JPH03149491A - Resin rubber compound hose assembly - Google Patents

Resin rubber compound hose assembly

Info

Publication number
JPH03149491A
JPH03149491A JP1289750A JP28975089A JPH03149491A JP H03149491 A JPH03149491 A JP H03149491A JP 1289750 A JP1289750 A JP 1289750A JP 28975089 A JP28975089 A JP 28975089A JP H03149491 A JPH03149491 A JP H03149491A
Authority
JP
Japan
Prior art keywords
nipple
layer
inner tube
resin
hose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1289750A
Other languages
Japanese (ja)
Other versions
JP2785978B2 (en
Inventor
Akira Inami
明 稲見
Akira Shioda
明 塩田
Yoshitomi Mizumoto
水本 善富
Fumihiro Iwami
岩見 文博
Noriyoshi Ooyama
大山 教良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirin Rubber Ind Co Ltd
Original Assignee
Nichirin Rubber Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirin Rubber Ind Co Ltd filed Critical Nichirin Rubber Ind Co Ltd
Priority to JP1289750A priority Critical patent/JP2785978B2/en
Publication of JPH03149491A publication Critical patent/JPH03149491A/en
Application granted granted Critical
Publication of JP2785978B2 publication Critical patent/JP2785978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance heat resistant sealability by fitting a thermoplastic resin of an inner tube internal layer of a part making contact with a nipple of a coupler fitting to the surface of the nipple by way of heating it. CONSTITUTION:A resin rubber compound hose 1 consisting of an inner tube 13, a reinforcing layer 12 in its outer periphery and an outer surface rubber layer 11 in its periphery and additionally, an inner tube inner layer 14 of the inner tube 13 made of thermoplastic resin and an inner tube outer layer 15 made of rubber is prepared. Subsequently, a nipple 3 of a coupling fitting is inserted in the inner periphery o the edge part of the compound hose 1 and simultaneously, a sleeve 4 is externally inserted in the edge part outer periphery and cauked and fastened. Additionally, the thermoplastic resin of the inner tube inner layer 14 at the part making contact with the nipple 3 is heated and adhered to the surface of the nipple 3 and the coupling fitting is connected to the edge part of this hose 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

∪産業上の利川分野】 本発明は、樹脂ゴム複合ホースアッセンブリに関する。 さらに詳しくは、カークーラ用をはじめ、種々の産業分
野で使用される冷媒を輸送するためのホースアッセンブ
リに関する。
∪Industrial Field of Icheon] The present invention relates to a resin-rubber composite hose assembly. More specifically, the present invention relates to a hose assembly for transporting refrigerant used in various industrial fields including car coolers.

【従来の技術】[Conventional technology]

