JPH0314942B2 - - Google Patents

Info

Publication number
JPH0314942B2
JPH0314942B2 JP3785283A JP3785283A JPH0314942B2 JP H0314942 B2 JPH0314942 B2 JP H0314942B2 JP 3785283 A JP3785283 A JP 3785283A JP 3785283 A JP3785283 A JP 3785283A JP H0314942 B2 JPH0314942 B2 JP H0314942B2
Authority
JP
Japan
Prior art keywords
fibers
water
weight
minutes
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3785283A
Other languages
Japanese (ja)
Other versions
JPS59163480A (en
Inventor
Kyoshi Aoki
Junji Sano
Ikuo Tachibana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP3785283A priority Critical patent/JPS59163480A/en
Publication of JPS59163480A publication Critical patent/JPS59163480A/en
Publication of JPH0314942B2 publication Critical patent/JPH0314942B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリエステル繊維又はアクリル系繊
維などの合成繊維の改質処理方法に関するもので
ある。 従来よりこれ等の合成繊維及びその繊維構造物
を、アクリル酸、アクリルアミド、ポリアルキレ
ングリコールジアクリレート、或いはそれらの誘
導体からなるビニル系親水性改質剤を含む処理液
で処理し、繊維上でそれ等のビニル系改質剤を重
合させて繊維に吸水性、制電性、防汚性を付与す
る事はよく知られている。 これ等従来の処理方法は、通常パツドドライ
法、パツドスチーム法或は浸漬法等の手段がとら
れているが、パツデイング法では繊維上での堅牢
な付着が得られず、又浸漬法の如きは水溶液中に
ラジカル化剤を添加するため、繊維表面への凝集
沈着する前に改質剤が水層で重合を開始し、液中
に多量のホモポリマーを生起して、繊維表面への
付着率を著しく低下させる傾向にあり、これ等の
方法では洗濯耐久性にすぐれた恒久的な制電性、
吸水性、防汚性を得ることは困難である。 最近ポリアルキレングリコールジアクリレート
の骨格中にビスフエノール系の芳香族基を導入し
て疎水性繊維に対する親和性を改善したものが提
案されている(特開昭52−150392号公報)。斯る
改質剤を用いることによつて、前記問題はある程
度解消可能となつたが、ポリエステル維維及びア
クリル系繊維については十分耐久性のある処理効
果が得難く、さらに処理工程中或は洗濯中に改質
剤が着色して、被処理物の白度や色相の鮮明性を
損い、製品品質を著しく低下せしめるという思わ
ぬ欠点もあつて殆んど実用化されるに至つていな
い。 一方、エポキシ化合物による繊維加工も広く知
られており、天然繊維及び合成繊維に対するエポ
キシ化合物による加工が広く知られていることが
「繊維加工」(vol.19、No.3×1967)「エポキシ化
合物による繊維加工(1)」に紹介されている。しか
しながら、これに引続き発表された第2、第3報
を見ても、セルローズとエポキシ化合物との反応
について主として報告されており、更に羊毛とエ
ポキシ化合物との反応について言及されている。
合成繊維については、アミノ基を含有するナイロ
ンとエポキシ化合物とが反応することが報告され
ている。しかしここでもポリエステル及びアクリ
ル系繊維をエポキシ化合物で処理して、繊維の制
電性は、吸水性及び防汚性を付与することについ
ては全く触れられていない。 本発明者等は、従来の合成繊維の有する欠点を
改善すべく鋭意研究を行なつた結果、本発明を完
成したものである。 本発明の目的は、耐久性のある制電性、吸水性
及び防汚性を有するポリエステル繊維及びアクリ
ル系繊維等の合成繊維を提供するにある。他の目
的は、耐久性のある制電性、吸水性、防汚性を有
する合成繊維が工業的容易に得られる、新しい加
工方法を提供するにある。 本発明方法は、ポリエステル繊維及び/又はア
クリル系繊維に一般式(1) (式中Rは−CH2CH2O−であり、nは1〜15の
整数である。) で示されるエポキシ化合物と一般式(2)及び/又は
(3) で示されるエポキシ化合物との混合物及び酸性触
