JPH03148037A - Method for analyzing stress in segment ring for shield tunnel - Google Patents

Method for analyzing stress in segment ring for shield tunnel

Info

Publication number
JPH03148037A
JPH03148037A JP28773789A JP28773789A JPH03148037A JP H03148037 A JPH03148037 A JP H03148037A JP 28773789 A JP28773789 A JP 28773789A JP 28773789 A JP28773789 A JP 28773789A JP H03148037 A JPH03148037 A JP H03148037A
Authority
JP
Japan
Prior art keywords
data
radius
spring
load
segment ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28773789A
Other languages
Japanese (ja)
Inventor
Yasusuke Kihashi
鬼橋 保祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP28773789A priority Critical patent/JPH03148037A/en
Publication of JPH03148037A publication Critical patent/JPH03148037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To make it possible to perform accurate analysis by assuming resistance earth pressure as spring force, analyzing the stress in a segment ring by a finite element method, releasing the spring force in a range wherein the radius after the deformation becomes smaller than the radius before the deformation, and analyzing angle stress. CONSTITUTION:An analyzing apparatus 1 comprises both means of an input means 2 and an output means 3, an interface 4, an element dividing means 5, a data forming means 5 and a FET computing means 7. The input comprises initial structure data and initial load data. As the structure data, the joint number, the coordinate values and the like of each element in a finite element method are obtained as the joint structure data through the means 5. The joint load data are obtained through the means 6 based on the structure data and the initial load data. Then both node data undergo FEM analysis in the means 7. When the radius R' after the deformation becomes smaller than that of the initial radius Rc, it is assumed that the ground spring does not act on that part. The spring is removed, and the computation is performed again. Thus the accurate analysis can be performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シールドトンネル用セグメントリングの応力
解析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stress analysis method for a segment ring for a shield tunnel.

(従来の技術) 例えば、第13図に示すようなシールドトンネル用セグ
メントリング12を設計する場合、セグメントリングの
応力解析が行なわれる。この応力解析とは、第14図に
示す荷重図から、第15図に示す断面方図を求めること
などを言う。
(Prior Art) For example, when designing a segment ring 12 for a shield tunnel as shown in FIG. 13, stress analysis of the segment ring is performed. This stress analysis refers to obtaining the cross-sectional view shown in FIG. 15 from the load diagram shown in FIG. 14.

この様なセグメントリングの応力解析方法として、を限
要素法がよく知られている。この有限要素法の解法とし
て、例えば、特公昭61−10771号公報に記載のも
のが公知である。
The limited element method is well known as a stress analysis method for such segment rings. As a solution method of this finite element method, for example, the one described in Japanese Patent Publication No. 10771/1983 is known.

この従来の解析方法は、被解析対象物を複数個の任意形
状の微小剛体要素に分割し、それらを要素間境界面上に
分布したバネによって連結させた剛体−バネ系モデルの
集合体とみなして解こうとするものであった。
This conventional analysis method divides the object to be analyzed into multiple micro-rigid elements of arbitrary shapes, and considers them as a collection of rigid body-spring system models that are connected by springs distributed on the interface between the elements. It was an attempt to solve the problem.

(発明が解決しようとする課題) ところで、トンネルセグメントリングに作用する外力の
1つとして抵抗土圧がある。この抵抗土圧を水圧と同じ
ような力と考えるのか(リングが変形してもその圧力は
変らないと考えるのか)、又は、固体壁の反力のような
力と考えるのか(土とリングが接しているときは反力は
作用するが、変形すると、土とリング間に間隙が生じ、
外力が作用しないと考えるのか)、又はその他の力と考
えるのか、大変むつかしい問題があった。
(Problem to be Solved by the Invention) By the way, one of the external forces that acts on the tunnel segment ring is resistance earth pressure. Do you think of this resisting earth pressure as a force similar to water pressure (does the pressure not change even if the ring deforms), or do you think of it as a force similar to the reaction force of a solid wall (because the soil and ring When they are in contact, a reaction force acts, but when they deform, a gap is created between the soil and the ring.
There was a very difficult question as to whether to think that there was no external force acting on them, or whether to think that it was some other force.

抵抗土圧をどのような力と考えるかによって、その解析
結果が異なり、抵抗土圧の取扱いは応力解析上、きわめ
て重要な問題であった。
The analysis results differ depending on what kind of force is considered resistive earth pressure, and the handling of resistive earth pressure has been an extremely important issue in stress analysis.