近年、オゾン層破壊の原因といわれる冷媒の排出規制強
化により、冷媒輸送用ホースの内管の材質を従来のゴム
から冷媒透過量が少ないポリアミド樹脂などの熱可塑性
樹脂に変えたり、あるいは冷媒透過量の少ない熱可塑性
樹脂をファーにしてその外周にゴムを配し、繊維補強層
をほどこし、その外面にゴムを被覆した構造のホー′ス
(以下、樹脂ゴム複合ホースという)を使用するように
なってきている。 しかるに、カークーラ用の冷媒輸送用ホースが装着され
る自動車のエンジンルーム内には種々の装備が増え冷却
風の循環が悪化し、環境温度が130℃を越えるのが普
通になってきた。そのため従来工法のように単に継手金
具をカシメてホースに取付けるのみでは、継手部から内
部流体が辱短時間で漏洩してしまう。 そこで、種々の漏洩防止手段が従来より検討されてきた
。 たとえば、従来例Iとして、継手金具のニップル部の表
面にゴム状物を塗布する方法が検討された。 また、従来例■としては特開昭63−180795号公
報に記載されたものがあり、これは、ニップルにあらか
じめ接着剤を塗布し締結したあと、150℃で12時間
熱処理することによってニップルと最内層樹脂層を化学
的に接着するようにしたものである。 さらに、従来例■としてゴムホースに関する#I開昭5
8−124788号公報に記載されたものがあり、これ
はいったんカシメ締結をしたあと、ホース端部を加温し
、初期カシメ径より小径で再カシメするものである。 [発明が解決しようとする課題] ところが従来例1では、ゴム状物の塗布作業が非常に煩
雑であり多くの作業工数がかかるので、コスト高になる
という、実用上看過しえない問題がある。 また従来例■では、長時間の熱処理でホースが硬化して
しまい、柔軟性が大きく損なわれて、自動車の狭いエン
ジンルーム内への配管が事実上不可能となってしまうと
いう問題がある。また作業時間とコストがかさむという
欠点もある。 さらに従来例■では、再カシメ時の位置決めが難しく、
少しでもズしているとかえって漏洩を起しやすいという
問題がある。また作業工数が多いのでコスト高になると
いう欠点もある。 そして、従来例■の方法を樹脂ゴム複合ホースに適用し
たばあいは、やはり耐熱シール性は改善できなかった。 なぜならば、最内層の樹脂の剛性は通常、ゴムに比べ1
0〜30倍程度大きく、しかも前記樹脂層の内径に対し
ニップル外径の方が小さいにも拘らずカシメ締結で無理
にニップル外周にそわずためニップル外周面への形状追
従性が悪く微細な空隙、シワ、傷などが発生するからで
ある。 以上のどと(、従来の技術では、低コストで、耐熱シー
ル性が高く、しかも柔軟性に富むホースを提供すること
はできなかったのである。 しかるに、冷媒輸送用ホースの柔軟性を確保し、耐熱シ
ール性を向上することは、冷媒配管の機能向上、環境汚
染の減少に不可欠であるので、その改善が強く希求され
ている。 そこでご本発明は、柔軟性があり、耐熱シール性に優れ
、しかも低コストで得られる樹脂ゴム複合ホースアッセ
ンブリを提供することを目的とする。 【課通を解決するための手段] 本発明の樹脂ゴム複合ホースアッセンブリは、(ω内管
と、その外周の補強層と、その外周の外面ゴム層とから
なり、前記内管が熱可塑性樹脂製の内管内層とゴム製の
内管外層とからなる樹脂ゴム複合ホースと、(b)ニッ
プルとスリーブとを備え、前記複合ホースの端部内周に
ニップルを挿入するとともに、前記端部外周にスリーブ
を外挿してカシメ締結し、ついで前記ニップルに接する
部分の内管内層の熱可塑性樹脂を加熱してニップルの表
面に密着させて結合された継手金具とからなることを特
徴とする特 v作 用] 本発明者らは、従来の最内層が樹脂チューブであるホー
スの耐熱シール性低下の原因を探ってみたところ、つぎ
の推論が得られた。 まず、シール洩れは最内層樹脂層とニップル外周面間の
隙間から発生する。ニップルとスリーブの間へホースを
挿入し、カシメ締結する際、最内層樹脂層が変形を受け
るが、カシメ装置の締結爪のバランスの不揃、ニップル
の同心性や平滑性の不足、離脱防止用浅溝などの影響で
圧縮変形が不均一になることがある。一方、最内層樹脂
の剛性は通常、ゴムに比べ10〜30倍程度太きく、し
かも、前記樹脂層の内径に対しニップル外径が小さいに
も拘らず締結で無理にニップル外周にそわずためニップ
ル外周面への形状追従性が悪く内側に微細な空隙、シワ
、傷などが発生することがあり、ニップルとの密着性が
低下す条という問題がある。これに加え使用中の高温と
低温の繰り返しによる締付面圧の低下で内部流体圧を支
えきれなくなって、使用中に漏洩が生じるものと考えら
れる。 したがって、シール洩れを防止するには、締結状態での
内部流体圧力をシールするための締結面圧を保ち、最内
層樹脂層とニップルとが密着性が高いことが必要とされ
るのである。 しかるに本発明においては、ニップルに接した最内層樹
脂層を締結状態でその融点±30℃に加温すると樹脂が
軟化または溶融して接合部の残留応力の作用により、樹
脂がニップルの外面形状に追従して嵌入されたニップル
と樹脂の間の微細な空隙、歪、傷などを埋めてしまい、
高い密着(融接)状態が得られるようになる。しかも、
締結による圧縮応力が相まって作用するので、高いシー
ル性を発揮することができ、長期間高温環境下で使用し
てもシール性が低下することがない。 【実施例1 以下、本発明を詳細に説明する。 第1図は本発明の樹脂ゴム複合ホースアッセンブリの一
実施例における要部断面図、第2図は本発明におけるホ
ースの断面図、第3図は本発明の樹脂ゴム複合ホースア
ッセンブリの一部断面外観図、第4図は気密試験の要領
を示す説明図である。 第3図において、(1)は樹脂ゴム複合ホース(以下、
ホースという) 、(2)は継手金具で、ニップル3)
とスリーブ(4)とユニオンナットC9とからなる。 ホース(1)は、いわゆる樹脂ゴム複合ホースと呼ばれ
番もので、第2図に示されるように、内管0とその外周
の繊維を編組した補強層02)とその外周の外面ゴム層
aDとからなり、前記内管0は熱可塑性樹脂製の内管内
層0弔(以下、最内層樹脂層ということがある)とゴム
製の内管外層のとからなる。ホース(1)と継手金具■
の締結は、周知の手段で行われる。すなわちニブプルa
と最内層樹脂層との間には接着剤などは介さず、ホース
(1)!D外側に嵌めたスリーブ(4)(外WJ)を半
径方向にかしめる手段がとられる。 つぎにニップルc3)に接した部分の最内層樹脂圓をそ
の融点±30℃の範囲内に加温する。ニップル3)を電
熱器などで加温し、伝導熱で最内層樹脂を加温する方法
が好適に用いられる。最後に過溶融解および融解度のバ
ラツキ防止をして形状固定するため、−定時間後空気ま
たは水などにより冷却する。なお、加温時間および温度
は樹脂の厚み、補強糸の種類、内径、加温方法および金
具の種類などによって適性値が異なるので、あらかじめ
実験によって適性値をきめなければならないが、時間が
長ずざると樹脂の流動を惹起したりsllll補強糸を
劣化させるなどかえってシール洩れを助長することにな
る。加熱には、熱媒を継手ニップルに与える工法以外に
高周波、赤外線、誘電加熱などの方法も用いることがで
きる。 以下、実施例を説明する。 実施例1〜3 ホース(1)は第2図に示す構成であり、内管内層■の
肉厚は0−311115内管内届旧の肉厚はl−5一口
、外面ゴム層01)の肉厚は1.3m5である。最内層
樹脂圓の材質は、融点が215℃のポリオレフィン変性
ポリアミド樹脂である。継手金具(2)のスリーブ(4
)はアルミニウム製であり、ニップ)しく3)の外径は
12a會、内径は811全長ハ5rIIlllテあり、
スリーブ4)に挿入される部分の外周には抜止め用の3
本の環状の浅溝08(第1図参照)が形成されている。 前記ホース(1)の両端に継手金具(2をそれぞれ取付
けて、ホースアッセンブリを構成した。その全長は50
0−  である。 第1図に示されるように、継手金具■のニップルaとス
リーブ(4)の間にホース(1)の端部を挿入し、スリ
ーブ(4)の所定の位at: (C)を所定のかしめ径
にカシメ機でカシメた。つぎに、金属製熱媒体(小型ヒ
ーター)をニップル3)内に挿入し第1表に示す時間、
温度で加熱し、その浸水で冷却し、実施例1〜3を得た
。第1図中の(14a)は、ニップル(3)からの伝導
熱により溶融して二、ツプル■の外表面に密着した熱可
塑性樹脂を示す。溶融した熱可塑性樹脂(14a)は抜
止め用の浅溝(ト)内にもはまり込んでいる。 比較例1 比較例1として、加熱温度を最内層樹脂■の融点215
℃より40℃低い175℃としたほかは実施例1と同様
のものを用意した。 比較例2 比較例2として、加熱温度を最内層樹脂層■の融点21
5℃より40℃高い255℃としたほかは実施例1と同
様のものを用意した。 比較例3 比較例3として実施例1〜3と同じホース(1)に継手
金具(りを締結し、加熱なしのものを用意した。 上記実施例1〜3および比較例1〜3について、それぞ
れ試料を4本用意し、初期気密試験と長期気密試験を行
った。 初期気密試験は、試料のホースアッセンブリ(A)を水
槽(2m内につけ、一方の継手金具(2)に盲栓のに取
りつけ、他方の継手金具(2からN2ガスを30kgf
/c+s2で充填し、5分間放置し、ガスの漏洩を調べ
ることにより行った。漏洩の発生しなかったものにO印
を付した。なおのは圧力計、(至)は圧力調整弁である
。水槽(211の水温は25℃±10であった。 長期気密試験は、14a Cの恒温槽に試料を入れて熱
老化させた後、毎日一定時刻に取り出し、4時間冷却し
た後、前記初期気密試験と同じ要領で試験し、洩れが発
生しないかどうかを確認した。漏れが発生しなかった通
算日数を第1表に示す。 【以下余白1 第1表に示すように、初期気密試験の結果は★施例1〜
3および比較例1〜3のいずれも合格であったが、長期
気密試験では本発明と比較例との間に耐熱シール性の顕
著な差があることがわかった。すなわち、実施例1〜3
はいずれも20〜30日以上にわたって洩れが発生しな
かったが、比較例1は6〜14日しかもたなかった。 これは加熱温度が最内層樹脂側の融点215℃より30
℃以上低いと前記樹脂がニブブルの表面に充分密着しな
いことによると考えられる。 また比較例2は、長期気密試験は合格したが、ニップル
3)の先端部に接する最内層樹脂側の肉厚が薄くなり、
ニブブル■とスリーブ(4)の間から変色した熱可塑性
樹脂■かにじみ出てきたので、総合判定は不合格とした
。比較例3は加熱せずにカシメのみで締結したものであ
るが、これの洩れの発生しない日数が1〜3日であるの
と比べると、本発明の耐熱シール性が格段に優れている
のがわかる。 以上のとおり、本発明は高い耐熱シール性を長期間発揮