媒とを界面活性剤によつて、水に乳化分散させた
乳化液を施与し、乾燥した後、熱処理することを
特徴とする合成繊維の改質処理方法にある。 本発明に適用するポリエステル繊維は、芳香族
ジカルボン酸と炭素数2〜10のアルキレングリコ
ールとの縮合物であり、通常はポリエチレンテレ
フタレートである。勿論これに少量の脂肪族ジカ
ルボン酸等を共重合させてもよい。又アクリル系
繊維は、通常アクリロニトリルを85重量%以上含
有するもので、これにメチルアクリレート、メチ
ルメタクリレート或はアリルスルホン酸ソーダ等
を共重合させたものでよい。 これ等の繊維は、フイラメント、ステープルフ
アイバー、トウ、糸、編物、不職布等の適宜の形
状を含むものとする。 本発明に適用するエポキシ化合物は、一般式(1) で示されるものであり、Rは−CH2CH2O−を示
し、nは1〜15で好ましくは2〜8である。ここ
でnが1未満では水に対する溶解性が低下するば
かりでなく、一般式(2)、(3)との混合化合物として
も、水に対する親和性が低くなるため吸水性、制
電性及び防汚性を十分に向上することが不可能で
ある。又nが15を越えると繊維に対する親和性の
低下により、洗濯耐久性が低下するので避けなけ
ればならない。 また上記化合物と併用する一般式(2) で示されるエポキシ化合物は、疎水性が強く、合
成繊維に対して疎水親和を示し、繊維表面に対し
強い固着を示すことから、一般式(1)で示される化
合物との混合化合物を合成繊維に施与し、熱処理
することによつて、吸水性、制電性、防汚性で優
れた耐久性のある性能を付与することができる。 一般式(3) で示されるエポキシ化合物と一般式(1)で示される
化合物との混合化合物を合成繊維に施与するに当
つても、一般式(2)と同様に該化合物は疎水性であ
り、合成繊維に対して疎水性親和を有することか
ら、耐久性を有する固着剤として優れた化合物で
あり、一般式(1)に示す親水性の強い化合物との混
合化合物を該合成繊維に施与し、熱処理すること
によつて、耐久性のある、吸水性、制電性、防汚
性に優れた特性を示す。 本発明におけるエポキシ化合物の混合比率は、
一般式(1)+(2)並びに(1)+(3)において15:85〜85:
15の範囲が好ましい。但し(1)式中nが8以上の時
15:85〜75:25、7以下の時75:25〜85:15が好
ましい。一般式(1)が15:85以下の時、(2)式並びに
(3)式で示される化合物の親水性が低く、吸水性の
低下を招き、好ましくない。又一般式(1)が85:15
を越える時、(1)式の親水性が大きくなり、性能の
向上は得られるけれど、繰返し洗濯によりエポキ
シ化合物の脱落が起り、性能の耐久性が低下する
ため好ましくない。 エポキシ化合物の繊維に対する付与量は、通常
1重量%以上、好ましくは2〜10重量%、更に好
ましくは3〜8重量%である。 本発明に適用する酸性触媒は、金属塩が好まし
く、特に硼弗化金属塩がよく、例えば硼弗化亜
鉛、硼弗化マグネシウムが挙げられる。 本発明に適用する非イオン活性剤は、ポリオキ
シアルキレングリコール−アルキルエーテル、ポ
リオキシアルキレングリコール−アルキルフエニ
ルエーテル、ポリオキシアルキレングリコール−
アルキルエステル等であり、これ等の示すHLB
値は10〜20の範囲であり、使用に当つての適した
HLBは11〜16であり、更に好ましくは12〜15で
ある。これ等のHLB値は単独或は低HLB、高
HLBの2種以上の混合化合物でもつて調製して
もよい。 本発明におけるエポキシ化合物の乳化において
使用する乳化剤は、エポキシ化合物に対し、10〜
80重量%である。 エポキシ化合物を含有する乳化水溶液中のエポ
キシ化合物の濃度は、通常1〜12重量%、好まし
くは2〜10重量%である。また該乳化水溶液中の
酸性触媒の量は通常0.3〜5重量%、好ましくは
0.5〜3重量%である。本発明方法に使用する乳
化水溶液は触媒を含有するにも拘らず、安定性に
優れているため、工業生産上極めて取扱い易い。 合成繊維に対する前記乳化水溶液の付与は、通
常常温で行なう。付与方法は特に限定されない
が、パツド法、噴霧法(スプレー法)、塗布法等
のいずれでもよい。 エポキシ化合物を付与した合成繊維は、次いで
乾燥後熱処理を行う。この場合エポキシ化合物を
付与した後、直ちに熱処理を行ない、乾燥と熱処
理を同一工程で行つてもよい。乾燥は風乾でもよ
いが、通常50〜120℃、1〜30分間行なう。熱処
理は通常乾熱で80℃以上、好ましくは乾熱100〜
220℃で1〜20分間行なう。 熱処理を終えた合成繊維は、温水又は水で洗浄
し、40℃の温風乾燥を行なう。本発明方法により
得られた合成繊維は繊維重量に対して通常エポキ
シ化合物が1〜10重量%、好ましくは2〜8重量
%付着している。本発明で得られた合成繊維は、
優れた制電性、吸水性及び防汚性を有しており、
しかも繰返し洗濯に耐え得る優れた耐久性をも具