そこで、本発明は、前記従来の解法において剛体モデル
を剛体−バネ系モデルの集合体とみなしたことにヒント
を得て、抵抗土圧をバネ力とみなして解くようにしたシ
ールドトンネル用セグメントリングの応力解析方法を提
供することを目的とする。
Therefore, the present invention is inspired by the conventional solution method in which a rigid body model is regarded as an aggregate of rigid body-spring system models, and the present invention provides a segment ring for shield tunnels in which resistance earth pressure is regarded as spring force and solved. The purpose of this study is to provide a stress analysis method.

(課題を解決するための手段) 前記目的を達成するため、本発明は、次の手段を講じた
。即ち、本発明のシールドトンネル用セグメントリング
の応力解析方法の特徴とする処は、抵抗土圧(地盤反力
)をバネ力と仮定して有限要素法によりシールドトンネ
ル用セグメントリングの応力を解析し、その結果、前記
セグメントリングの変形前の半径Rcに対し、変形後の
半径R”が、R’<Rcとなった範囲のバネ力を解除し
、再度応力解析を行う点にある。
(Means for Solving the Problems) In order to achieve the above object, the present invention takes the following measures. That is, the feature of the stress analysis method for a segment ring for a shield tunnel of the present invention is that the stress of a segment ring for a shield tunnel is analyzed by the finite element method assuming that resistive earth pressure (ground reaction force) is a spring force. As a result, with respect to the radius Rc of the segment ring before deformation, the spring force in the range where the radius R'' after deformation is R′<Rc is released, and the stress analysis is performed again.

(実施例) 以下、本発明の実施例を図面に基づき説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図に示すものは、円並びに欠円構造物の応力解析装
置1であり、該装置1は、入力手段2、出力手段3と、
これらを計算機に接続するだめのインターフェイス4と
、計算機内部の要素分割手段5、データ生成手段6、お
よび、FEM計算手段7等から構成されている。要素分
割手段5は構造物を要素に分割し、節点番号や座標値を
計算するものである。データ生成手段6は入力された原
始データを各節点に分配するものである。FEM計算手
段7は有限要素法により応力解析するものである。
What is shown in FIG. 1 is a stress analysis device 1 for circular and occluded circular structures, and the device 1 includes an input means 2, an output means 3,
It consists of an interface 4 for connecting these to a computer, an element division means 5, a data generation means 6, an FEM calculation means 7, etc. inside the computer. The element dividing means 5 divides the structure into elements and calculates node numbers and coordinate values. The data generation means 6 distributes the input original data to each node. The FEM calculation means 7 performs stress analysis using the finite element method.

前記応力解析装置1は、第2図に示すような同構造物8
、又は、第3図(a)、(b)に示すような欠円構造物
9,10を解析対象としている。(尚、第3図(a)と
(b)における欠円構造物9,10では、その切欠端部
がヒンジか固定かと言う拘束条件が相違している。) この様な円又は欠円構造物の具体例として、第13図に
示したシールドトンネルのセグメントリング等がある。
The stress analysis device 1 includes a structure 8 as shown in FIG.
Alternatively, the omitted circular structures 9 and 10 as shown in FIGS. 3(a) and 3(b) are targeted for analysis. (Note that the constraint conditions for the notched ends of the structures 9 and 10 in FIGS. 3(a) and 3(b) are different, such as whether the notched ends are hinged or fixed.) Such circular or broken circular structures A specific example of the object is a segment ring of a shield tunnel shown in FIG. 13.

前記応力解析装置1は、有限要素法によって構造物の応
力を解析するのであるが、構造物に作用する荷重条件と
して、次の5つのものを考慮している。
The stress analysis device 1 analyzes the stress of a structure using the finite element method, and considers the following five load conditions acting on the structure.