しうろことがわかる。そして本発明のホースは柔軟性を
も優れているものであった。 [発明の効果] 本発明のホースアッセンブリは、耐熱シール性が高く、
しかも柔軟性があり、また工法が簡単なので低コストで
製造することができる。
In recent years, due to stricter regulations on the emission of refrigerants, which are said to be the cause of ozone layer depletion, the material of the inner tube of refrigerant transport hoses has been changed from conventional rubber to thermoplastic resins such as polyamide resin, which have a lower amount of refrigerant permeation. The use of hoses (hereinafter referred to as "resin-rubber composite hoses") that consists of a thermoplastic resin fur with a low amount of heat, rubber on the outer periphery, a fiber-reinforced layer, and rubber coating on the outer surface has begun to be used. It's coming. However, in the engine room of an automobile, where the refrigerant transport hose for the car cooler is attached, various equipment has increased, and the circulation of cooling air has deteriorated, and it has become common for the environmental temperature to exceed 130°C. Therefore, if the fitting is simply caulked and attached to the hose as in the conventional construction method, the internal fluid will leak from the fitting within a short period of time. Therefore, various leakage prevention means have been studied. For example, as Conventional Example I, a method of applying a rubber-like material to the surface of the nipple portion of a fitting was investigated. Furthermore, as a conventional example (2), there is one described in Japanese Patent Application Laid-Open No. 63-180795, in which adhesive is applied to the nipple in advance and the nipple is fastened, and then heat treated at 150°C for 12 hours. The inner resin layer is chemically bonded. Furthermore, as a conventional example ■, #I Kaisho 5 related to rubber hoses
There is a method described in Japanese Patent No. 8-124788, in which the hose end is once caulked and then the hose end is heated and re-caulked with a smaller diameter than the initial caulking diameter. [Problems to be Solved by the Invention] However, in Conventional Example 1, the process of applying the rubber material is very complicated and requires many man-hours, resulting in high costs, which cannot be overlooked in practice. . Furthermore, in Conventional Example (2), the hose hardens due to long-term heat treatment, resulting in a significant loss of flexibility, making it virtually impossible to install piping into the narrow engine room of an automobile. It also has the disadvantage of increasing work time and cost. Furthermore, in conventional example ■, it is difficult to position when re-caulking.
There is a problem in that if there is even a slight leakage, leakage is more likely to occur. Another drawback is that it requires a lot of man-hours, resulting in high costs. When the method of Conventional Example (3) was applied to a resin-rubber composite hose, the heat-resistant sealability could not be improved. This is because the stiffness of the innermost layer of resin is usually 1
Although it is about 0 to 30 times larger and the outer diameter of the nipple is smaller than the inner diameter of the resin layer, it is not forced to conform to the outer circumference of the nipple during caulking, resulting in poor shape followability to the outer circumferential surface of the nipple, resulting in fine gaps. This is because wrinkles, scratches, etc. may occur. Conventional technology has not been able to provide hoses that are low cost, have high heat sealing properties, and are highly flexible. Improving heat-resistant sealing properties is essential for improving the functionality of refrigerant piping and reducing environmental pollution, so improvement is strongly desired. The object of the present invention is to provide a resin-rubber composite hose assembly that can be obtained at low cost. A resin-rubber composite hose consisting of a reinforcing layer and an outer rubber layer on its outer periphery, the inner tube having an inner tube inner layer made of thermoplastic resin and an inner tube outer layer made of rubber, and (b) a nipple and a sleeve. In preparation, a nipple is inserted into the inner periphery of the end of the composite hose, and a sleeve is inserted and crimped onto the outer periphery of the end, and the thermoplastic resin in the inner layer of the inner tube in contact with the nipple is heated to form the nipple. The present inventors investigated the cause of the deterioration in the heat-resistant sealing properties of conventional hoses whose innermost layer is a resin tube. However, the following inference was obtained. First, seal leakage occurs from the gap between the