備するものであるばかりでなく、従来法における
着色、風合の低下もない高品質のものである。 以下実施例によつて本発明を詳述する。 尚、実施例中に示した、耐久性、制電性、吸水
性、防汚性の評価方法並びに耐久性評価の為の防
汚性の洗濯方法は以下の通りである。 Γ帯電圧(V) 京大化研式ロータリースターチツクスター
(興亜商会製)を用い、綿金巾3号を摩擦布と
して20±2℃、40±2%RHで測定した。 Γ半減期(sec) スタチツクオネストメーター(宍戸商会製)
を用い、印加電圧10KV、20±2℃、40±2%
RHの条件で測定した。 Γ吸水性(cm/10min) JIS L−1079B法(バイレツク法)にて測定
した。 Γ洗濯堅牢度: JIS L−0844法により実施した。 Γ洗濯方法: 中性洗濯(商品名ピンキー、ライオン油脂
(株))0.1%を含む40℃の洗浄液中で、家庭洗濯
機(全自動洗濯機FP−578型、(株)日立製作所)
を用いて洗濯した。洗濯40℃×10分−すすぎ室
温×3分×2回−脱水の操作を1サイクルと
し、これを5回繰返した。 又、本明細書中、付着率(%)とは、改質剤
付与量(浸漬法では、浴中の全改質剤量、スプ
レー法及びパツデイング法では処理液濃度×絞
り率)をA、改質剤の被処理物への付着量をB
とした場合、B/A×100で示される項である。 Γ摩擦堅牢度 JIS L−0849(型) Γ防汚性 口紅、マシン油、マヨネーズの汚れを付着さ
せ上記洗濯方法により、1回洗濯後の汚れの除
去状態を〇(除去性良好)、×(除去性不良)で
判定した。 また各実施例において使用したエポキシ化合物
は以下の通り。 実施例 1 ポリエステル織物(75d/36f、タフタ)を下記
に示す組成の乳化分散溶液に常温で浸漬し、絞り
率100%になる様に搾液後、100℃で5分間乾燥
し、次いで150℃で5分間乾熱処理した後、40℃
の温水で1分間洗浄後、40℃の温風乾燥機で乾
燥、20℃、40%RHの恒温室に24時間放置後物性
の評価を行ない第1表に示した。 乳化分散溶液組成 D化合物 2.5重量部 I化合物 2.5 〃 触媒Zn(BF42 1.0 〃 ノニルフエニル・ポリエチレングリコールエー
テル 2.5 〃 水 89.5 〃
The present invention relates to a method for modifying synthetic fibers such as polyester fibers or acrylic fibers. Conventionally, these synthetic fibers and their fiber structures have been treated with a treatment solution containing a vinyl-based hydrophilic modifier made of acrylic acid, acrylamide, polyalkylene glycol diacrylate, or a derivative thereof. It is well known that polymerization of vinyl modifiers such as those used to impart water absorbency, antistatic properties, and antifouling properties to fibers is possible. These conventional treatment methods usually include a padding dry method, padding steam method, or dipping method, but the padding method does not provide a strong adhesion on the fibers, and the dipping method does not require aqueous solution. Because a radicalizing agent is added to the solution, the modifier starts polymerizing in the water layer before it coagulates and deposits on the fiber surface, creating a large amount of homopolymer in the liquid and reducing the rate of adhesion to the fiber surface. However, these methods cannot provide permanent antistatic properties with excellent washing durability.