荷重条件j−1;−1;鉛 直型条件j−2;−2;水 平型条件j−3;自重・自重反力 荷重条件j−4;内圧 荷重条件j−5;節点集中荷重・反力 第2図に示すように、前記水平・鉛直荷重は、左右、上
下非対称でも入力することができる。また前記5つの荷
重条件を任意に組合せた解析も可能である。例えば荷重
条件をj=1.2.3と設定すれば、(鉛直荷重)+(
水平荷重)+(自重・自重反力)が作用するとして解析
する。
Load condition j-1;-1; Vertical condition j-2;-2; Horizontal condition j-3; Own weight/self-weight reaction load condition j-4; Internal pressure load condition j-5; Nodal concentrated load/reaction force As shown in FIG. 2, the horizontal and vertical loads can be input even if the horizontal and vertical loads are asymmetrical. It is also possible to perform an analysis using any combination of the five load conditions. For example, if the load condition is set as j = 1.2.3, (vertical load) + (
The analysis is performed assuming that horizontal load) + (self-weight/self-weight reaction force) acts.

更に、該応力解析装置1は、第2図に示す如く、抵抗土
圧(地盤反力)をバネ11として考慮している。この地
盤バネ11の強さkは、セグメントリングの途中で地層
が変る場合に対応して任意に変えることができる。
Furthermore, the stress analysis device 1 considers resistance earth pressure (ground reaction force) as a spring 11, as shown in FIG. The strength k of the ground spring 11 can be arbitrarily changed depending on the case where the ground layer changes in the middle of the segment ring.

前記応力解析袋W1へのデータ入力は、入力手段2を介
して対話形式で行なわれ、その原始入力データは、第4
図に示す如く、荷重条件j、構造物の弾性係数等の物性
値、図心半径Re、節点分割角度θ、拘束条件(接点の
固定またはヒンジ等)等からなる構造データと、地盤反
力係数k、鉛直荷重P、水平荷重T、節点荷重(集中荷
重)、自重、内圧等からなる荷重データから成る。
Data input to the stress analysis bag W1 is performed in an interactive manner via the input means 2, and the original input data is
As shown in the figure, structural data consisting of load conditions j, physical properties such as the structure's elastic modulus, centroid radius Re, node division angle θ, restraint conditions (fixed contact or hinges, etc.), etc., and the ground reaction force coefficient It consists of load data consisting of K, vertical load P, horizontal load T, nodal load (concentrated load), own weight, internal pressure, etc.

前記原始構造データは、前記要素分割手段5によって処
理される。即ち、要素分割手段5は、構造物を有限要素
法の要素に分割して、各要素の節点番号や座標値を求め
るものである。
The primitive structure data is processed by the element dividing means 5. That is, the element dividing means 5 divides the structure into elements according to the finite element method, and determines the node number and coordinate value of each element.

即ち、第5図に示す同構造物8の場合、入力項目は、図
心半径Rc、 (分割角度θまたは節点数n)であり、
該入力項目に対して、要素分割手段5では、節点番号!
とその節点の角度θtが、θi =(360” /n)
 X (1−IJ!=(θi/θ)+1 として計算され、各節点2の座標値xi、 yiが、x
i  −Rcxsinθt yi = Rc X cosθ1 として計算される。
That is, in the case of the same structure 8 shown in FIG. 5, the input items are the centroid radius Rc, (division angle θ or number of nodes n),
For the input item, the element dividing means 5 determines the node number!
and the angle θt of the node is θi = (360”/n)
X (1-IJ!=(θi/θ)+1, and the coordinate values xi and yi of each node 2 are x
It is calculated as i-Rcxsinθt yi = Rc X cosθ1.

第6図に示す欠円構造物9の場合は、前記入力項目の他
に、開口角度A、Bが追加入力される。
In the case of the missing circular structure 9 shown in FIG. 6, opening angles A and B are additionally input in addition to the above input items.

そして、開口部の節点番号a、bが、 a =−int (−A/θ)+1 b−躇t (B/θ)+1 但し、1nt(r)は、Xを越えない最大の整数を表す
Then, the node numbers a and b of the hesitation opening are a = -int (-A/θ)+1 b-t (B/θ)+1 However, 1nt(r) represents the largest integer that does not exceed X. .

と計算して求められる。It is obtained by calculating.

前記要素分割手段5で求められた節点番号1や、座標値
xi、yi等を、最初に入力した原始データと区別する
ため、以下、節点構造データと言う。
The node number 1, coordinate values xi, yi, etc. obtained by the element dividing means 5 are hereinafter referred to as node structure data in order to distinguish them from the initially input original data.

次に、前記節点構造データと、原始荷重データから、各
節点に作用する節点荷重データが、前記データ生成手段
6によって求められる。
Next, the nodal load data acting on each node is determined by the data generating means 6 from the nodal structure data and the original load data.

