the engagement force of various friction elements is insufficient, the friction elements slip and drive torque cannot be transmitted well, whereas when the engagement force of the friction elements is high, However, there are disadvantages such as shift shock.

このため、昨今、摩擦要素を締結するライン圧を変速機
の駆動トルクに応じた値に制御するべく、従来のスロッ
トル弁開度等により駆動トルクを間接的に検出する構戊
に代えて、例えば特開昭62−224765号公報に開
示されるように、トルクセンサを用いて駆動トルクを直
接に検出する構成を採用することが知られている。
For this reason, in order to control the line pressure that engages the friction elements to a value that corresponds to the drive torque of the transmission, instead of the conventional structure that indirectly detects the drive torque using the throttle valve opening, for example, As disclosed in Japanese Unexamined Patent Publication No. 62-224765, it is known to employ a configuration in which a torque sensor is used to directly detect driving torque.

(発明が解決しようとする課題) そこで、例えば変速機の駆動トルクの検出につき、その
駆動軸のねじり剛性を利用したトルクセンサを用いるこ
とが考えられる。つまり、このセンサの構成は、変速機
の駆動軸の例えば前部及び後部に各々電磁ピックアップ
式又はフォトトランジスタを用いた2組の回転センサを
配置し、変速機の駆動軸に駆動トルクが作用している時
には、その駆動軸のねじり変化に起因して、検出した回
転信号の相互間に位相差が生じる特性を利用し、この位
相差の大小に応じて駆動トルクを直接に算出して検出す
る構威とする。
(Problems to be Solved by the Invention) Therefore, for example, for detecting the drive torque of a transmission, it is conceivable to use a torque sensor that utilizes the torsional rigidity of the drive shaft. In other words, the configuration of this sensor is such that two sets of rotation sensors using an electromagnetic pickup type or a phototransistor are placed, for example, at the front and rear of the drive shaft of the transmission, and drive torque acts on the drive shaft of the transmission. When the motor is running, it utilizes the characteristic that a phase difference occurs between the detected rotation signals due to torsional changes in the drive shaft, and directly calculates and detects the drive torque according to the magnitude of this phase difference. Structured.

しかるに、上記の如きトルクセンサを用いる場合には、
駆動軸の経年劣化等により同一値の駆動トルクの作用時
でも異なる位相差が生じて異なるトルク値を検出し、ラ
イン圧の制御が精度良く行い得ない等の欠点が生じる。
However, when using the above torque sensor,
Due to age-related deterioration of the drive shaft, different phase differences occur even when the same drive torque is applied, resulting in detection of different torque values, resulting in disadvantages such as the inability to accurately control the line pressure.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、変速機の駆動軸のねじり剛性を利用したトルクセ
ンサを用いる場合、駆動軸の経年劣化等に拘らず駆動ト
ルクを精度良く検出することにある。
The present invention has been made in view of the above, and its purpose is to accurately measure the drive torque regardless of age-related deterioration of the drive shaft when using a torque sensor that utilizes the torsional rigidity of the drive shaft of a transmission. The purpose is to detect.

(課題を解決するための手段) 以上の目的を達成するため、本発明では、二つの回転信
号間に生じる位相差が駆動軸の経年劣化等に応じて変化
しても、その算出する駆動トルクの零点を正しく補正す
ることとする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for calculating the drive torque even if the phase difference occurring between the two rotation signals changes due to age-related deterioration of the drive shaft. The zero point of is to be corrected correctly.

つまり、本発明の具体的な解決手段は、第1図に示すよ
うに、変速機における駆動軸の異なる二箇所で該駆動軸
の回転信号を検出する2組の回転信号検出手段30,3
1と、該2組の回転信号検出手段30.31で検出され
た回転信号の間の位相差に基いて変速機の駆動トルクを
算出するトルク算出手段35とを備えた変速機における
トルク検出装置を前提とする。そして、上記変速機の駆
動軸に駆動力が作用しない運転状態を検出する運転状態
検出手段36と、該運転状態検出手段36で検出した運
転状態のとき、上記2組の回転信号検出手段30.31
の回転信号の間の位相差に基いて算出する駆動トルク値
を零値にするよう、上記トルク算出手段35の駆動トル
クの零点を補正する補正手段37とを設ける構成として
いる。
In other words, the specific solution of the present invention, as shown in FIG.
1 and a torque calculation means 35 for calculating the drive torque of the transmission based on the phase difference between the rotation signals detected by the two sets of rotation signal detection means 30 and 31. Assuming that. and an operating state detecting means 36 for detecting an operating state in which no driving force is applied to the drive shaft of the transmission; and when the operating state detected by the operating state detecting means 36, the two sets of rotation signal detecting means 30. 31
A correction means 37 is provided for correcting the zero point of the drive torque of the torque calculation means 35 so that the drive torque value calculated based on the phase difference between the rotation signals of is set to zero.

(作用) 以上の構成により、本発明では、検出する二つの回転信
号間に生じる位相差は、同一値の駆動トルクの作用時で
も駆動軸の経年劣化等に応じて異なるが、駆動軸に駆動
力が作用しない運転状態で算出する駆動トルク値が零値
になるよう零点が補正されるので、駆動軸の経年劣化等
に拘らず、変速機の駆動トルクが精度良く算出される。
(Function) With the above configuration, in the present invention, the phase difference that occurs between the two rotation signals to be detected differs depending on the aging of the drive shaft even when the same value of drive torque is applied. Since the zero point is corrected so that the drive torque value calculated in an operating state where no force is applied is zero, the drive torque of the transmission can be calculated with high accuracy regardless of age-related deterioration of the drive shaft.

(発明の効果) 以上説明したように、本発明の変速機におけるトルク検
出装置によれば、駆動軸のねじり剛性を利用して駆動ト
ルクを算出する場合、駆動軸に駆動力が作用しない運転
状態にて算出する駆動トルク値が零値になるよう零点補
正したので、駆動軸の経年劣化等に拘らず、簡易な構成
でもって駆動トルクを算出しつつ、この算出する駆動ト
ルク値の精度を高く維持できる。
(Effects of the Invention) As explained above, according to the torque detection device for the transmission of the present invention, when calculating the drive torque using the torsional rigidity of the drive shaft, the driving force is not applied to the drive shaft. Since the zero point correction has been made so that the drive torque value calculated in is zero, it is possible to calculate the drive torque with a simple configuration and increase the accuracy of the calculated drive torque value, regardless of age-related deterioration of the drive shaft. Can be maintained.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は前進4段,後退1段の自動変速機を示し、1は
エンジン出力軸、2は、該エンジン出力軸1に連結され
たボンブ2aと、ステータ2bと、夕一ビン2cとを備
えたトルクコンバータであって、ステータ2bは、該ス
テータ2bをタービン2cと逆方向に回転させないため
のワンウエイクラッチ3を介してケース4に固定可能に
設けられている。上記トルクコンバータ2のタービン2
Cには、駆動軸としてのタービンシャフト2dが接続さ
れ、該タービンシャフト2dには、変速歯車装置が連結
されている。
FIG. 2 shows an automatic transmission with 4 forward speeds and 1 reverse speed, where 1 is an engine output shaft, 2 is a bomb 2a connected to the engine output shaft 1, a stator 2b, and a transmission bin 2c. The stator 2b is fixed to the case 4 via a one-way clutch 3 for preventing the stator 2b from rotating in the opposite direction to the turbine 2c. Turbine 2 of the torque converter 2
A turbine shaft 2d serving as a drive shaft is connected to C, and a speed change gear device is connected to the turbine shaft 2d.

上記変速歯車装置5は、内部にラビニョオ型遊星歯車機
構7を備え、該遊星歯車機構7は、前後に配置した小径
サンギャ8および大径サンギャ9と、該小径サンギャ8
に噛合するショートピニオンギャ10と、上記大径サン
ギャ9およびショートピニオンギャ10に噛合するロン
グピニオンギャ11と、該ロングピニオンギャ11に噛
合するリングギャ12とから或る。上記小径サンギャ8
は、その後方に配置したフォワードクラッチ15及び該
クラッチ15に直列に接続され上記タービンシャフト2
dの逆駆動を阻止する第1ワンウエイクラッチ16、並
びにこれらに並列に接続せしめたコーストクラッチ17
を介して上記トルクコンバータ2の出力軸2dに連結さ
れている。また、大径サンギャ9は、その斜め後方に配
置した2−4ブレーキ18および該2−4ブレーキ18
の後方に配置したリバースクラッチ19を介して上記ト
ルクコンバータ2の出力軸2dに連結されている。さら
に、上記ロングビニオンギャ11(こは、その後部側キ
ャリア20を介して該ロングビニオンギャ11を固定す
るロー&リバースブレーキ21と、ロングビニオンギャ
11のエンジン出力軸1と同方向の回転を許容する第2
ワンウエイクラッチ22とが並列に接続されていると共
に、その前部側は、3−4クラッチ24を介して上記ト
ルクコンバータ2の出力軸2dに連結されている。
The speed change gear device 5 is equipped with a Ravigneau type planetary gear mechanism 7 inside, and the planetary gear mechanism 7 includes a small-diameter sangya 8 and a large-diameter sangya 9 arranged in the front and rear, and the small-diameter sangya 8.
A short pinion gear 10 meshes with the large diameter sun gear 9 and the short pinion gear 10, a long pinion gear 11 meshes with the long pinion gear 11, and a ring gear 12 meshes with the long pinion gear 11. Above small path Sangya 8
is connected to the forward clutch 15 disposed behind it and the turbine shaft 2 connected in series to the clutch 15.
a first one-way clutch 16 that prevents reverse drive of d; and a coast clutch 17 connected in parallel with these clutches.
It is connected to the output shaft 2d of the torque converter 2 via. In addition, the large-diameter Sangya 9 also includes a 2-4 brake 18 and a 2-4 brake 18 arranged diagonally rearward thereof.
The torque converter 2 is connected to the output shaft 2d of the torque converter 2 via a reverse clutch 19 arranged at the rear of the torque converter 2. Furthermore, the long pinion gear 11 (hereinafter referred to as a low & reverse brake 21 that fixes the long pinion gear 11 via its rear side carrier 20) and a low and reverse brake 21 that fixes the long pinion gear 11 through its rear side carrier 20, and a 2nd to allow rotation
A one-way clutch 22 is connected in parallel, and its front side is connected to the output shaft 2d of the torque converter 2 via a 3-4 clutch 24.

加えて、リングギャ12は、その前方に配置したアウト
プットギャ25に連結されている。尚、図中、27はエ
ンジン出力軸1とタービンシャフト2dとを直結するロ
ックアップクラッチ、28は中間軸29を介してエンジ
ン出力軸1により駆動されるオイルポンプである。
In addition, the ring gear 12 is connected to an output gear 25 located in front of it. In the figure, 27 is a lock-up clutch that directly connects the engine output shaft 1 and the turbine shaft 2d, and 28 is an oil pump driven by the engine output shaft 1 via an intermediate shaft 29.

而して、変速機の駆動軸としてのタービンシャフト2d
には、その中央部分よりも少し前側部分、及び後端部の
リバースクラッチ19の配設部分において、該タービン
シャフト2dの回転信号を検出する回転信号検出手段と
しての第1及び第2の回転センサ30,31が配置され
ている、該各回転センサ30,31は電磁ピックアップ
式であって、タービンシャフト2dと一体回転する回転
円板30a(第2の回転センサ31のものは図示せず)
を有し、該回転円板30aは外周に等間隔で多数形威し
た凸部を有していて、該各凸部の回転に応じて誘導起電
力を生じるものである、そして、該各回転センサ30,
31で検出する回転信号は、内部にCPU等を有するコ
ントローラ32に入力されている。
Therefore, the turbine shaft 2d as a drive shaft of the transmission
, first and second rotation sensors are provided as rotation signal detection means for detecting rotation signals of the turbine shaft 2d at a portion slightly forward of the center portion and at a rear end portion where the reverse clutch 19 is disposed. The rotation sensors 30 and 31 in which the rotation sensors 30 and 31 are arranged are of an electromagnetic pickup type, and include a rotating disk 30a that rotates integrally with the turbine shaft 2d (the second rotation sensor 31 is not shown).
The rotating disk 30a has a plurality of convex portions arranged at equal intervals on the outer periphery, and an induced electromotive force is generated according to the rotation of each of the convex portions. sensor 30,
The rotation signal detected by 31 is input to a controller 32 which has a CPU etc. inside.

上記コントローラ32は、自動変速機の上記クラッチ等
の摩擦要素の締結及び開放制御用の油圧回路38に備え
る複数個の電磁弁SQLを制御する機能を有すると共に
、エンジンの潤滑オイルの温度を検出する油温センサ3
3と、自動変速機の各?レンジ位置、例えばP(駐車)
位置、N(ニュートラル〉位置、D(走行)位置を検出
するインヒビタスイッチ34と、及びエンジンのアイド
ル運転状態を検出するアイドルスイッチ35との各検出
信号が人力されている。
The controller 32 has a function of controlling a plurality of electromagnetic valves SQL provided in a hydraulic circuit 38 for controlling engagement and disengagement of friction elements such as the clutch of the automatic transmission, and also detects the temperature of lubricating oil of the engine. Oil temperature sensor 3
3 and each automatic transmission? Range position, e.g. P (parking)
Detection signals for an inhibitor switch 34 that detects the position, N (neutral) position, and D (driving) position, and an idle switch 35 that detects the idle operating state of the engine are manually generated.

次に、上記コントローラ32によるライン圧の制御を第
3図の制御フローに基いて説明する。
Next, control of the line pressure by the controller 32 will be explained based on the control flow shown in FIG. 3.

スタートして、ステップS1で初期設定(後述する遅れ
時間の平均値口のr1゛−0の設定、及び計測回数nの
n−0の設定)をした後、ステップS2でタービンシャ
フト前側に配置した第1の回転センサ30の第4図(a
)に示す回転信号のうちパルスの立上り時t■を検出す
ると共に、ステップS3でシャフト後側に配置した第2
の回転センサ31の同図(b)に示す回転信号のパルス
立上り時t1を検出する。そして、ステップS4で上記
検出した時間t■と時間t1との時間差tnを算出し、
エンジントルクを吸収するためにステップS5で以上の
動作をn回行うことを繰返す。
After starting, initial settings were made in step S1 (setting r1'-0 for the average value of the delay time and setting n-0 for the number of measurements n, which will be described later), and then placing it on the front side of the turbine shaft in step S2. FIG. 4 (a) of the first rotation sensor 30
) is detected at the rising edge of the pulse t■, and at the same time, the second
The pulse rising time t1 of the rotation signal of the rotation sensor 31 shown in FIG. 3B is detected. Then, in step S4, calculate the time difference tn between the detected time t■ and the time t1,
In order to absorb the engine torque, the above operation is repeated n times in step S5.

その後は、ステップS6でn回の平均遅れ時間゜口゜を
算出した後、ステップS7でタービンシャフトに作用す
る駆動トルクTを下記式 T = a 1  ●T丁十b に基いて近似的に算出し、この求めた駆動トルクTをス
テップS8でメモリに記憶する。
Thereafter, in step S6, the average delay time ゜口゜ for n times is calculated, and in step S7, the driving torque T acting on the turbine shaft is approximately calculated based on the following formula: Then, this determined driving torque T is stored in the memory in step S8.

しかる後、ステップS9以降で上記駆動トルクTの算出
式の零点補正を行う。つまり、ステップS9で先ず零点
補正の条件成立時か否かを判別する。この判別は、エン
ジンの潤滑オイルの温度がエンジン温間時に相当する設
定温度値以上であり、且つ自動変速機のレンジ位置がP
又はNレンジ位置にある場合であってエンジンのアイド
ル運転状態のときを零点補正の条件成立時として行う。
Thereafter, from step S9 onwards, the zero point correction of the calculation formula for the drive torque T is performed. That is, in step S9, it is first determined whether the conditions for zero point correction are satisfied. This determination is made when the temperature of the engine lubricating oil is equal to or higher than the set temperature value corresponding to when the engine is warm, and when the range position of the automatic transmission is P.
Alternatively, when the engine is in the N range position and the engine is in an idling operating state, the zero point correction condition is satisfied.

そして、この条件戊立時には、ステップSlfiでメモ
リに記憶した駆動トルクTの値をT−0に変更した後、
ステップSl+で上記駆動トルクTの算出式を、第5図
に破線で示すように、この条件成立時にal  ・tr
l +b=0になるよう、定数bをb+αに書き代える
ことで算出式の零点補正を行って、ステップS1に戻る
Then, when this condition is established, after changing the value of the driving torque T stored in the memory in step Slfi to T-0,
In step Sl+, the formula for calculating the driving torque T is calculated as shown by the broken line in FIG.
The constant b is replaced with b+α so that l+b=0, so that the zero point of the calculation formula is corrected, and the process returns to step S1.

また、第6図は自動変速機のライン圧制御を示し、ステ
ップSA+で上記メモリから駆動トルクTを読み込んだ
後、ステップSA2で第7図に示す計測トルクーデュー
ティ率特性に基いて、上記読み込んだ駆動トルクTに対
応するデューティ率を算出して、ステップSA2でこの
算出したデューティ率で電磁弁をデューティ制御して、
ステップSAIに戻ることを繰返す。
Moreover, FIG. 6 shows line pressure control of an automatic transmission, and after reading the driving torque T from the memory in step SA+, the above-mentioned reading is performed in step SA2 based on the measured torque-duty ratio characteristics shown in FIG. The duty rate corresponding to the drive torque T is calculated, and the solenoid valve is duty-controlled at the calculated duty rate in step SA2.
Returning to step SAI is repeated.

よって、第3図の制御フローのステップSl〜S7によ
り、2組の回転センサ30,31で検出された回転信号
の間の遅れ時間tn(位相差)に基いて変速機の駆動ト
ルクTを算出するようにしたトルク算出手段35を構成
している。また、ステップS9により、変速機のタービ
ンシャフト2dに駆動力が作用しない運転状態を検出す
る運転状態検出手段36を構成していると共に、ステッ
プSl+により、上記運転状態検出手段36で検出した
運転状態のとき、2組の回転センサ30,31の回転信
号の間の位相差tnに基いて算出する駆動トルクTの値
が零値になるよう、上記トルク算出手段35における駆
動トルクの算出式の零点を定数bの書き代えにより補正
するようにした補正手段37を構成している。
Therefore, in steps Sl to S7 of the control flow shown in FIG. 3, the drive torque T of the transmission is calculated based on the delay time tn (phase difference) between the rotation signals detected by the two sets of rotation sensors 30 and 31. The torque calculation means 35 is configured to do the following. Further, in step S9, an operating state detecting means 36 is configured to detect an operating state in which no driving force is applied to the turbine shaft 2d of the transmission, and in step Sl+, the operating state detected by the operating state detecting means 36 is configured. In this case, the zero point of the drive torque calculation formula in the torque calculation means 35 is set so that the value of the drive torque T calculated based on the phase difference tn between the rotation signals of the two sets of rotation sensors 30 and 31 becomes a zero value. A correction means 37 is configured to correct by rewriting the constant b.

したがって、上記実施例においては、タービンシャフト
2dの経年劣化時には、2組の回転センサ30,31の
回転信号間の位相差tnは大きくなるが、駆動トルクT
の算出式の定数bが書き代えられて、タービンシャフト
2dに駆動力が作用しない運転状態では、上記算出式で
算出される駆動トルクTが零値になるよう零点補正され
るので、算出される駆動トルクTの値はタービンシャフ
ト2dの経年劣化に拘らず精度良いものになる。その結
果、トルクセンサを2組の回転センサ30,31により
簡易に構威しつつ、自動変速機のライン圧も精度良く調
整されて、変速時の摩擦要素の滑りや変速ショックを招
くことなく、自動変速を良好に行うことができる。
Therefore, in the above embodiment, when the turbine shaft 2d deteriorates over time, the phase difference tn between the rotation signals of the two sets of rotation sensors 30 and 31 increases, but the drive torque T
The constant b in the calculation formula is rewritten, and in an operating state where no driving force is applied to the turbine shaft 2d, the zero point is corrected so that the drive torque T calculated by the above calculation formula becomes a zero value. The value of the driving torque T has good accuracy regardless of age-related deterioration of the turbine shaft 2d. As a result, the torque sensor can be easily configured with two sets of rotation sensors 30 and 31, and the line pressure of the automatic transmission can be adjusted with high precision, without causing slippage of friction elements or shift shock during gear shifts. Automatic gear shifting can be performed well.

尚、上記実施例では自動変速機に適用した場合について
説明したが、本発明は手動の変速機に対しても同様に適
用できるのは勿論である。
Incidentally, in the above embodiment, a case where the present invention is applied to an automatic transmission has been described, but it goes without saying that the present invention can be similarly applied to a manual transmission.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図ないし第7図は本発明の実施例を示し、第2図は
自動変速機のスケルトン図、第3図は駆動トルクを算出
するフローチャート図、第4図は2組の回転信号間の位
相差を示す図、第5図は零点補正の説明図、第6図はラ
イン圧制御を示すフローチャート図、第7図は計測トル
クーデューティ率特性を示す図である。 30.31・・・回転センサ(回転信号検出手段)、3
2・・・コントローラ、34・・・インヒビタスイッチ
、35・・・トルク算出手段、36・・・運転状態検出
手段、37・・・補正手段。 ほか2名 第4 図 t口 千エワ榎紅vT間 第5 図
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 7 show embodiments of the present invention, FIG. 2 is a skeleton diagram of an automatic transmission, FIG. 3 is a flowchart for calculating the driving torque, and FIG. 4 is a diagram showing the relationship between two sets of rotation signals. FIG. 5 is a diagram showing the phase difference, FIG. 5 is an explanatory diagram of zero point correction, FIG. 6 is a flowchart diagram showing line pressure control, and FIG. 7 is a diagram showing measured torque-duty rate characteristics. 30.31... Rotation sensor (rotation signal detection means), 3
2... Controller, 34... Inhibitor switch, 35... Torque calculation means, 36... Operating state detection means, 37... Correction means. 2 others Fig. 4 T Chiewa Enoki v T Fig. 5

Claims (1)

【特許請求の範囲】[Claims] (1)変速機における駆動軸の異なる二箇所で該駆動軸
の回転信号を検出する2組の回転信号検出手段と、該2
組の回転信号検出手段で検出された回転信号の間の位相
差に基いて変速機の駆動トルクを算出するトルク算出手
段とを備えると共に、上記変速機の駆動軸に駆動力が作
用しない運転状態を検出する運転状態検出手段と、該運
転状態検出手段で検出した運転状態のとき、上記2組の
回転信号検出手段の回転信号の間の位相差に基いて算出
する駆動トルク値を零値にするよう、上記トルク算出手
段の駆動トルクの零点を補正する補正手段とを備えたこ
とを特徴とする変速機におけるトルク検出装置。
(1) Two sets of rotation signal detection means for detecting rotation signals of the drive shaft at two different locations on the drive shaft in the transmission;
and a torque calculation means for calculating the drive torque of the transmission based on the phase difference between the rotation signals detected by the rotation signal detection means of the set, and an operating state in which no driving force acts on the drive shaft of the transmission. and a driving torque value calculated based on the phase difference between the rotation signals of the two sets of rotation signal detection means to a zero value when the operation state detected by the operation state detection means is detected. A torque detection device for a transmission, comprising: a correction means for correcting the zero point of the driving torque of the torque calculation means.
JP14911489A 1989-06-12 1989-06-12 Torque detection device of transmission Pending JPH0314961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14911489A JPH0314961A (en) 1989-06-12 1989-06-12 Torque detection device of transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14911489A JPH0314961A (en) 1989-06-12 1989-06-12 Torque detection device of transmission

Publications (1)

Publication Number Publication Date
JPH0314961A true JPH0314961A (en) 1991-01-23

Family

ID=15468021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14911489A Pending JPH0314961A (en) 1989-06-12 1989-06-12 Torque detection device of transmission

Country Status (1)

Country Link
JP (1) JPH0314961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091590A1 (en) * 2002-04-25 2003-11-06 Toyoda Koki Kabushiki Kaisha Method for regulating offset of current detection signal in driving power transmission controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091590A1 (en) * 2002-04-25 2003-11-06 Toyoda Koki Kabushiki Kaisha Method for regulating offset of current detection signal in driving power transmission controller
US7182712B2 (en) 2002-04-25 2007-02-27 Toyoda Koki Kabushiki Kaisha Method for regulating offset of current detection signal in driving power transmission controller

Similar Documents

Publication Publication Date Title
US5292288A (en) Speed-changing hydraulic oil pressure control apparatus for an automatic transmission of an automobile
JP4365563B2 (en) Method and apparatus for clutch slip operation and / or control
JP3155027B2 (en) Transmission control device for automatic transmission
JP2004286182A (en) Automatic transmission, and method for setting stand-by hydraulic pressure value for automatic transmission
JPH0469448A (en) Device for detecting input rotational speed of transmission
JPH0314961A (en) Torque detection device of transmission
JP3189216B2 (en) Hydraulic pressure control device for automatic transmission
JPH0415357A (en) Controller for automatic transmission
JP4055566B2 (en) Control device for automatic transmission
JPH0517979B2 (en)
JP3567503B2 (en) Shift shock reduction device for automatic transmission
JP3037465B2 (en) Hydraulic control device for shifting of automatic transmission
JP2969307B2 (en) Control device for automatic transmission
JP5047738B2 (en) Control device for automatic transmission for vehicle
JP3578610B2 (en) Control device for automatic transmission for vehicles
JP3680641B2 (en) Shift control device for automatic transmission
JP3348594B2 (en) Transmission control device for continuously variable transmission
JPH02245568A (en) Control device for automatic transmission
JPH09133203A (en) Method and device for detecting number of revolution of turbine of automatic transmission
JP2873614B2 (en) Device for learning characteristics of fluid transmission in transmission with fluid transmission
JP4314769B2 (en) Slip detection device for drive mechanism
JP3621241B2 (en) Shift control device for automatic transmission
JP3191235B2 (en) Shifting operation period detection device for automatic transmission
JP2832404B2 (en) Transmission control device for automatic transmission
JPH09105455A (en) Controller of automatic transmission