It is difficult to obtain water absorbency and stain resistance. Recently, a polyalkylene glycol diacrylate has been proposed in which a bisphenol-based aromatic group is introduced into the skeleton to improve its affinity for hydrophobic fibers (Japanese Patent Application Laid-Open No. 150392/1982). By using such modifiers, it has become possible to solve the above problems to some extent, but it is difficult to obtain sufficiently durable treatment effects for polyester fibers and acrylic fibers, and furthermore, it is difficult to obtain a sufficiently durable treatment effect for polyester fibers and acrylic fibers, and furthermore, it is difficult to obtain a sufficiently durable treatment effect for polyester fibers and acrylic fibers. It has the unforeseen drawback of coloring the modifier inside, impairing the whiteness and sharpness of the hue of the processed material, and significantly reducing product quality, so it has hardly been put into practical use. . On the other hand, fiber processing using epoxy compounds is also widely known, and the processing of natural fibers and synthetic fibers using epoxy compounds is widely known. It is introduced in ``Fiber processing (1)''. However, the second and third reports that were published subsequently mainly report on the reaction between cellulose and epoxy compounds, and also mention the reaction between wool and epoxy compounds.
Regarding synthetic fibers, it has been reported that nylon containing amino groups reacts with epoxy compounds. However, even here, there is no mention of treating polyester and acrylic fibers with an epoxy compound to impart antistatic properties, water absorption properties, and antifouling properties to the fibers. The present inventors completed the present invention as a result of intensive research aimed at improving the drawbacks of conventional synthetic fibers. An object of the present invention is to provide synthetic fibers such as polyester fibers and acrylic fibers that have durable antistatic properties, water absorption properties, and antifouling properties. Another object is to provide a new processing method that allows industrially easy production of synthetic fibers that have durable antistatic properties, water absorption properties, and antifouling properties. In the method of the present invention, polyester fibers and/or acrylic fibers have the general formula (1). (In the formula, R is -CH 2 CH 2 O-, and n is an integer of 1 to 15.) and the general formula (2) and/or
(3) A modification treatment for synthetic fibers, characterized by applying an emulsion obtained by emulsifying and dispersing a mixture of an epoxy compound represented by the formula and an acidic catalyst in water using a surfactant, drying the mixture, and then heat-treating the mixture. It's in the method. The polyester fiber applied to the present invention is a condensate of an aromatic dicarboxylic acid and an alkylene glycol having 2 to 10 carbon atoms, and is usually polyethylene terephthalate. Of course, a small amount of aliphatic dicarboxylic acid or the like may be copolymerized with this. Acrylic fibers usually contain 85% by weight or more of acrylonitrile, and may be copolymerized with methyl acrylate, methyl methacrylate, sodium allylsulfonate, or the like. These fibers include appropriate shapes such as filaments, staple fibers, tows, threads, knitted fabrics, and nonwoven fabrics. The epoxy compound applied to the present invention has the general formula (1) R represents -CH 2 CH 2 O-, and n is 1 to 15, preferably 2 to 8. Here, if n is less than 1, not only the solubility in water will decrease, but also the affinity for water will decrease even when mixed with general formulas (2) and (3), resulting in improved water absorption, antistatic properties, and antistatic properties. It is impossible to sufficiently improve stain resistance. In addition, if n exceeds 15, the affinity for fibers will decrease and the washing durability will decrease, so it must be avoided. General formula (2) used in combination with the above compounds The epoxy compound represented by formula (1) has strong hydrophobicity, shows hydrophobic affinity for synthetic fibers, and exhibits strong adhesion to the fiber surface. By applying and heat-treating, it is possible to impart excellent and durable performance in water absorption, antistatic properties, and antifouling properties. General formula (3) When applying a mixed compound of the epoxy compound represented by the formula (1) and the compound represented by the general formula (1) to synthetic fibers, the compound is hydrophobic as in the case of the general formula (2). It is an excellent compound as a durable fixing agent because it has a hydrophobic affinity to the synthetic fiber, and a mixed compound with a highly hydrophilic compound shown in general formula (1) is applied to the synthetic fiber and heat treated. In particular, it exhibits excellent properties such as durability, water absorption, antistatic properties, and antifouling properties. The mixing ratio of epoxy compounds in the present invention is
In general formulas (1) + (2) and (1) + (3), 15:85-85:
A range of 15 is preferred. However, when n in formula (1) is 8 or more
15:85 to 75:25, preferably 75:25 to 85:15 when it is 7 or less. When general formula (1) is 15:85 or less, formula (2) and
The compound represented by formula (3) has low hydrophilicity, resulting in a decrease in water absorption, which is not preferable. Also, general formula (1) is 85:15
When it exceeds 1, the hydrophilicity of formula (1) increases and performance is improved, but this is not preferable because the epoxy compound will fall off due to repeated washing and the durability of performance will decrease. The amount of the epoxy compound applied to the fiber is usually 1% by weight or more, preferably 2 to 10% by weight, and more preferably 3 to 8% by weight. The acidic catalyst used in the present invention is preferably a metal salt, particularly a borofluoride metal salt, such as zinc borofluoride or magnesium borofluoride. The nonionic surfactants applicable to the present invention include polyoxyalkylene glycol-alkyl ether, polyoxyalkylene glycol-alkylphenyl ether, polyoxyalkylene glycol-alkyl ether, and polyoxyalkylene glycol-alkyl phenyl ether.
