JPH03149417A - Torque transfer means - Google Patents

Torque transfer means

Info

Publication number
JPH03149417A
JPH03149417A JP28739089A JP28739089A JPH03149417A JP H03149417 A JPH03149417 A JP H03149417A JP 28739089 A JP28739089 A JP 28739089A JP 28739089 A JP28739089 A JP 28739089A JP H03149417 A JPH03149417 A JP H03149417A
Authority
JP
Japan
Prior art keywords
wall
leaf spring
side wall
shaft end
driven shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28739089A
Other languages
Japanese (ja)
Inventor
Sadatomo Kuribayashi
定友 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K Seven Co Ltd
Original Assignee
K Seven Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Seven Co Ltd filed Critical K Seven Co Ltd
Priority to JP28739089A priority Critical patent/JPH03149417A/en
Publication of JPH03149417A publication Critical patent/JPH03149417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To smoothly transfer a driving force by mounting a cylindrical inner side wall onto one of the end section of a prime mover shaft and the end section of a driven shaft, and a cylindrical outer side wall onto the other one thereof respectively, disposing flexible leaf springs for the inner and outer side walls, and thereby forming working oil chambers and the like therein. CONSTITUTION:An end face plate 3 is attached onto the tip end of the end section 2 of a prime mover shaft, and splines 5 are formed on the tip end of the end section 4 of a driven shaft. One end face of a cylindrical inner side wall 6 is fixed on the end face plate 3, and an end face plate 8 is fixed onto the other end face of the wall. In addition, the splins 5 at the tip end of a shaft end section 4 are meshed with a cylindrical wall 10. Both of the inner side wall 6 and the outer side wall 10 are coaxial with a rotating center, 2 each of the end face plates 3 and 8 are perpendicular to the rotating center, and a casing is made up out of the inner side wall 6, the outer side wall 10 and of the end face plates 3 and 8. A plurality of bent leaf springs 12a and 12b is interposed between the inner side wall 6 and the outer side wall 10 within the casing. Each outer end of the leaf springs 12a is fitted into a groove 7, and each inner end of them is fitted into a groove 11. Each working oil chamber 14a and 14b is thereby formed between the leaf springs 12a and 12b.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は原動軸側から従動軸側へと回転力を伝達する手
段に関し、特に原動軸側と従動軸側件な回転方向に関し
可撓的に結合する回転力伝達手段に関する。 【従来の技術及び発明が解決しようとする課題】各種回
転力伝達機構において、原動軸側の急激な回転数変動や
従動軸側の急激な負荷変動等に基づく機械的衝撃を和ら
げて滑らかな駆動力伝達を行うために、回転方向に関し
可撓性部材を介して駆動力を伝達することがなされてい
る。 本発明は、この様な可撓性部材を用いた回転力伝達のた
めの手段であって、小型化が可能で、更にダンパー効果
を有し円滑な動作が可能な改良された回転力伝達手段を
提供することを目的とする。
[Industrial Application Field 1] The present invention relates to a means for transmitting rotational force from a driving shaft side to a driven shaft side, and in particular, a rotational force transmission means that is flexibly coupled with respect to the rotational direction of the driving shaft side and the driven shaft side. Regarding. [Prior Art and Problems to be Solved by the Invention] In various rotational force transmission mechanisms, smooth drive can be achieved by alleviating mechanical shocks caused by rapid fluctuations in rotational speed on the driving shaft side, sudden load fluctuations on the driven shaft side, etc. In order to perform force transmission, the driving force is transmitted through a flexible member in the direction of rotation. The present invention is a means for transmitting rotational force using such a flexible member, and is an improved rotational force transmission means that can be downsized, has a damper effect, and can operate smoothly. The purpose is to provide