まず、データ生成手段6によってバネ定数が計算される
First, the data generation means 6 calculates a spring constant.

即ち、第7図に示す如く、節点1に取りつくバネとして
の負担範囲を、(θ1−θ/2)から(θ1+θ/2)
までとして、水平方向地盤バネに対しては、X方向投影
長(L+−+1)を、鉛直方向地盤バネに対してはy方
向投影長(Li )を求め、地盤反力係数にと夫々の投
影長の積をバネ定数とする。
That is, as shown in Fig. 7, the load range of the spring attached to node 1 is from (θ1-θ/2) to (θ1+θ/2).
For the horizontal ground spring, find the projected length in the X direction (L+-+1), and for the vertical ground spring, find the projected length in the y direction (Li), and calculate the respective projections to the ground reaction force coefficient. Let the product of the length be the spring constant.

即ち、原始荷重データの入力項目の水平地盤反力係数k
Hi(L / n()と、鉛直地盤反力係数kvi(t
/m)に対し、各節点iに作用する水平方向バネ定数k
Hf(t/m)及び鉛直方向バネ定数kvi(t/m)
を次式で計算する。(但し、バネ定数は奥行1.0m当
りのイ直である。) L、11−2×Rcxsin(θ/2)X、stnθi
  (m)L、vi= 2 ×Rcxsin(θ/;l
) X cosθ! (m)kH1=kHiXL、l1
X1.0    (t/m)kv1=kvtxLvt×
1.0    (t / m)更に、データ生成手段6
によって各節点iに作用する荷重が計算される。即ち、
原始荷重データの鉛直荷重Pや水平荷重Tが各節点に配
分される。
In other words, the horizontal ground reaction force coefficient k of the input item of the original load data
Hi(L/n() and vertical ground reaction force coefficient kvi(t
/m), the horizontal spring constant k acting on each node i
Hf (t/m) and vertical spring constant kvi (t/m)
is calculated using the following formula. (However, the spring constant is straight per 1.0m depth.) L, 11-2×Rcxsin(θ/2)X, stnθi
(m) L, vi= 2 ×Rcxsin(θ/;l
) X cosθ! (m) kH1=kHiXL, l1
X1.0 (t/m)kv1=kvtxLvt×
1.0 (t/m) Furthermore, data generation means 6
The load acting on each node i is calculated by That is,
The vertical load P and horizontal load T of the original load data are distributed to each node.

第8図に示すものは、シールド頂部水平荷重T(t /
 m )と、シールド底部水平荷重T、(t/m)が入
力された場合の各節点lの荷重tiを求めるための説明
であり、各節点荷重t1は、 tt=TI+((Tz  T+)X Iyt  y+ 
I /(2xRc))として計算される。
The shield top horizontal load T (t/t/
This is an explanation for finding the load ti at each node l when the shield bottom horizontal load T, (t/m) is input, and the load t1 at each node is as follows: tt=TI+((Tz T+)X Iyt y+
I/(2xRc)).

更に、前記データ生成手段6では、自重反力の計算が行
なわれる。第9図は完全円の構造物の場合の自重反力を
等分布と考える場合であり、入力項目はリングの自重、
即ち、その材料の単位長さ当りの重さg(t/m)であ
る。この自重gがら、リング全体の重さWが次式で求め
られる。
Furthermore, the data generation means 6 calculates the self-weight reaction force. Figure 9 shows the case where the self-weight reaction force for a perfectly circular structure is considered to be equally distributed, and the input items are the self-weight of the ring,
That is, it is the weight g (t/m) per unit length of the material. From this weight g, the weight W of the entire ring is determined by the following formula.

j2 i  = 2 x Rc/ n そして、反力IIR=R,は として求められる。j2 i = 2 x Rc/n And the reaction force IIR=R, is It is required as.

第10図は、欠円構造の場合の自重反力を不等辺分布と
考える場合であり、この場合、自重反力は次式で求めら
れる。
FIG. 10 shows a case where the self-weight reaction force in the case of a missing circular structure is considered as a scalene distribution, and in this case, the self-weight reaction force is obtained by the following equation.

ei;  4番目の部材の重心距離。ei; Center of gravity distance of the fourth member.