Alkyl esters, etc., and the HLB indicated by these
Values range from 10 to 20, depending on the
HLB is 11-16, more preferably 12-15. These HLB values are single or low HLB, high HLB
A mixed compound of two or more HLBs may also be prepared. The emulsifier used in the emulsification of the epoxy compound in the present invention is
It is 80% by weight. The concentration of the epoxy compound in the emulsified aqueous solution containing the epoxy compound is usually 1 to 12% by weight, preferably 2 to 10% by weight. The amount of acidic catalyst in the emulsified aqueous solution is usually 0.3 to 5% by weight, preferably
It is 0.5 to 3% by weight. Although the emulsified aqueous solution used in the method of the present invention contains a catalyst, it has excellent stability and is therefore extremely easy to handle in industrial production. The emulsified aqueous solution is usually applied to the synthetic fibers at room temperature. The application method is not particularly limited, but may be a pad method, a spray method, a coating method, or the like. The synthetic fiber to which the epoxy compound has been applied is then subjected to heat treatment after drying. In this case, heat treatment may be performed immediately after applying the epoxy compound, and drying and heat treatment may be performed in the same step. Drying may be done by air drying, but it is usually carried out at 50 to 120°C for 1 to 30 minutes. Heat treatment is usually dry heat at 80℃ or higher, preferably dry heat at 100℃ or higher.
Perform at 220°C for 1 to 20 minutes. After heat treatment, the synthetic fibers are washed with hot water or water and dried with warm air at 40°C. The synthetic fiber obtained by the method of the present invention usually has an epoxy compound attached in an amount of 1 to 10% by weight, preferably 2 to 8% by weight based on the weight of the fiber. The synthetic fiber obtained in the present invention is
It has excellent antistatic properties, water absorption properties, and antifouling properties.
Moreover, it not only has excellent durability that can withstand repeated washing, but also is of high quality without any discoloration or deterioration in texture as in conventional methods. The present invention will be explained in detail below with reference to Examples. The methods for evaluating durability, antistatic properties, water absorption, and antifouling properties, as well as the washing method for antifouling properties for evaluating durability, shown in the examples are as follows. Γ Charge voltage (V) Measured at 20±2° C. and 40±2% RH using a Kyoto University Kaken type rotary star tickster (manufactured by Koa Shokai) and using cotton gold cloth No. 3 as a friction cloth. Γ Half-life (sec) Static Honest Meter (manufactured by Shishido Shokai)
applied voltage 10KV, 20±2℃, 40±2%
Measured under RH conditions. Γ Water absorption (cm/10min) Measured by JIS L-1079B method (Byreck method). Γ Washing fastness: Measured according to JIS L-0844 method. ΓWashing method: Neutral washing (product name Pinky, Lion Oil
Co., Ltd.) in a cleaning solution at 40℃ containing 0.1% in a household washing machine (fully automatic washing machine FP-578 model, Hitachi, Ltd.).