【課題を解決するための手段J 本発明によれば、上記の如き目的は、 同軸状に配置された原動軸端部と従動軸端部とを結合す
る回転力伝達手段であって、原動軸端部及び従動軸端部
のうちの一方に同軸状の円筒状内側壁が取付けられて怠
り他方に上記内側壁より内方において同軸状の円筒状外
側壁が取付けられており、上記内側壁及び外側壁の間の
空間を密閉するためにこれらを含んでケーシングが形成
されており、該ケーシング内には外端及び内端をそれぞ
れ上記内側壁及び外側壁に取付けられた複数の屈曲板バ
ネ体が周方向を横切って配置されており、上記複数の板
バネ体は変形特性の異なる2種類が交互に配列されてお
り、上記ケーシング内には上記板バネ体により区画され
た作動油室が形成されており、これら隣接する作動油室
が小断面の経路により連通していることを特徴とする、
回転力伝達手段、 により達成される。 本発明においては、上記変形特性の異なる2種類の板バ
ネ体として、原動軸端部及び従動軸端部の回転中心と直
交する断面内の曲率が異なるものを用いることができる
。 また、本発明においては、上記板バネ体の外端が上記内
側壁の内面に形成された溝内に受け入れられており、上
記板バネ体の内端が上記外側壁の外面に形成された溝内
に受け入れられており、上記内側壁内面の各溝には1枚
の板バネ体の外端が受け入れられており、上記外側壁外
面の各溝には隣接する2つの板バネ体の内端が受け入れ
られている形態が可能である。 【実施例】 以下、図面を参照しながら本発明の具体的実施例を説明
する。 第1図は本発明による回転力伝達手段の一実施例を示す
分解斜視図であり、第2図及び第3図はその断面図であ
る。 これらの図において、2は原動軸端部であり。 4は従動軸端部である。2a、4aはそれぞれ原動軸回
転中心及び従動軸回転中心であり、これらは合致してい
る(以下、これら2つの回転中心を単に「回転中心」と
いう)。 原動軸端部2の先端には端面板3が付設されており、従
動軸端部4の先端にはスプライン5が形成されている。 上記端面板3には円筒状内側壁6の一方の端面が固定さ
れており、該内側壁の他方の端面には端面板8が固定さ
れている。また、上記従動軸端部4の先端のスプライン
5には円筒状外側壁lOが噛み合わされている。 上記内側壁6及び外側壁lOは上記回転中心と同軸状で
あり、上記2つの端面板3.8は上記回転中心と直交し
ている。そして、これら内側壁6及び外側壁lO、更に
は端面板3.8により環形状のケーシングが形成されて
いる。 該ケーシング内において、上記内側壁6と外側壁lOと
の間には多数の屈曲した板バネ体が配置されている。該
板バネ体は2種類(12a、12b)あり、これらが周
方向に交互に配列されている。該板バネ体の外端は上記
内側壁6の内面に回転中心方向に沿って形成された溝7
内に受け入れられている。また、該板バネ体の内端は上
記外側壁6の外面に回転中心方向に沿って形成された溝
11内に受け入れられている。図示されている様に、外
側壁10の各溝11内には隣接する2つの板バネ体12
a、12bの内端がまとめて収容されている。これによ
り、比較的小径の外側壁10に形成する溝11の数を少
なくし、内側壁6の溝7の半数としている。 第3図に最もよく示されている様に、上記2種類の板バ
ネ体は、一方の板バネ体12aの曲率が他方の板バネ体
12bの曲率よりも大である。そして、同一の外側壁溝
ll内に受け入れられている2つの板バネ体12a、1
2bの間には作動油室14aが形成され、隣接する外側
壁満11内に受け入れられている2つの板バネ体12b
、12aの間には作動油室14bが形成されており、こ
れら異なる形状の2種類の作動油室は周方向に交互に配
置されていることになる。これら作動油室内には作動油
が充填されている。 隣接する作動油室どつしは、小断面の経路即ち板バネ体
12a、12bにそれぞれ貫通して設けられた適宜の径
の小孔13により連通している。 上記小断面の経路としては、端面板3,8と板バネ体1
2a、12bとの間の適宜のクリアランスを利用するこ
ともできる。 尚、作動油は隣接作動油室へは流通できるが、シール機
構により外部への漏れは防止されている。 本実施例において、原動軸端部2が回転する と−、そ
の回転力は内側壁6、板バネ体12a、12b及び外側
壁lOを経て従動軸端部4へと伝達される。該伝達に際
し、従動軸側の負荷に応じて外側壁と内側壁との周方向
位置関係が変化し板バネ体12a、12bが変形せしめ
られる。 原動軸側の回転数が変化した場合または従動軸側の負荷
が変化した場合には、それに応じた平衡点へと状態が移
行する。この際、上記作動油室14a、14b内に作動
油が存在しなければ、板バネ体変形の反動変形が反復し
、これが振動の原因となる。しかし、本実施例では、作
動油の存在に基づき、上記状態移行の際には、2種類の
作動油室のうちの一方では体積が減少し、他方では体積
が増加する。即ち、2種類の板バネ体12a、12bは
形状及び配置が異なるので変形特性が異なり、このため
隣接作動油室どうしでは上記状態移行の際の体積変動が
逆になる。かくして、体積が減少する作動油室内では圧
力が高まり、逆に体積が増加する作動油室内では圧力が
低下し、この圧力差に基づき小孔13を介して高圧側作
動油室から隣接低圧側作動油室へと作動油が流出し、該
流出の際の抵抗により上記板バネ体の反復変形が抑制さ
れ、かくして振動発生が抑制される。 本実施例の回転力伝達手段は、第1図に示されている様
に各構成要素を組み立てることにより、簡単に構成でき
る。 尚、作動油室内への作動油の注入は、たとえば端面板に
注入孔を設けておくことにより容易に行うことができる
。 上記実施例において、原動軸側と従動軸側とを逆にして
も同様であることはもちろんである。
[Means for Solving the Problems J] According to the present invention, the above object is to provide a rotational force transmitting means for coupling a driving shaft end and a driven shaft end that are arranged coaxially, the driving shaft A coaxial cylindrical inner wall is attached to one of the end and the driven shaft end, and a coaxial cylindrical outer wall is attached to the other inwardly than the inner wall, and the inner wall and A casing is formed including these to seal the space between the outer walls, and within the casing are a plurality of bent leaf spring bodies whose outer and inner ends are attached to the inner and outer walls, respectively. are arranged across the circumferential direction, two types of the plurality of leaf spring bodies having different deformation characteristics are arranged alternately, and a hydraulic oil chamber partitioned by the leaf spring bodies is formed in the casing. and is characterized in that these adjacent hydraulic oil chambers are communicated by a path with a small cross-section.