innermost resin layer and the outer circumferential surface of the nipple. When inserting a hose between the nipple and sleeve and crimping it, However, the compressive deformation may become uneven due to the effects of uneven balance of the fastening claws of the crimping device, lack of concentricity or smoothness of the nipple, shallow grooves to prevent separation. The rigidity of the inner resin layer is usually about 10 to 30 times greater than that of rubber, and even though the outer diameter of the nipple is small compared to the inner diameter of the resin layer, it does not forcefully align with the outer circumference of the nipple during fastening, so it does not move toward the outer circumferential surface of the nipple. It is difficult to follow the shape of the nipple, and fine voids, wrinkles, scratches, etc. may occur on the inside, and there is a problem that the adhesion with the nipple decreases.In addition, the tightness due to repeated high and low temperatures during use. It is thought that the decrease in surface pressure will no longer be able to support the internal fluid pressure, resulting in leakage during use.Therefore, in order to prevent seal leakage, it is necessary to install a fastening surface that seals the internal fluid pressure in the fastened state. It is necessary to maintain the pressure and to have high adhesion between the innermost resin layer and the nipple. However, in the present invention, the innermost resin layer in contact with the nipple is heated to its melting point ±30°C in a fastened state. When heated, the resin softens or melts, and due to the residual stress at the joint, the resin follows the external shape of the nipple and fills in minute gaps, distortions, and scratches between the inserted nipple and the resin.
High adhesion (fusion welding) can be achieved. Moreover,
Since compressive stress due to fastening acts together, high sealing performance can be achieved, and the sealing performance will not deteriorate even when used in a high temperature environment for a long period of time. Example 1 The present invention will be explained in detail below. FIG. 1 is a cross-sectional view of essential parts of an embodiment of the resin-rubber composite hose assembly of the present invention, FIG. 2 is a cross-sectional view of the hose of the present invention, and FIG. 3 is a partial cross-sectional view of the resin-rubber composite hose assembly of the present invention. The external view and FIG. 4 are explanatory diagrams showing the procedure for the airtightness test. In Figure 3, (1) is a resin-rubber composite hose (hereinafter referred to as
(referred to as hose), (2) is a fitting, and nipple (3) is a fitting.
It consists of a sleeve (4) and a union nut C9. The hose (1) is a so-called resin-rubber composite hose, and as shown in Fig. 2, it consists of an inner tube 0, a reinforcing layer 02) made of braided fibers on its outer periphery, and an outer rubber layer aD on its outer periphery. The inner tube 0 consists of an inner tube inner layer made of thermoplastic resin (hereinafter sometimes referred to as the innermost resin layer) and an outer layer of the inner tube made of rubber. Hose (1) and fittings■
The conclusion of the contract is performed by well-known means. That is, nib pull a
There is no adhesive between the innermost resin layer and the hose (1)! Measures are taken to caulk the sleeve (4) (outer WJ) fitted on the outside D in the radial direction. Next, the innermost resin ring in the portion in contact with the nipple c3) is heated to within a range of ±30° C. of its melting point. A method is preferably used in which the nipple 3) is heated with an electric heater or the like, and the innermost layer resin is heated by conductive heat. Finally, in order to prevent over-melting and variation in melting degree and to fix the shape, the material is cooled with air or water after a certain period of time. The appropriate values for the heating time and temperature will vary depending on the thickness of the resin, the type of reinforcing thread, the inner diameter, the heating method, the type of metal fittings, etc., so the appropriate values must be determined in advance by experiment, but it does not take too long. The colander will cause the resin to flow and deteriorate the reinforcing thread, which will actually encourage seal leakage. In addition to the method of applying a heating medium to the joint nipple, methods such as high frequency, infrared rays, and dielectric heating can also be used for heating. Examples will be described below. Examples 1 to 3 The hose (1) has the configuration shown in Fig. 2, and the wall thickness of the inner layer of the inner tube is 0-311115, the wall thickness of the inner layer of the inner tube is l-5, and the thickness of the outer rubber layer The thickness is 1.3m5. The material of the innermost layer resin circle is a polyolefin-modified polyamide resin having a melting point of 215°C. Sleeve (4) of fitting (2)