Washed using. One cycle consisted of washing at 40° C. for 10 minutes, rinsing at room temperature for 3 minutes twice, and dehydration, and this cycle was repeated five times. In addition, in this specification, the adhesion rate (%) refers to the amount of modifier applied (total amount of modifier in the bath in the dipping method, treatment liquid concentration x squeezing rate in the spray method and padding method). The amount of modifier attached to the object to be treated is B
In this case, it is a term represented by B/A×100. Γ Rubbing fastness JIS L-0849 (type) Γ Stain resistance When stains from lipstick, machine oil, and mayonnaise are attached and the above washing method is used, the stain removal status after one wash is 〇 (good removability), × ( Poor removability). The epoxy compounds used in each example are as follows. Example 1 A polyester fabric (75d/36f, taffeta) was immersed in an emulsified dispersion solution having the composition shown below at room temperature, and after squeezing the liquid to a squeezing rate of 100%, it was dried at 100°C for 5 minutes, and then dried at 150°C. After dry heat treatment for 5 minutes at 40℃
After washing with warm water for 1 minute, drying in a hot air dryer at 40°C, and leaving in a constant temperature room at 20°C and 40% RH for 24 hours, the physical properties were evaluated and shown in Table 1. Emulsified dispersion solution composition D compound 2.5 parts by weight I compound 2.5 〃 Catalyst Zn (BF 4 ) 2 1.0 〃 Nonylphenyl polyethylene glycol ether 2.5 〃 Water 89.5 〃

【表】 実施例 2 ポリエステル織物(75d/36f、タフタ)を第2
表に示す組成の乳化分散溶液に常温で浸漬し、絞
り率100%になる様に搾後、後100℃で5分間乾
燥、次いで150℃で5分間乾熱処理した後40℃の
温水で1分間洗浄、更に1分間水にすすぎ、脱水
後40℃の温風乾燥機で乾燥、20℃、40%(RH)
の恒温室に24時間放置後物性の評価を行つた。そ
の結果を第3表に示す。
[Table] Example 2 Polyester fabric (75d/36f, taffeta)
Immerse in an emulsified dispersion solution with the composition shown in the table at room temperature, squeeze to a squeezing rate of 100%, dry at 100℃ for 5 minutes, then dry heat at 150℃ for 5 minutes, and then soak in warm water at 40℃ for 1 minute. Wash, rinse with water for 1 minute, dehydrate, and dry in a hot air dryer at 40℃, 20℃, 40% (RH)
After being left in a constant temperature room for 24 hours, the physical properties were evaluated. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】 実施例 3 アクリル系繊維編物(アクワロン:鐘紡(株)製)
を下記に示す組成の乳化分散溶液に常温で浸漬し
続いて実施例1と同様に処理した。 乳化分散溶液 化合物H 2.5重量部 化合物D 2.5 〃 触媒Zn(BF42 1 〃 乳化剤 2.5 〃 水を加え乳化溶液の合計を100重量部とする。 結果を第4表に示す。
[Table] Example 3 Acrylic fiber knitted fabric (Aqualon: manufactured by Kanebo Co., Ltd.)
was immersed in an emulsified dispersion solution having the composition shown below at room temperature, and then treated in the same manner as in Example 1. Emulsified dispersion solution Compound H 2.5 parts by weight Compound D 2.5 Catalyst Zn (BF 4 ) 2 1 Emulsifier 2.5 Add water to make the total emulsified solution 100 parts by weight. The results are shown in Table 4.

【表】 実施例 4 ポリエステル織物(デシン、目付108g/m2
を下記に示す組成の乳化分散溶液に常温で浸漬
し、絞り率57%になる様に搾液後100℃で3分間
乾燥し、次いで160℃で2分間乾熱処理した後40
℃の温水で30分洗浄し、40℃の温風乾燥機中で乾
燥した。 この加工布を下記に示す組成の染料溶液に浸漬
し、45分で130℃まで昇温し、130℃で60分染色し
た。 乳化分散溶液 D化合物 1.5重量部 I化合物 2.3 〃 触媒Zn(BF42 0.4 〃 ノニルフエニルポリエチレングリコールエーテ
ル 3.8 〃 水 92.0 〃 染料溶液 Sumikaron Red SE−RPD(住友化学製)
0.7重量部 トーホーソルトUF−350(東邦化学製)
0.1 〃 ウルトラMT#170(御幣島化学製)
0.1 〃 水 99.1 〃 染色布を下記に示す組成の還元洗浄浴で還元洗
浄し、湯洗、水洗し、40℃の温風乾燥機中で乾燥
した。次に、加工を行わず染色還元洗浄のみ行つ
た布(未加工布)と同時に20℃、40%RHの恒温
室に24時間放置後、物性評価を行ない第第6表に
示した。 還元洗浄浴 炭酸ナトリウム 0.18重量部 ハイドロサルフアイトナトリウム0.18 〃 アミラジンD(第1工業製) 0.18 〃 水 99.46 〃
[Table] Example 4 Polyester fabric (decine, basis weight 108g/m 2 )
was immersed in an emulsified dispersion solution with the composition shown below at room temperature, dried at 100°C for 3 minutes after squeezing to obtain a squeezing rate of 57%, and then subjected to dry heat treatment at 160°C for 2 minutes.