This is achieved by a rotational force transmission means. In the present invention, as the two types of leaf spring bodies having different deformation characteristics, those having different curvatures in the cross section perpendicular to the center of rotation of the end portion of the driving shaft and the end portion of the driven shaft may be used. Further, in the present invention, an outer end of the leaf spring body is received in a groove formed on an inner surface of the inner wall, and an inner end of the leaf spring body is received in a groove formed on an outer surface of the outer wall. The outer ends of one leaf spring body are received in each groove on the inner surface of the inner wall, and the inner ends of two adjacent leaf spring bodies are received in each groove on the outer surface of the outer wall. Accepted forms are possible. [Embodiments] Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing an embodiment of a rotational force transmitting means according to the present invention, and FIGS. 2 and 3 are sectional views thereof. In these figures, 2 is the end of the driving shaft. 4 is the driven shaft end. 2a and 4a are a driving shaft rotation center and a driven shaft rotation center, respectively, and these coincide (hereinafter, these two rotation centers will be simply referred to as "rotation centers"). An end plate 3 is attached to the tip of the drive shaft end 2, and a spline 5 is formed at the tip of the driven shaft end 4. One end face of a cylindrical inner wall 6 is fixed to the end face plate 3, and an end face plate 8 is fixed to the other end face of the inner wall. Further, a cylindrical outer wall lO is engaged with the spline 5 at the tip of the driven shaft end portion 4. The inner wall 6 and the outer wall IO are coaxial with the center of rotation, and the two end plates 3.8 are perpendicular to the center of rotation. An annular casing is formed by the inner wall 6, the outer wall 1O, and the end plate 3.8. Inside the casing, a large number of bent leaf spring bodies are arranged between the inner wall 6 and the outer wall IO. There are two types of leaf spring bodies (12a, 12b), which are arranged alternately in the circumferential direction. The outer end of the leaf spring body is connected to a groove 7 formed on the inner surface of the inner wall 6 along the rotation center direction.
accepted within. Further, the inner end of the leaf spring body is received in a groove 11 formed on the outer surface of the outer wall 6 along the rotation center direction. As shown, within each groove 11 of the outer wall 10 are two adjacent leaf spring bodies 12.
The inner ends of a and 12b are housed together. As a result, the number of grooves 11 formed in the relatively small diameter outer wall 10 is reduced to half the number of grooves 7 in the inner wall 6. As best shown in FIG. 3, in the two types of leaf spring bodies mentioned above, the curvature of one leaf spring body 12a is larger than the curvature of the other leaf spring body 12b. Two leaf spring bodies 12a, 1 received in the same outer wall groove ll