) is made of aluminum, the outer diameter of the nip) is 12a, the inner diameter is 811, the total length is 5rIIlllte,
There is a 3 mark on the outer periphery of the part inserted into the sleeve 4) to prevent it from coming out.
A book annular shallow groove 08 (see FIG. 1) is formed. A hose assembly was constructed by attaching fittings (2) to both ends of the hose (1). Its total length was 50 mm.
It is 0-. As shown in FIG. I crimped it with a crimping machine to the crimping diameter. Next, insert a metal heat medium (small heater) into the nipple 3) for the time shown in Table 1.
Examples 1 to 3 were obtained by heating at a high temperature and cooling by immersion in water. (14a) in FIG. 1 shows a thermoplastic resin that has been melted by the conductive heat from the nipple (3) and is in close contact with the outer surface of the nipple (2). The molten thermoplastic resin (14a) also fits into the shallow groove (G) for preventing removal. Comparative Example 1 As Comparative Example 1, the heating temperature was set to 215, the melting point of the innermost layer resin
The same material as in Example 1 was prepared except that the temperature was 175°C, which is 40°C lower than the temperature. Comparative Example 2 As Comparative Example 2, the heating temperature was set to the melting point of the innermost resin layer 21
The same product as in Example 1 was prepared except that the temperature was 255°C, which was 40°C higher than 5°C. Comparative Example 3 As Comparative Example 3, a joint fitting was fastened to the same hose (1) as in Examples 1 to 3, and a hose without heating was prepared. Four samples were prepared, and an initial airtightness test and a long-term airtightness test were conducted.In the initial airtightness test, the sample hose assembly (A) was placed in a water tank (within 2 m), and one of the fittings (2) was attached to a blind stopper. , from the other joint fitting (2 to 30 kgf of N2 gas)
/c+s2, left for 5 minutes, and checked for gas leakage. Items in which no leakage occurred were marked with an O mark. Note is the pressure gauge, and (to) is the pressure regulating valve. The water temperature in the water tank (211 was 25°C ± 10°C.) In the long-term airtightness test, the sample was placed in a 14a C constant temperature bath for heat aging, taken out at a certain time every day, cooled for 4 hours, and then tested for the initial airtightness. The test was conducted in the same manner as the test to confirm whether or not leakage occurred.The total number of days without leakage is shown in Table 1. [Margin below 1] As shown in Table 1, the results of the initial airtightness test ★Example 1~
3 and Comparative Examples 1 to 3 passed, but it was found that there was a significant difference in heat-resistant sealability between the present invention and the comparative examples in the long-term airtight test. That is, Examples 1 to 3
No leakage occurred for more than 20 to 30 days, but Comparative Example 1 lasted only 6 to 14 days. This means that the heating temperature is 30℃ higher than the melting point of the innermost layer resin, which is 215℃.
It is thought that this is because the resin does not adhere sufficiently to the surface of the nibble when the temperature is lower than ℃. In addition, although Comparative Example 2 passed the long-term airtightness test, the wall thickness of the innermost resin layer in contact with the tip of the nipple 3) was thinner.
Since the discolored thermoplastic resin (■) oozed out from between the nibble (■) and the sleeve (4), the overall evaluation was ``fail''. Comparative Example 3 was fastened only by caulking without heating, and compared to this, the number of days without leakage was 1 to 3 days, which shows that the heat-resistant sealing properties of the present invention are significantly superior. I understand. As described above, it can be seen that the present invention exhibits high heat-resistant sealing properties for a long period of time. The hose of the present invention also had excellent flexibility. [Effects of the Invention] The hose assembly of the present invention has high heat-resistant sealing properties,
Moreover, it is flexible and can be manufactured at low cost due to its simple construction method.