It was washed with warm water at ℃ for 30 minutes and dried in a hot air dryer at 40℃. This processed cloth was immersed in a dye solution having the composition shown below, heated to 130°C for 45 minutes, and dyed at 130°C for 60 minutes. Emulsified dispersion solution Compound D 1.5 parts by weight Compound I 2.3 Catalyst Zn (BF 4 ) 2 0.4 Nonylphenyl polyethylene glycol ether 3.8 Water 92.0 Dye solution Sumikaron Red SE-RPD (manufactured by Sumitomo Chemical)
0.7 parts by weight Toho Salt UF-350 (manufactured by Toho Chemical)
0.1 〃 Ultra MT #170 (manufactured by Mihejima Chemical)
0.1 〃 Water 99.1 〃 The dyed cloth was subjected to reduction cleaning in a reduction cleaning bath having the composition shown below, washed with hot water and water, and dried in a hot air dryer at 40°C. Next, the fabric (unprocessed fabric) that had been dyed and reduced and washed without any processing was left in a constant temperature room at 20°C and 40% RH for 24 hours, and then the physical properties were evaluated and shown in Table 6. Reduction cleaning bath Sodium carbonate 0.18 parts by weight Sodium hydrosulfite 0.18 Amirazine D (Daiichi Kogyo) 0.18 Water 99.46

【表】 実施例 5 ポリエステル織物(カルゼ、目付208g/m2
を下記に示す組成の染料溶液に浸漬し45分で130
℃まで昇温し、130℃で60分染色した。 染料溶液 Sumikaron Blue SE−RPD(住友化学製)
0.7重量部 トーホーソルトUF−350(東邦化学製)
0.1 〃 ウルトラMT#170(御幣島化学製)
0.1 〃 水 99.1 染色布を常法に従い還元洗浄し、40℃の温風乾
燥機中で乾燥し、次の加工に供した。 下記に示す組成の乳化分散溶液に常温で浸漬
し、絞り率84%になるよう搾液後100℃で10分間
乾燥し、次いで150℃で2分間乾熱処理した後40
℃の温水で30分洗浄し、40℃の温風乾燥機中で乾
燥した。加工を行わず染色、還元洗浄のみ行つた
布(未加工布)を加えて同時に20℃、40%RHの
恒温室に24時間放置後、物性評価を行なつた。結
果を第6表に示した。 乳化分散液 D化合物 1.5重量部 I化合物 2.3 〃 触媒Zn(BF42 0.4 〃 ノニルフエニル・ポリエチレングリコールエー
テル 3.8 〃 水 92.0 〃
[Table] Example 5 Polyester fabric (Calze, basis weight 208g/m 2 )
130 in 45 minutes by immersing it in a dye solution with the composition shown below.
The temperature was raised to ℃ and dyed at 130℃ for 60 minutes. Dye solution Sumikaron Blue SE-RPD (manufactured by Sumitomo Chemical)
0.7 parts by weight Toho Salt UF-350 (manufactured by Toho Chemical)
0.1 〃 Ultra MT #170 (manufactured by Mihejima Chemical)
0.1〃Water 99.1 The dyed cloth was reduced and washed according to a conventional method, dried in a hot air dryer at 40°C, and subjected to the next processing. It was immersed in an emulsified dispersion solution with the composition shown below at room temperature, dried at 100℃ for 10 minutes after squeezing the liquid to a squeezing rate of 84%, and then subjected to dry heat treatment at 150℃ for 2 minutes.