A hydraulic oil chamber 14a is formed between the two leaf spring bodies 12b, which are received in the adjacent outer wall 11.
, 12a are formed with hydraulic oil chambers 14b, and these two types of hydraulic oil chambers having different shapes are arranged alternately in the circumferential direction. These hydraulic oil chambers are filled with hydraulic oil. Adjacent hydraulic oil chambers communicate with each other through a small cross-sectional path, that is, a small hole 13 of an appropriate diameter provided through each of the leaf spring bodies 12a and 12b. The path of the small cross section mentioned above includes the end plates 3, 8 and the leaf spring body 1.
An appropriate clearance between 2a and 12b can also be used. Although the hydraulic oil can flow to the adjacent hydraulic oil chamber, the seal mechanism prevents it from leaking to the outside. In this embodiment, when the driving shaft end 2 rotates, its rotational force is transmitted to the driven shaft end 4 via the inner wall 6, the leaf spring bodies 12a, 12b, and the outer wall IO. During this transmission, the circumferential positional relationship between the outer wall and the inner wall changes depending on the load on the driven shaft side, and the leaf spring bodies 12a, 12b are deformed. When the rotation speed on the driving shaft side changes or when the load on the driven shaft side changes, the state shifts to a corresponding equilibrium point. At this time, if there is no hydraulic oil in the hydraulic oil chambers 14a, 14b, the reaction deformation of the plate spring body deformation repeats, which causes vibration. However, in this embodiment, based on the presence of hydraulic oil, during the above state transition, the volume of one of the two types of hydraulic oil chambers decreases, and the volume of the other increases. That is, since the two types of leaf spring bodies 12a and 12b have different shapes and arrangements, they have different deformation characteristics, and therefore, the volume fluctuations during the above state transition are opposite between adjacent hydraulic oil chambers. Thus, the pressure increases in the hydraulic oil chamber where the volume decreases, and the pressure decreases in the hydraulic oil chamber where the volume increases, and based on this pressure difference, the pressure is transferred from the high pressure side hydraulic oil chamber to the adjacent low pressure side hydraulic oil chamber via the small hole 13. The hydraulic oil flows out into the oil chamber, and the resistance during the outflow suppresses repeated deformation of the leaf spring body, thus suppressing the generation of vibration. The rotational force transmitting means of this embodiment can be easily constructed by assembling each component as shown in FIG. Note that the hydraulic oil can be easily injected into the hydraulic oil chamber by providing an injection hole in the end plate, for example. Of course, in the above embodiment, the same effect can be achieved even if the driving shaft side and the driven shaft side are reversed.

【発−明の効果】[Effects of the invention]

以上の様に、本発明の回転力伝達手段によれば、小型化
が可能で、ダンパー効果により振動発生が抑制され十分
に円滑な動作が可能である。
As described above, according to the rotational force transmitting means of the present invention, it is possible to reduce the size, and vibration generation is suppressed by the damper effect, so that sufficiently smooth operation is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による回転力伝達手段の一実施例を示す
分解斜視図であり、第2図及び第3図はその断面図であ
る。 ′ 2;原動軸端部、  4:従動軸端部、6:円筒状
内側壁、   10:円筒状内側壁、12a、12b:
板バネ体、  13:小孔、14a、14b:作動油室
FIG. 1 is an exploded perspective view showing an embodiment of a rotational force transmitting means according to the present invention, and FIGS. 2 and 3 are sectional views thereof. '2; Driving shaft end, 4: Driven shaft end, 6: Cylindrical inner wall, 10: Cylindrical inner wall, 12a, 12b:
Leaf spring body, 13: Small hole, 14a, 14b: Hydraulic oil chamber.

Claims (3)

【特許請求の範囲】[Claims] (1)同軸状に配置された原動軸端部と従動軸端部とを
結合する回転力伝達手段であって、原動軸端部及び従動
軸端部のうちの一方に同軸状の円筒状内側壁が取付けら
れており他方に上記内側壁より内方において同軸状の円
筒状外側壁が取付けられており、上記内側壁及び外側壁
の間の空間を密閉するためにこれらを含んでケーシング
が形成されており、該ケーシング内には外端及び内端を
それぞれ上記内側壁及び外側壁に取付けられた複数の屈
曲板バネ体が周方向を横切って配置されており、上記複
数の板バネ体は変形特性の異なる2種類が交互に配列さ
れており、上記ケーシング内には上記板バネ体により区
画された作動油室が形成されており、これら隣接する作
動油室が小断面の経路により連通していることを特徴と
する、回転力伝達手段。
(1) A rotational force transmitting means that connects a driving shaft end and a driven shaft end that are arranged coaxially, and has a coaxial cylindrical inner side attached to one of the driving shaft end and the driven shaft end. A wall is attached to the other wall, and a coaxial cylindrical outer wall is attached inwardly from the inner wall, and a casing is formed including these to seal the space between the inner wall and the outer wall. Inside the casing, a plurality of bent leaf spring bodies are arranged across the circumferential direction, the outer ends and inner ends of which are respectively attached to the inner wall and the outer wall, and the plurality of leaf spring bodies are Two types with different deformation characteristics are arranged alternately, and a hydraulic oil chamber partitioned by the leaf spring body is formed in the casing, and these adjacent hydraulic oil chambers are communicated by a path with a small cross section. A rotational force transmission means characterized by:
(2)上記変形特性の異なる2種類の板バネ体は、原動
軸端部及び従動軸端部の回転中心と直交する断面内の曲
率が異なる、請求項1に記載の回転力伝達手段。
(2) The rotational force transmitting means according to claim 1, wherein the two types of leaf spring bodies having different deformation characteristics have different curvatures in a cross section perpendicular to the center of rotation of the driving shaft end portion and the driven shaft end portion.
(3)上記板バネ体の外端が上記内側壁の内面に形成さ
れた溝内に受け入れられており、上記板バネ体の内端が
上記外側壁の外面に形成された溝内に受け入れられてお
り、上記内側壁内面の各溝には1枚の板バネ体の外端が
受け入れられており、上記外側壁外面の各溝には隣接す
る2つの板バネ体の内端が受け入れられている、請求項
1または2に記載の回転力伝達手段。
(3) an outer end of the leaf spring body is received within a groove formed on the inner surface of the inner wall, and an inner end of the leaf spring body is received within a groove formed on the outer surface of the outer wall; The outer end of one leaf spring body is received in each groove on the inner surface of the inner wall, and the inner ends of two adjacent leaf spring bodies are received in each groove on the outer surface of the outer wall. The rotational force transmission means according to claim 1 or 2.
JP28739089A 1989-11-06 1989-11-06 Torque transfer means Pending JPH03149417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28739089A JPH03149417A (en) 1989-11-06 1989-11-06 Torque transfer means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28739089A JPH03149417A (en) 1989-11-06 1989-11-06 Torque transfer means

Publications (1)

Publication Number Publication Date
JPH03149417A true JPH03149417A (en) 1991-06-26

Family

ID=17716732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28739089A Pending JPH03149417A (en) 1989-11-06 1989-11-06 Torque transfer means

Country Status (1)