【図面の簡単な説明】[Brief explanation of the drawing]

太1図は本発明の樹脂ゴム複合ホースアッセンブリの一
実施例における要部断面図、第2図は本発明におけるホ
ースの断面図、第3図は本発明の樹脂ゴム複合ホースア
ッセンブリの一部断面外観図、第4図は気密試験の要領
を示す説明図である。 (図面の主要符号) (1):ホース (z:継手金具 0):ニップル 4)ニスリーブ 01):外面ゴム層 02):補強層 (13:内 管 vo:内管内層 (8:内管外層 呵 牙1 図 川 − 1■−−゜″
Figure 1 is a cross-sectional view of essential parts of an embodiment of the resin-rubber composite hose assembly of the present invention, Figure 2 is a cross-sectional view of the hose of the present invention, and Figure 3 is a partial cross-section of the resin-rubber composite hose assembly of the present invention. The external view and FIG. 4 are explanatory diagrams showing the procedure for the airtightness test. (Main symbols in the drawing) (1): Hose (z: Fitting 0): Nipple 4) Nice sleeve 01): Outer rubber layer 02): Reinforcement layer (13: Inner tube vo: Inner tube inner layer (8: Inner tube outer layer)呵ガ1 ツ川 − 1■−−゜″

Claims (1)