It was washed with warm water at ℃ for 30 minutes and dried in a hot air dryer at 40℃. A cloth that had been dyed and reduced-cleaned without any processing (unprocessed cloth) was added and left in a constant temperature room at 20°C and 40% RH for 24 hours, after which physical properties were evaluated. The results are shown in Table 6. Emulsified dispersion liquid Compound D 1.5 parts by weight Compound I 2.3 〃 Catalyst Zn (BF 4 ) 2 0.4 〃 Nonylphenyl polyethylene glycol ether 3.8 〃 Water 92.0 〃

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリエステル繊維及び/又はアクリル系繊維
に、一般式(1) (式中Rは−CH2CH2O−であり、nは1〜15の
整数である。) で示されるエポキシ化合物と一般式(2)及び/又は
(3) で示されるエポキシ化合物との混合物及び酸性触
媒を界面活性剤によつて水に乳化分散させた乳化
液を施与し、乾燥した後熱処理することを特徴と
する合成繊維の改質処理方法。 2 酸性触媒が硼弗化金属塩である特許請求の範
囲第1項記載の方法。 3 界面活性剤が非イオン界面活性剤である特許
請求の範囲第1項記載の方法。 4 乾燥及び熱処理を同一工程で行なう特許請求
の範囲第1項記載の方法。 5 熱処理を乾熱80〜220℃で行なう特許請求の
範囲第1項記載の方法。
[Claims] 1 Polyester fiber and/or acrylic fiber, general formula (1) (In the formula, R is -CH 2 CH 2 O-, and n is an integer of 1 to 15.) and the general formula (2) and/or
(3) A method for modifying synthetic fibers, which comprises applying an emulsion obtained by emulsifying and dispersing a mixture of an epoxy compound represented by the above and an acidic catalyst in water using a surfactant, drying the mixture, and then subjecting the emulsion to a heat treatment. 2. The method according to claim 1, wherein the acidic catalyst is a borofluoride metal salt. 3. The method according to claim 1, wherein the surfactant is a nonionic surfactant. 4. The method according to claim 1, wherein drying and heat treatment are performed in the same step. 5. The method according to claim 1, wherein the heat treatment is performed at a dry heat temperature of 80 to 220°C.
JP3785283A 1983-03-07 1983-03-07 Modification of synthetic fiber Granted JPS59163480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3785283A JPS59163480A (en) 1983-03-07 1983-03-07 Modification of synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3785283A JPS59163480A (en) 1983-03-07 1983-03-07 Modification of synthetic fiber

Publications (2)

Publication Number Publication Date
JPS59163480A JPS59163480A (en) 1984-09-14
JPH0314942B2 true JPH0314942B2 (en) 1991-02-27

Family

ID=12509065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3785283A Granted JPS59163480A (en) 1983-03-07 1983-03-07 Modification of synthetic fiber

Country Status (1)

Country Link
JP (1) JPS59163480A (en)

Also Published As

Publication number Publication date
JPS59163480A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
US4168954A (en) Textile materials having durable soil release and moisture transport characteristics and process for producing same
JPH07145560A (en) Finishing agent composition for fiber
US4309560A (en) Modifier for fibers or fibrous structures
JPH0314942B2 (en)
JPH0219233B2 (en)
JP5256397B2 (en) Water-absorbing and oil-repellent antifouling agent, fiber or fiber product treated with the antifouling agent, method for producing the same, and spray container
JPH0344593B2 (en)
JPS597827B2 (en) Hydrophilic treatment agent
JPS595705B2 (en) Durable water and oil repellent processing method for synthetic fiber products
JPS599666B2 (en) fiber treatment agent
JP2007009337A (en) Method for processing polyester/cotton fabric and processed product
JP2647963B2 (en) Composition for removing shine of fiber
JPS5818480A (en) Treatment of polyester fiber
JPH08500648A (en) Chemical system for applying antifouling agents to textile products
JPH03213572A (en) Antifouling processing method for silk fiber cloth
JP2851366B2 (en) Method for producing water-repellent polyester fiber with excellent durability
JPS60104576A (en) Processing treatment of synthetic fiber/cellulose fiber
JPH0655997B2 (en) Method for producing antifouling flame retardant polyester fiber
JP2009228181A (en) Fiber structure
JP2602556B2 (en) Composition for removing shine of fiber
JPS602776A (en) Production of acrylic fiber having water and oil repellency
JPS5851064B2 (en) Sen'izairiyounokaishitsushiagehouhou
JPS5846587B2 (en) Modifier for fibers or fiber structures
JPS60181365A (en) Roduction of polyester cloth
JPH0811868B2 (en) Flexible smoothing agent