Country Link
JP (1) JPH03149417A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174011A (en) * 1992-12-04 1994-06-21 Daikin Mfg Co Ltd Damper device
EP0708265A2 (en) * 1994-10-14 1996-04-24 Exedy Corporation Undulated spring and damper mechanism
JPH09189342A (en) * 1996-12-04 1997-07-22 Exedy Corp Curved plate spring and damper disc assembly body using it
JP2010159877A (en) * 2009-01-07 2010-07-22 Ellergon Antriebstechnik Gmbh Torsion vibration damper or coupling having flexibility to torsion
US20110232042A1 (en) * 2010-03-25 2011-09-29 Michael Patrick Kenny BadgeKeeper
US20120216326A1 (en) * 2011-02-24 2012-08-30 Sheila Van Kuren Athletic Numbering Attachment Apparatus and Method
JP2014043928A (en) * 2012-08-28 2014-03-13 Fukuoka Univ Forward/backward slight movement rotary bearing
US11028897B2 (en) 2018-01-16 2021-06-08 Litens Automotive Partnership Torsional vibration damper and method of making same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174011A (en) * 1992-12-04 1994-06-21 Daikin Mfg Co Ltd Damper device
EP0708265A2 (en) * 1994-10-14 1996-04-24 Exedy Corporation Undulated spring and damper mechanism
EP0708265A3 (en) * 1994-10-14 1997-12-10 Exedy Corporation Undulated spring and damper mechanism
EP1035348A1 (en) * 1994-10-14 2000-09-13 Exedy Corporation Undulated spring and damper mechanism
JPH09189342A (en) * 1996-12-04 1997-07-22 Exedy Corp Curved plate spring and damper disc assembly body using it
JP2010159877A (en) * 2009-01-07 2010-07-22 Ellergon Antriebstechnik Gmbh Torsion vibration damper or coupling having flexibility to torsion
CN102141112A (en) * 2009-01-07 2011-08-03 艾勒根传动工程有限责任公司 Torsional vibration damper or torsionally flexible coupling
US8418822B2 (en) 2009-01-07 2013-04-16 Ellergon Antriebstechnik Gesellschaft M.B.H. Torsional vibration damper or torsionally flexible coupling
US20110232042A1 (en) * 2010-03-25 2011-09-29 Michael Patrick Kenny BadgeKeeper
US20120216326A1 (en) * 2011-02-24 2012-08-30 Sheila Van Kuren Athletic Numbering Attachment Apparatus and Method
JP2014043928A (en) * 2012-08-28 2014-03-13 Fukuoka Univ Forward/backward slight movement rotary bearing
US11028897B2 (en) 2018-01-16 2021-06-08 Litens Automotive Partnership Torsional vibration damper and method of making same

Similar Documents

Publication Publication Date Title
JP5257792B2 (en) Improved locking differential including elastic disk means
AU657808B2 (en) Shaft coupling
KR100433082B1 (en) Starting clutch
JPH03149417A (en) Torque transfer means
US6607062B1 (en) Piston assembly for hydraulically actuated friction coupling
US4441594A (en) Fluid type torque converter apparatus
EP1552177B1 (en) Clutch having a variable viscosity fluid
US7028582B2 (en) Dual mass flywheel using air dampening
JP2002242950A (en) Shaft coupling
US6231449B1 (en) Torsional vibration coupling
US4620626A (en) Clutch driven plate assembly with an anti-rattle damper
JPH0754922A (en) Flywheel assembly
JPH11210799A (en) Rotary damper
JPH06337021A (en) Flexible shaft coupling
JP3463409B2 (en) Power transmission device
JP3009086B2 (en) Shaft coupling
JP3178322B2 (en) Clutch device
JPH0430425Y2 (en)
JP2945413B2 (en) Direct coupling clutch in fluid transmission
JPH1047384A (en) Rotating speed difference-sensing joint
JP2742597B2 (en) Fluid-filled elastic joints
JPS58160641A (en) Torsional vibration absorbing device for transmission shaft
CN110953296A (en) Power transmission device
KR101002063B1 (en) Torque converter for vehicle
JPH08114236A (en) Bent leaf spring and damper disk assembly