以上のようにしてデータ生成手段6で求められた節点荷
重データと、要素分割手段5で求められた節点構造デー
タは、FEM計算手段7で処理できるように編集され、
FEM解析が行なわれる。
The nodal load data obtained by the data generation means 6 as described above and the nodal structure data obtained by the element division means 5 are edited so that they can be processed by the FEM calculation means 7,
FEM analysis is performed.

このFEM計算手段7における処理の詳細が第12図に
示されている。
Details of the processing in this FEM calculation means 7 are shown in FIG.

まず、荷重条件設定値より、自重の場合(j=3)と自
重以外の荷重条件の場合(j−1,2,4,5)に分け
て処理が行なわれる。
First, based on the load condition setting values, processing is performed separately for the case of dead weight (j=3) and the case of load conditions other than dead weight (j-1, 2, 4, 5).

自重以外の荷重条件の場合、節点構造データ、節点荷重
データ及び拘束条件(ヒンジか又は固定か等)から有限
要素法により、断面力が計算され即ち、剛性行列Kが作
成され、連立方程式U=に一’Fが求められる。
In the case of load conditions other than self-weight, the cross-sectional force is calculated using the finite element method from the nodal structure data, nodal load data, and restraint conditions (hinge or fixed, etc.), that is, the stiffness matrix K is created, and the simultaneous equation U= 1'F is required.

そして、この解析において、第11図に示すように、変
形後の半径R゛が最初の半径Reよりも小さくなると、
その部分には地盤バネ11は作用しないとして、該地盤
バネ11を取外し、再度計算を行なわせる。
In this analysis, as shown in FIG. 11, when the radius R after deformation becomes smaller than the initial radius Re,
Assuming that the ground spring 11 does not act on that part, the ground spring 11 is removed and the calculation is performed again.

即ち、地盤をバネと考え、(抵抗土圧)地盤反力を評価
するに当り、シールドトンネル用セグメントリング8が
地山側(外側)へ変形する場合に限って(抵抗土圧)地
盤反力は作用し、内側へ変形する場合は地盤は引張力に
抵抗しないため、地盤バネ11は作用しないとしている
In other words, when considering the ground as a spring and evaluating the ground reaction force (resistance earth pressure), the ground reaction force (resistance earth pressure) is only when the shield tunnel segment ring 8 deforms toward the ground (outside). When the tensile force is applied and deforms inward, the ground does not resist the tensile force, so the ground spring 11 does not act.

従って、荷重によって節点2がΔX、Δy変形したとす
れば、 R’= 4 (xi+Δx)” +(yi+Δy)”と
なり、 R’>RcO時、バネ11は作用し、バネ反力が外力と
しで働く、 R’<RcO時は、バネに引張力が働くので外し、再計
算を行なう。以下、収束するまで、この計算を繰返す。
Therefore, if node 2 is deformed by ΔX and Δy due to the load, R' = 4 (xi + Δx)" + (yi + Δy)" When R'> RcO, the spring 11 acts, and the spring reaction force acts as an external force. When R'<RcO, a tensile force is applied to the spring, so remove it and recalculate. This calculation is repeated until convergence.

そして、断面力f、=に−Uの計算を行ない、各節点の
変位U1、モーメントMi、軸力N1、剪断力Qiを求
める。
Then, -U is calculated for the cross-sectional force f, =, and the displacement U1, moment Mi, axial force N1, and shearing force Qi of each node are determined.

荷重条件がj=3の自重の場合は、地盤バネの考慮をし
ない場合もあるため、他の荷重条件の場合と処理を別け
ている。しかし、解析手順は前記の場合と原則的に同じ
である。
When the load condition is self-weight with j=3, the ground spring may not be considered, so the processing is different from that for other load conditions. However, the analysis procedure is basically the same as in the previous case.

そして、自動解析の結果として、変位U3、モーメン)
L、軸力N8、剪断力口、を求め、次に、前記他の荷重
条件で求めた値を加えて解析結果として、U=ΣUj M−ΣMj N−ΣNj Q=ΣQj を求める。
And as a result of automatic analysis, displacement U3, moment)
L, axial force N8, and shear force are determined, and then the values determined under the other load conditions are added to obtain the analysis results U=ΣUj M−ΣMj N−ΣNj Q=ΣQj.

これらの結果は、第4図に示す如く、出力手段3を介し
てリスト形式で出力され、また、図化処理されて図面と
して出力される。
As shown in FIG. 4, these results are outputted in a list format via the output means 3, and are also plotted and outputted as drawings.