【特許請求の範囲】 1(a)内管と、その外周の補強層と、その外周の外面
ゴム層とからなり、前記内管が熱可塑性樹脂製の内管内
層とゴム製の内管外層とからなる樹脂ゴム複合ホースと
、 (b)ニップルとスリーブとを備え、前記複合ホースの
端部内周にニップルを挿入するとともに前記端部外周に
スリーブを外挿してカシメ締結し、ついで前記ニップル
に接する部分の内管内層の熱可塑性樹脂を加熱してニッ
プルの表面に密着させて結合させた継手金具と からなる樹脂ゴム複合ホースアッセンブリ。
[Scope of Claims] 1(a) An inner tube, a reinforcing layer on its outer periphery, and an outer rubber layer on its outer periphery, wherein the inner tube has an inner tube inner layer made of thermoplastic resin and an inner tube outer layer made of rubber. (b) comprising a nipple and a sleeve, the nipple is inserted into the inner periphery of the end of the composite hose, the sleeve is inserted outside the outer periphery of the end, and the sleeve is caulked; A resin-rubber composite hose assembly consisting of a fitting that is made by heating the thermoplastic resin of the inner layer of the inner tube in the contacting part to bring it into close contact with the nipple surface.
JP1289750A 1989-11-06 1989-11-06 Manufacturing method of resin-rubber composite hose assembly Expired - Fee Related JP2785978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289750A JP2785978B2 (en) 1989-11-06 1989-11-06 Manufacturing method of resin-rubber composite hose assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289750A JP2785978B2 (en) 1989-11-06 1989-11-06 Manufacturing method of resin-rubber composite hose assembly