1 尚、本発明は前記実施例に限定されるものではない。1 Note that the present invention is not limited to the above embodiments.

(発明の効果) 本発明によれば、地盤反力をバネ力と仮定して有限要素
法によりシールドトンネル用セグメントリングの応力を
解析し、その結果、前記セグメントリングの変形前の半
径Reに対し、変形後の半径R″が、R’<Rcとなっ
た範囲のバネ力を解除し、再度応力解析を行うことを特
徴とするものであるから、正確な応力解析を行うことが
出来るようになった。
(Effects of the Invention) According to the present invention, the stress of the segment ring for a shield tunnel is analyzed by the finite element method assuming that the ground reaction force is a spring force, and as a result, the radius Re of the segment ring before deformation is , the spring force in the range where the radius R'' after deformation is R'<Rc is released and the stress analysis is performed again, so that accurate stress analysis can be performed. became.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す応力解析装置の構成を示
すブロック図、第2図は同構造物のモデル図、第3図は
欠円構造物のモデル図、第4図は本実施例の応力解析装
置の機能を示すブロック図、第5図及び第6図は要素分
割手段の機能を説明するための説明図、第7図乃至第1
0図はデータ生成手段の機能を説明するための図面であ
り、第7図はバネ定数の計算の説明図、第8図は荷重配
分の2 計算の説明図、第9図及び第10図は自重反力の計算の
説明図、第11図はFEM計算手段の機能を説明するた
めの図面であってバネ脱着の判別の説明図、第12図は
FEM計算手段の機能を説明するだめのフローチャート
、第13図はシールドトンネルの断面図、第14図は荷
重図、第15図は断面方図である。 1・・・応力解析装置、5・・・要素分割手段、6・・
・データ生成手段、7・・・FEM計算手段、8,9.
10・・・シールドトンネル用セグメントリング。 特開平3−148037 (6) −イづ=しb2
Fig. 1 is a block diagram showing the configuration of a stress analysis device showing an embodiment of the present invention, Fig. 2 is a model diagram of the same structure, Fig. 3 is a model diagram of a missing circular structure, and Fig. 4 is a diagram of the present implementation. A block diagram showing the functions of the example stress analysis device, FIGS. 5 and 6 are explanatory diagrams for explaining the functions of the element dividing means, and FIGS.
Figure 0 is a diagram for explaining the function of the data generation means, Figure 7 is an explanatory diagram of the calculation of the spring constant, Figure 8 is an explanatory diagram of the calculation of the load distribution, and Figures 9 and 10 are diagrams for explaining the calculation of the load distribution. FIG. 11 is an explanatory diagram of the calculation of self-weight reaction force. FIG. 11 is a diagram for explaining the function of the FEM calculation means and is an explanatory diagram of determining whether the spring is attached or detached. FIG. 12 is a flowchart for explaining the function of the FEM calculation means. , FIG. 13 is a sectional view of the shield tunnel, FIG. 14 is a load diagram, and FIG. 15 is a sectional view. 1... Stress analysis device, 5... Element division means, 6...
- Data generation means, 7... FEM calculation means, 8, 9.
10... Segment ring for shield tunnel. JP-A-3-148037 (6) -izu=shi b2

Claims (1)

【特許請求の範囲】[Claims] (1)地盤反力をバネ力と仮定して有限要素法によりシ
ールドトンネル用セグメントリングの応力を解析し、そ
の結果、前記セグメントリングの変形前の半径(Rc)
に対し、変形後の半径(R’)が、R’<Rcとなった
範囲のバネ力を解除し、再度応力解析を行うことを特徴
とするシールドトンネル用セグメントリングの応力解析
方法。
(1) Assuming that the ground reaction force is a spring force, the stress of the segment ring for a shield tunnel is analyzed using the finite element method, and as a result, the radius (Rc) of the segment ring before deformation is determined.
A stress analysis method for a segment ring for a shield tunnel, characterized in that the spring force in the range where the radius (R') after deformation satisfies R'<Rc is released and the stress analysis is performed again.
JP28773789A 1989-11-04 1989-11-04 Method for analyzing stress in segment ring for shield tunnel Pending JPH03148037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28773789A JPH03148037A (en) 1989-11-04 1989-11-04 Method for analyzing stress in segment ring for shield tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28773789A JPH03148037A (en) 1989-11-04 1989-11-04 Method for analyzing stress in segment ring for shield tunnel

Publications (1)

Publication Number Publication Date
JPH03148037A true JPH03148037A (en) 1991-06-24

Family

ID=17721105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28773789A Pending JPH03148037A (en) 1989-11-04 1989-11-04 Method for analyzing stress in segment ring for shield tunnel

Country Status (1)

Country Link
JP (1) JPH03148037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458242A (en) * 2014-12-28 2015-03-25 上海隧道工程股份有限公司 Rectangular shield segment test loading device
CN104533470A (en) * 2014-11-03 2015-04-22 同济大学 Standing type mechanical loading device for three-ring prototype irregular shield segment
CN106855446A (en) * 2017-02-22 2017-06-16 北京城建集团有限责任公司 The longitudinal stress monitoring system and monitoring method of minor diameter aqueduct shield duct piece
CN115452572A (en) * 2022-09-14 2022-12-09 中国地质大学(武汉) Test device and method for testing neutral axis position and longitudinal equivalent bending rigidity of shield tunnel
CN118624422A (en) * 2024-08-15 2024-09-10 中铁十四局集团房桥有限公司 Loading equipment for shield tunnel lining segment bending test

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533470A (en) * 2014-11-03 2015-04-22 同济大学 Standing type mechanical loading device for three-ring prototype irregular shield segment
CN104458242A (en) * 2014-12-28 2015-03-25 上海隧道工程股份有限公司 Rectangular shield segment test loading device
CN106855446A (en) * 2017-02-22 2017-06-16 北京城建集团有限责任公司 The longitudinal stress monitoring system and monitoring method of minor diameter aqueduct shield duct piece
CN106855446B (en) * 2017-02-22 2019-04-09 北京城建集团有限责任公司 The longitudinal stress monitoring system and monitoring method of minor diameter aqueduct shield duct piece
CN115452572A (en) * 2022-09-14 2022-12-09 中国地质大学(武汉) Test device and method for testing neutral axis position and longitudinal equivalent bending rigidity of shield tunnel
CN115452572B (en) * 2022-09-14 2024-04-02 中国地质大学(武汉) Test device and method for testing neutral axis position and longitudinal equivalent bending stiffness of shield tunnel
CN118624422A (en) * 2024-08-15 2024-09-10 中铁十四局集团房桥有限公司 Loading equipment for shield tunnel lining segment bending test

Similar Documents

Publication Publication Date Title
Hohlfeld et al. Unfolding the sulcus
Barth et al. Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics
Dufva et al. Analysis of thin plate structures using the absolute nodal coordinate formulation
Sulem et al. A continuum model for periodic two‐dimensional block structures
Tan et al. Efficient and accurate multilayer solid‐shell element: non‐linear materials at finite strain
Wu et al. Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements
Jiang et al. Discontinuous deformation analysis based on variational inequality theory
Li et al. Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes
Acosta et al. Development of an implicit contact technique for the material point method
JPH03148037A (en) Method for analyzing stress in segment ring for shield tunnel
Kiris et al. On the identification of microstretch elastic moduli of materials by using vibration data of plates
Nicot et al. On Hill’s lemma in continuum mechanics
Hosseini et al. Presenting a modified SPH algorithm for numerical studies of fluid-structure interaction problems
Roberts The invariant manifold of beam deformations: Part 1: the simple circular rod
Poojary et al. In-plane vibration of curved beams subjected to moving loads using finite element method
Mahmoud et al. Dynamic contact of deformable bodies
Freddi et al. An enriched damage-frictional cohesive-zone model incorporating stress multi-axiality
Jirásek Conditions of uniqueness for finite elements with embedded cracks
JPH03148772A (en) Stress analysis device of circular and imperfect circular structure
Wang et al. A beam segment element for dynamic analysis of large aqueducts
Chambon et al. A comparison of incremental behaviour of elastoplastic and CLoE models
Hori et al. Meta-Modeling for Consistent Seismic Response Analysis
Indeitsev et al. Differential resonant MEMS accelerometer: Synchronization characteristics of weakly coupled microbeam sensing elements
Xinping et al. The damage fracture analysis of a jointed rock mass and its application in engineering
Seifert et al. Consistent linearization and finite element implementation of an incrementally objective canonical form return mapping algorithm for large deformation inelasticity