Publications (2)

Publication Number Publication Date
JPH03149491A true JPH03149491A (en) 1991-06-26
JP2785978B2 JP2785978B2 (en) 1998-08-13

Family

ID=17747278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289750A Expired - Fee Related JP2785978B2 (en) 1989-11-06 1989-11-06 Manufacturing method of resin-rubber composite hose assembly

Country Status (1)

Country Link
JP (1) JP2785978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113404942A (en) * 2021-05-14 2021-09-17 陕西飞机工业有限责任公司 Flexible pipeline resistant to high-temperature and high-salt environment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236086A (en) * 1989-03-07 1990-09-18 Yokohama Rubber Co Ltd:The Join of hose and joint fitting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236086A (en) * 1989-03-07 1990-09-18 Yokohama Rubber Co Ltd:The Join of hose and joint fitting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113404942A (en) * 2021-05-14 2021-09-17 陕西飞机工业有限责任公司 Flexible pipeline resistant to high-temperature and high-salt environment

Also Published As

Publication number Publication date
JP2785978B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
CN101213395B (en) Connection structure for different kinds of metal tubes
US4611832A (en) Hose joint
KR100295143B1 (en) Hose with sticking layer and connecting structure thereof
JP3367335B2 (en) Flare type fittings
US3516690A (en) Welded coupling construction with bonded liner
JP3449021B2 (en) Connection structure at end of filler hose and filler hose used therefor
JPH03149491A (en) Resin rubber compound hose assembly
US3630550A (en) Pipe coupling
US20090174180A1 (en) Hose joint with adhesive
CA1047064A (en) Heat insulated pipe arrangement and method of assembling components of this arrangement
JP2003042366A (en) Method of connecting nipple with flexible hose
JP3725673B2 (en) Hose assembly
JP2001260233A (en) Vulcanization bonding method for rubber and metal
JPH1163336A (en) Reinforced rubber flexible joint
JP2011179596A (en) Seal packing material for flanged pipe joint and connection method of pipe
JP2003287160A (en) Lined pipe member and its joint structure
JPH04506247A (en) Interference mating roller with liquid seal
JPS63302037A (en) Hose
JP3562095B2 (en) Hose with valve
JPH0821578A (en) Hose end connecting structure, elastic hose for it, and its connecting method
JPH09100959A (en) Resin hose with fixing layer, and connected structure body
JPH05141577A (en) Connecting method for pipe member
JPH0237347Y2 (en)
JPH0338404Y2 (en)
JPH0469482A (en) Tube end corrosionproof type coupling

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees