JPH03148002A - Measuring method of size of object - Google Patents

Measuring method of size of object

Info

Publication number
JPH03148002A
JPH03148002A JP28716989A JP28716989A JPH03148002A JP H03148002 A JPH03148002 A JP H03148002A JP 28716989 A JP28716989 A JP 28716989A JP 28716989 A JP28716989 A JP 28716989A JP H03148002 A JPH03148002 A JP H03148002A
Authority
JP
Japan
Prior art keywords
light
measured
luminous flux
distance
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28716989A
Other languages
Japanese (ja)
Other versions
JPH0678887B2 (en
Inventor
Yuzuru Nishiguchi
西口 譲
Masaaki Kobayashi
政明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Denshi Co Ltd
Original Assignee
Shinko Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Denshi Co Ltd filed Critical Shinko Denshi Co Ltd
Priority to JP28716989A priority Critical patent/JPH0678887B2/en
Publication of JPH03148002A publication Critical patent/JPH03148002A/en
Publication of JPH0678887B2 publication Critical patent/JPH0678887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure with high accuracy by using an assisting luminous flux which connects a light emitting element with a confronting light receiving element slantwise in addition to main luminous fluxes connecting the both elements. CONSTITUTION:A light emitting unit 1 and a light receiving unit 2 are provided perpen dicular to a reference surface 3, with a distance R therebetween. A body A to be measured butts against a guide 4 in a manner that a distance S between an upper left corner B of the body A and the unit 2 in a direction of a luminous flux is 4/1 the distance R. Basically, every pair of a light emitting element L and a photodetecting element P is sequentially scanned in the order of L1P1, L2P2,.... At this time, since main luminous fluxes l1 - l5 are interrupted by the body A, all the outputs of elements P1 - P5 are OFF. On the other hand, a main luminous flux l6 is not hindered, and therefore an output of an element P6 becomes ON. Then, an element L7 of a main luminous flux l7 next to the main luminous flux l6 is connected with the element P5 of the main luminous flux l5 by an assisting luminous flux l75 and scanned. Since the luminous flux l75 is shielded by the body A at this time thereby to turn the element P5 OFF, a larger one of the two values temporarily detected by the main luminous flux l is used as a measuring value of the scanning result of the luminous flux l75.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、直方体状物体である被測定体の高さ・幅・奥
行寸法を光電的に無接触かつ高分解能で測定する物体寸
法測定方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an object dimension measuring method for photoelectrically measuring the height, width, and depth of a rectangular object to be measured without contact and with high resolution. It is related to.

[従来の技術] 発光ダイオードのような発光素子と、フォトダイオード
のような受光素子を平行な2列の発光ユニット、受光ユ
ニット上にそれぞれ等間隔で多数個配列し、対向する発
光素子と受光素子とを結ぶ各平行光束のうち、被測定体
により遮光された光束の本数を計数し、被測定体の寸法
、例えば高さ等を測定する光電式の装置は従来から知ら
れている。
[Prior Art] A large number of light-emitting elements such as light-emitting diodes and light-receiving elements such as photodiodes are arranged at equal intervals on two parallel rows of light-emitting units and light-receiving units, and the light-emitting elements and light-receiving elements face each other. A photoelectric device is conventionally known that measures the dimensions of the object to be measured, such as its height, by counting the number of beams of light that are blocked by the object to be measured, among the parallel beams of light connecting the objects.

第6図はこのような従来の物体寸法測定方法を示してお
り、■は発光素子り、〜L、を配列した発光ユニット、
2は受光素子P1〜Pl+を配列した受光ユニットであ
り、両者は相互に平行で、かつ両者を結合する基準面3
に対して垂直方向に配設されている。発光ユニット1、
受光ユニット2において、基準面3の上に測定すべき被
測定体Aを置くと、発光素子L1〜L5から発した光束
は被測定体Aで遮光されるために受光素子P1〜P、に
到達せず、一方で発光素子L6〜Ll+からの光束はそ
れぞれ受光素子P6〜pHで受光されることから、被測
定体Aの上面は光束i!sとβ6の中間にあると判定さ
れる。
FIG. 6 shows such a conventional method for measuring object dimensions, where ■ is a light-emitting unit in which light-emitting elements L, ~L are arranged;
2 is a light receiving unit in which light receiving elements P1 to Pl+ are arranged, both of which are parallel to each other, and a reference plane 3 that connects them.
It is arranged perpendicularly to the Light emitting unit 1,
In the light receiving unit 2, when the object A to be measured is placed on the reference surface 3, the light beams emitted from the light emitting elements L1 to L5 are blocked by the object A and reach the light receiving elements P1 to P. On the other hand, the luminous fluxes from the light emitting elements L6 to Ll+ are received by the light receiving elements P6 to pH, respectively, so that the upper surface of the object A is illuminated by the luminous flux i! It is determined that it is between s and β6.

具体的な測定シーケンスは、L、P、、L2P2、Ls
P−1・・・の順序で発光素子し、受光素子Pが1対ず
つ結ばれて逐次動作状態になるように走査した場合に、
被測定体Aで遮光された受光素子P1〜P、の出力は何
れもオフのままであるが、主光束26〜β1.は遮光さ
れないため受光素子L6以降の出力はオンになる。そこ
で、隣接する遮光光束β6と非遮光光束β6との間に、
被測定体Aの上面が存在するものと判定し、遮光された
光束β1〜β5の本数から高さHを測定することができ
る。
The specific measurement sequence is L, P, , L2P2, Ls
When scanning is performed so that the light emitting elements are connected in the order of P-1... and the light receiving elements P are connected one pair at a time and are sequentially in operation,
The outputs of the light receiving elements P1 to P, which are shielded by the object A, remain off, but the principal beams 26 to β1. is not shielded from light, so the outputs from the light receiving element L6 onwards are turned on. Therefore, between the adjacent shaded light flux β6 and unblocked light flux β6,
It is determined that the upper surface of the object to be measured A is present, and the height H can be measured from the number of blocked light beams β1 to β5.

第7図は第6図の従来装置において、被測定体Aの高さ
Hが連続的に変化した場合に、測定値がどのように変化
するかを例示したものであり、理解を容易にするために
、素子間隔つまり平行な主光束βの相互の間隔を1cm
と仮定して数値を記入したものである。この場合に、素
子間隔の1cmを分解能とし、1cm単位で表示が変化
するディジタル量として測定値が与えられる。
Figure 7 is an example of how the measured value changes when the height H of the object A changes continuously in the conventional device shown in Figure 6, making it easier to understand. Therefore, the element spacing, that is, the mutual spacing of parallel principal beams β, is set to 1 cm.
The values are entered assuming that. In this case, the resolution is 1 cm between the elements, and the measured value is given as a digital quantity whose display changes in units of 1 cm.

[発明が解決しようとする課題] しかしながら、このような従来方法の測定においては、
原理上も実際上も素子間隔よりも細かい分解能は得られ
ない。高分解能を得るためには、素子間隔を更に狭くし
て、多数の発光素子し、受光素子Pを用いる必要がある
ため装置が高価になるばかりか、実際には発光素子し、
受光素子Pの大きさや取付寸法上の制約により、0.5
cmよりも狭い素子間隔や分解能を得ることが難しいと
いう問題点がある。
[Problem to be solved by the invention] However, in measurement using such a conventional method,
In principle and in practice, it is not possible to obtain a resolution finer than the element spacing. In order to obtain high resolution, it is necessary to narrow the element spacing, use a large number of light emitting elements, and use a large number of light receiving elements P, which not only makes the device expensive, but also requires the use of light emitting elements.
0.5 due to restrictions on the size of the photodetector P and mounting dimensions.
There is a problem in that it is difficult to obtain element spacing and resolution narrower than cm.

本発明の目的は、上述の問題点を解決するための手段と
して1発光ユニツトと受光ユニットに平行する方向の直
方体状の被測定体の寸法を、発光素子及び受光素子の配
置間隔よりも細かい分解能で測定し得る物体寸法測定方
法を提供することにある。
As a means for solving the above-mentioned problems, it is an object of the present invention to reduce the dimensions of a rectangular parallelepiped-shaped object to be measured in the direction parallel to one light-emitting unit and one light-receiving unit to a resolution finer than the arrangement spacing between the light-emitting element and the light-receiving element. The object of the present invention is to provide a method for measuring the dimensions of an object.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係る物体寸法測
定方法においては、発光素子を等間隔で直線上に配列し
た発光ユニットと、受光素子を同一等間隔で直線上に配
列した受光ユニットとを距離Rを隔てて平行に配設し、
対向する前記発光素子と受光素子をそれぞれ対として結
ぶ平行な主光束のうち、前記発光ユニットと受光ユニッ
ト間に置いた直方体状の被測定体により遮光又は非遮光
の主光束の本数を計数し被測定体の寸法を求める方法に
おいて、前記受光ユニット又は発光ユニットと被測定体
の側面との距離Sが前記距離Rの整数分の1になるよう
に被測定体を配置し、遮光・非遮光に分れる2本の隣接
した主光束の近辺で、対向しない前記発光素子と受光素
子とを主光束に対して斜めに結び一部又は全部が前記両
主光束の間を通る少なくとも1本の補助光束を使用し、
前記主光束及び補助光束の遮光・非遮光の別による前記
受光素子の出力を判定することにより、前記発光ユニッ
トと受光ユニットに平行する方向の被測定体の寸法を測
定することを特徴とする方法である。
[Means for Solving the Problem] In order to achieve the above object, in the object dimension measuring method according to the present invention, a light-emitting unit in which light-emitting elements are arranged in a straight line at equal intervals, and a light-receiving element are arranged in a straight line at equal intervals. and the light receiving units arranged in a straight line are arranged in parallel with a distance R apart,
Of the parallel principal beams connecting the light-emitting element and the light-receiving element facing each other as a pair, the number of principal beams that are blocked or unblocked by the rectangular parallelepiped-shaped object placed between the light-emitting unit and the light-receiving unit is counted. In the method of determining the dimensions of the object to be measured, the object to be measured is arranged so that the distance S between the light receiving unit or the light emitting unit and the side surface of the object to be measured is an integral fraction of the distance R, and the object is light-shielded or unshaded. Near the two adjacent principal beams that are separated, the light emitting element and the light receiving element that do not face each other are connected diagonally to the principal beam to form at least one auxiliary beam, part or all of which passes between the two principal beams. use,
A method characterized in that the dimensions of the object to be measured in a direction parallel to the light emitting unit and the light receiving unit are measured by determining the output of the light receiving element depending on whether the main light beam and the auxiliary light beam are blocked or not. It is.

[作用] 上記の構成を有する物体寸法測定方法は、対向する発光
素子と受光素子とを結ぶ主光束の他に、発光素子と受光
素子とを斜めに結ぶ補助光束を使用することにより測定
を行う。
[Operation] The object dimension measurement method having the above configuration performs measurement by using, in addition to the main beam that connects the light emitting element and the light receiving element facing each other, an auxiliary beam that connects the light emitting element and the light receiving element diagonally. .

[実施例] 本発明を第1図〜第5図に図示の実施例に基づいて詳細
に説明する。
[Example] The present invention will be described in detail based on the example illustrated in FIGS. 1 to 5.

第1図は実施例として、1本の補助光束を併用すること
により、素子間隔つまり主光束βの間隔を実質上2分割
して測定する方法を示したものである。第6図の従来方
法と一部が類似しており、第6図と同一の符号は同一の
構成部材を示している。発光ユニットlと受光ユニット
2は距離Rを隔てて相互に平行でかつ基準面3に対し垂
直方向に配設されている。被測定体Aの左側面、厳密に
は左上角B点と受光ユニット2との光束方向の距離Sを
距離Rの4分の1となるようにして、基準面3上に設け
られたガイド4に当接して被測定体Aを置く。ただし、
ガイド4を測定装置外の被測定体Aの搬入口に設けると
か、ガイド4を省略して代りに基準面3上にガイドライ
ンを表示しても支障はない。
FIG. 1 shows, as an example, a method of measuring the element interval, that is, the interval of the principal beam β, by dividing it into two substantially by using one auxiliary beam in combination. This method is partially similar to the conventional method shown in FIG. 6, and the same reference numerals as in FIG. 6 indicate the same components. The light emitting unit 1 and the light receiving unit 2 are arranged parallel to each other with a distance R apart from each other and perpendicular to the reference plane 3. A guide 4 is installed on the reference plane 3 so that the distance S in the direction of the light beam between the left side surface of the object A, more precisely, the upper left corner point B, and the light receiving unit 2 is one quarter of the distance R. Place the object to be measured A in contact with the however,
There is no problem even if the guide 4 is provided at the entrance of the object A to be measured outside the measuring device, or if the guide 4 is omitted and a guideline is displayed on the reference surface 3 instead.

最下部の光束と基準面3との間隔α2は、測定目的や表
示手段に応じて、適宜の値を選定できるが、理解を容易
にするために素子間隔の0.75倍を採用して以下に説
明する。第6図の従来装置と同様に基本的なシーケンス
はl+P+、L、β2、L3P、、・・・の順序で、発
光素子L、受光素子Pが1対ずつ結合して動作状態にな
るように逐次に走査する。その際に、主光束2.〜f2
8は被測定体Aで遮光されるため、受光素子P、〜P、
の出力は何れもオフのままであるが、主光束β6は遮光
されないために受光素子P6の出力はオンになる。そこ
で、被測定体Aの上面は主光束I2sと16の中間にあ
ることを知り、主光束の逐次走査を終了する。簡単のた
めに、素子間隔が1cmの場合を例にすると、主光束β
のみの走査結果として被測定体Aの高さHは5.0cm
又は5.5cmの何れかであると仮に判定する。
The distance α2 between the lowest luminous flux and the reference surface 3 can be selected as appropriate depending on the measurement purpose and display means, but for ease of understanding, 0.75 times the element spacing is adopted and the following value is used. Explain. Similar to the conventional device shown in Fig. 6, the basic sequence is l+P+, L, β2, L3P, . . . so that the light-emitting element L and the light-receiving element P are coupled one pair at a time to become operational. Scan sequentially. At that time, the main luminous flux 2. ~f2
8 is shielded from light by the object to be measured A, so the light receiving elements P, ~P,
The outputs of the light-receiving element P6 remain off, but the output of the light-receiving element P6 is turned on because the principal beam β6 is not blocked. Then, it is learned that the upper surface of the object A is located between the principal beams I2s and 16, and the sequential scanning of the principal beams I2s and 16 is completed. For simplicity, taking as an example the case where the element spacing is 1 cm, the principal luminous flux β
As a result of scanning only, the height H of the object A is 5.0 cm.
or 5.5 cm.

次に、主光束の逐次走査時に初めてオンになった主光束
β6の次の主光束β□用の発光素子L7と、最後に出力
がオフとなった主光束尼、用の受光素子P、とを補助光
束β7sにより結んで走査する。補助光束f2?、は主
光束βに対して僅かに傾斜し、その一部は遮光・非遮光
が分れる隣接した2本の主光束ρ6.β6の間を通って
いる。図示の状態においては、補助光束β7sは被測定
体Aで遮光されて受光素子P5がオフであるから、補助
光束β7.による走査の結果として、主光束βにより仮
判定された2値のうちの大きい方の5.5cmを測定値
として採用する。もし、補助光束β76が被測定体Aで
遮光されることなく受光素子P、の出力がオンになれば
、測定値を5.0cmに決定する。
Next, the light emitting element L7 for the principal beam β□ next to the principal beam β6 which was turned on for the first time during the sequential scanning of the principal beam, and the light receiving element P for the principal beam β□ whose output was turned off last. are connected by the auxiliary light beam β7s and scanned. Auxiliary light flux f2? , is slightly inclined with respect to the principal ray β, and a part thereof is divided into two adjacent principal rays ρ6. It passes between β6. In the illustrated state, the auxiliary light beam β7s is blocked by the object A and the light receiving element P5 is off, so the auxiliary light beam β7s. As a result of the scanning, the larger value of 5.5 cm of the two values tentatively determined based on the principal beam β is adopted as the measured value. If the output of the light receiving element P is turned on without the auxiliary light beam β76 being blocked by the object A, the measured value is determined to be 5.0 cm.

第2図は第7図の従来方法の特性例と同様に、被測定体
Aの高さHが変化した場合に、第1図の方法の測定値が
どのように変化するかを示したものである。図示の通り
、分解能つまり測定最小単位は素子間隔である1cmを
2分割した0、5cmに向上し、測定値と真値との差つ
まり丸めによる測定誤差は全て±0.25cm以内に収
まっている。真値が0.75cm以下では0表示になる
が、もしこの0付近の領域をも有効な測定範囲に含める
場合には、主光束I21と基準面3との間隔α2を0.
25cmとし、0.25cm以上での高さHの増加分に
対して、0から0.5cmずつ測定値が増加するように
表示させるなどして対処することができる。
Similar to the characteristic example of the conventional method shown in Fig. 7, Fig. 2 shows how the measured value using the method shown in Fig. 1 changes when the height H of the object to be measured A changes. It is. As shown in the figure, the resolution, that is, the minimum measurement unit, has been improved to 0.5 cm, which is obtained by dividing the element spacing of 1 cm into two, and the difference between the measured value and the true value, that is, the measurement error due to rounding, is all within ±0.25 cm. . If the true value is 0.75 cm or less, it will be displayed as 0, but if you want to include the area around 0 in the effective measurement range, set the interval α2 between the principal luminous flux I21 and the reference surface 3 to 0.
25 cm, and an increase in height H of 0.25 cm or more can be handled by displaying the measured value in increments of 0.5 cm from 0.

測定シーケンスや光束の走査については、必ずしも前述
の基本的な方法によらずに他の方法を採用することがで
きる。例えば、発光素子りと受光素子Pを逐次に結んで
動作させる順序を、L+P+、L、IP、、L2P2、
L4P、、LaPs、LsPs、L4P4、L、β4、
L、Ps、 L、β6、L、P、、・・(光束で云えば
、β1、I231・122・β42・I2s・β53隻
!4・β64・J21+、氾?++、Q6、・・)とい
うように、主光束と補助光束とを交互に走査し、遮光さ
れた光束の1本ごとに測定最小単位ずつ測定値を加える
ようにしてもよい。
Regarding the measurement sequence and scanning of the light flux, other methods can be adopted without necessarily using the above-mentioned basic method. For example, the order in which the light emitting element and the light receiving element P are successively connected and operated is L+P+, L, IP,, L2P2,
L4P, , LaPs, LsPs, L4P4, L, β4,
L, Ps, L, β6, L, P,... (in terms of luminous flux, β1, I231, 122, β42, I2s, β53 ships! 4, β64, J21+, flood?++, Q6,...) In this way, the main light beam and the auxiliary light beam may be scanned alternately, and a measurement value may be added in the minimum measurement unit for each blocked light beam.

以上のような理論特性とは別に、装置の寸法誤差、被測
定体Aを置く位置についての操作上の誤差、及び直方体
状の被測定体Aの角が丸みを帯びている場合に発生する
実際上の測定誤差を検討する。先ず、被測定体Aの左側
面と受光ユニット2との距離Sの実際値が設計値、例え
ば10cmに対する±lO%つまり±1cm変化した場
合を想定してみる。この場合に発生する現象は、例えば
測定値を5.0cmと5.5cmとに切換える境界点の
真値の大きさが本来は5.25cmであるのに対し、5
.2cm〜5.3cmの範囲内で変化すること、即ち境
界点が理論値から±0.050mずれることであるが、
真値が5.17cmとか5.32cmというような場合
の測定値は、それぞれ5.0cmと5.5cmのままで
あり、距離Sの変動に拘わらず変化することはない。
Apart from the theoretical characteristics mentioned above, there are also dimensional errors of the device, operational errors in the position of the measurement object A, and actual errors that occur when the corners of the rectangular parallelepiped measurement object A are rounded. Consider the measurement error above. First, let us assume that the actual value of the distance S between the left side surface of the object to be measured A and the light receiving unit 2 changes by ±10%, that is, ±1 cm with respect to the design value, for example, 10 cm. The phenomenon that occurs in this case is that, for example, the true value of the boundary point that switches the measured value between 5.0 cm and 5.5 cm is originally 5.25 cm, but
.. It varies within the range of 2 cm to 5.3 cm, that is, the boundary point deviates by ±0.050 m from the theoretical value,
When the true value is 5.17 cm or 5.32 cm, the measured values remain 5.0 cm and 5.5 cm, respectively, and do not change regardless of changes in the distance S.

次に、第1図の被測定体Aの左上隅B点が点線で示した
ように丸みを帯びている場合には、発光ユニット1と受
光ユニット2間の距離Rと素子間隔の比を例えば40対
1とすると、丸みの半径が1cmであれば、前の実施例
と同様に測定値を切換える境界点が、例えば5.25c
mから5.20cmに減少する。この減少量0.05c
mは素子間隔と丸みの半径に正比例し、発光ユニット1
と受光ユニット2間の距離Rに逆比例する。
Next, if point B in the upper left corner of object A in FIG. Assuming a ratio of 40 to 1, if the radius of the roundness is 1 cm, the boundary point at which the measured value is switched is, for example, 5.25 cm, as in the previous example.
m to 5.20 cm. This reduction amount is 0.05c
m is directly proportional to the element spacing and the radius of the roundness, and the light emitting unit 1
and is inversely proportional to the distance R between the light receiving unit 2.

このように、−例として0.5cmを最小表示単位とし
てディジタル表示する第1図に示す方法に関し、前述の
ような実用的な数値を用いた例において、増加する測定
誤差は切換え境界点の近傍においてのみ、例えば±0.
05cmという1 微少量であるから、理論的な丸め誤差の最大値±0.2
5cmが±0.3cm程度に増加するに留まり、実用上
殆ど支障を生ずることはない。なお、測定に当り被測定
体Aが静止しているものとしてこれまで説明してきたが
、被測定体Aが主光束2と直交する水平方向に移動中で
も同様の測定が可能である。
In this way, for example, with respect to the method shown in FIG. 1 in which digital display is performed using 0.5 cm as the minimum display unit, in the example using practical numerical values such as those mentioned above, the increasing measurement error will be For example, ±0.
0.5cm, which is a minute amount, so the maximum theoretical rounding error is ±0.2
5 cm increases only to about ±0.3 cm, which causes almost no problem in practice. Although the measurement has been described so far assuming that the object A is stationary, the same measurement is possible even when the object A is moving in the horizontal direction orthogonal to the principal beam 2.

次に、素子間隔を4分割して測定する実施例を第3図に
より説明する。使用する装置の構成は第1図の2分割測
定の場合と殆ど同一であるが、発光素子りの数が1個多
く、つまり第6図の従来方法よりも2個多い点が異なっ
ている。2分割測定時と同様に主光束走査の結果、主光
束I26が遮光で主光束I26が非遮光であるから、基
準値を先ず5− Ocmと裁定する。2分割測定におけ
る場合の説明と同様の表現を用いれば、5.0cm、5
.25cm、5.5cm、5.75cmのうちの何れか
であると仮に判定する。次いで、補助光束の走査により
最初の1本の補助光束I266が遮光、他の光束I27
5、I285が非遮光であるか 2 ら、測定値は素子間隔を4分割した最小測定単位0.2
5cmを基準値5.0cmに加えた5、25cmになる
Next, an example in which the element spacing is divided into four and measured will be described with reference to FIG. The configuration of the apparatus used is almost the same as in the two-part measurement shown in FIG. 1, except that the number of light emitting elements is one more, that is, two more than in the conventional method shown in FIG. 6. As in the two-split measurement, as a result of principal beam scanning, the principal beam I26 is shaded and the principal beam I26 is not shaded, so first, the reference value is determined to be 5-Ocm. Using the same expression as in the case of two-part measurement, 5.0 cm, 5.
.. It is tentatively determined that the length is 25 cm, 5.5 cm, or 5.75 cm. Next, by scanning the auxiliary light beam, the first auxiliary light beam I266 is blocked, and the other light beam I27 is blocked.
5. Since I285 is not light-shielded, the measurement value is the minimum measurement unit of 0.2 which is the element spacing divided into four.
5cm is added to the standard value of 5.0cm, resulting in 5.25cm.

素子間隔を5分割して測定する本実施例は第4図に示す
ように、発光素子りの数を更に1個増加−しているほか
に、第1図、第3図の実施例に対し被測定体Aの側面と
それに対向する受光ユニット2との距離Sが、距離Rの
115に設定されている点が異なる。主光束氾による走
査により主光束β6が遮光、主光束I26が非遮光であ
るから基準値は5.0cmである。次に、補助光束を走
査の結果、図示では最初の補助光束126Bが遮光、他
の補助光束I276、I281.12s*が非遮光であ
るから、測定値は基準値の5.0cmに最小測定単位0
.2cmを加えた5、2cmとなる。なお、補助光束β
γ6が非遮光であれば補助光束j2asとI2i+sも
当然非遮光になるから、補助光束の走査は最初の補助光
束β、Sの非遮光を検出した直後に停止し、直ちに測定
値を表示すればよい。
In this embodiment, which measures the element spacing by dividing it into 5 parts, as shown in Fig. 4, the number of light emitting elements is further increased by one. The difference is that the distance S between the side surface of the object to be measured A and the light receiving unit 2 facing it is set to 115 of the distance R. The reference value is 5.0 cm because the principal beam β6 is blocked and the principal beam I26 is not blocked due to scanning by principal beam flooding. Next, as a result of scanning the auxiliary light beam, as shown in the figure, the first auxiliary light beam 126B is blocked, and the other auxiliary light beams I276 and I281.12s* are not blocked, so the measured value is set to the reference value of 5.0 cm in the minimum measurement unit. 0
.. Add 2cm to 5.2cm. In addition, the auxiliary light flux β
If γ6 is not shaded, then the auxiliary beams j2as and I2i+s are also naturally not shaded, so if the scanning of the auxiliary beams is stopped immediately after detecting that the first auxiliary beams β and S are not shaded, and the measured value is immediately displayed. good.

最下部の主光束12rと基準面3との間隔は、第3図の
4分割測定の場合のα4については素子間隔の7/8倍
、第4図の5分割測定の場合のα5については素子間隔
の9/10倍とすれば、実施例では1cmとした素子間
隔1単位の1cm以上が有効な測定範囲となる。
The distance between the lowermost principal beam 12r and the reference surface 3 is 7/8 times the element spacing for α4 in the case of 4-part measurement in FIG. 3, and 7/8 times the element distance for α5 in the case of 5-part measurement in FIG. If it is 9/10 times the spacing, the effective measurement range will be 1 cm or more, which is one unit of the element spacing, which is 1 cm in the example.

第1図、第3図、第4図に示す本発明方法において、主
光束と補助光束との併用による基本的な測定方法を要約
すると次のようになる。
In the method of the present invention shown in FIGS. 1, 3, and 4, the basic measurement method using the main beam and the auxiliary beam in combination is summarized as follows.

(al主光束の走査により遮光された主光束の本数と素
子間隔を乗じたものを被測定体寸法の基準値として裁定
する。
(The product of the number of principal beams blocked by the scanning of the al principal beam and the element spacing is determined as the reference value of the dimension of the object to be measured.

(b)引き続く補助光束の走査時に、遮光された補助光
束の本数と最小測定単位を乗じたものを基準値に加えて
測定値とする。
(b) During subsequent scanning of the auxiliary light beams, the product of the number of blocked auxiliary light beams multiplied by the minimum measurement unit is added to the reference value to obtain the measured value.

別法として、前述のように主光束と補助光束とを交互に
逐次走査し、遮光された光束の総数から測定値を求める
こともできるが、上述の基本的な方法よりも測定に必要
な補助光束の走査本数が増加する。
Alternatively, as described above, the main beam and the auxiliary beam can be sequentially scanned alternately, and the measured value can be obtained from the total number of blocked beams, but this method requires more assistance than the basic method described above. The number of scanning beams increases.

本発明による方法において、所定の最小測定単位を得る
ための素子間隔の分割数は、既に説明した2、4.5に
限定されることなく他にも可能である。その主なものを
分割数に付帯する距離Sの条件と共に第1表に掲げる。
In the method according to the present invention, the number of divisions of the element spacing to obtain a predetermined minimum measurement unit is not limited to 2 or 4.5 as already described, but other numbers are also possible. The main ones are listed in Table 1 along with the distance S conditions attached to the number of divisions.

距離Sの大きさは何れも発光ユニット1と受光ユニット
2開の距11flRの整数分の1である。
The size of each distance S is an integer fraction of the distance 11flR between the light emitting unit 1 and the light receiving unit 2.

第1表 分割数 受光ユニットと被測定体の距離S2  R/2
、R/4、R/6、・・・3  R/3、R/6、・・
・ 4  R/4、R/8、・・・ 5  R15、R/10、・・・ 6  R/6、・・・ 8  R/8、・・・ 10   R/10、・・・ 本方法では、例えば4本の補助光束を併用すれば5分割
、つまり分解能を5倍に向上した高精度の測定ができる
。このような効果を逆の面から考えてみると、同一測定
範囲と分解能を有する装置について、本発明に必要な発
光素子、受光素子の 5 数は、例えば5分割測定の場合に従来装置の5分の1よ
りも僅かに多い程度で済む。
Table 1 Number of divisions Distance between light receiving unit and object to be measured S2 R/2
, R/4, R/6,...3 R/3, R/6,...
・ 4 R/4, R/8,... 5 R15, R/10,... 6 R/6,... 8 R/8,... 10 R/10,... In this method For example, if four auxiliary light beams are used together, it is possible to perform high-precision measurement with five divisions, that is, a five-fold improvement in resolution. Considering this effect from the opposite perspective, for a device having the same measurement range and resolution, the number of light-emitting elements and light-receiving elements necessary for the present invention is, for example, 5 times the number of light-emitting elements and light-receiving elements of the conventional device in the case of 5-division measurement. It only needs to be slightly more than 1/2.

また、被測定体Aの高さH以外に、平面的な寸法、即ち
幅Wや奥行りの測定にも本発明による方法を実用するこ
とができる。しかしながら、奥行りの測定に際し、高さ
Hの測定時と同様に側面位置検出のみで測定可能なよう
に、例えば被測定体Aの奥側側面に沿って主光束に平行
な方向のガイドを更に増設すると、被測定体Aの搬出入
や設置の操作が困難になる。そこで、実際に設置するガ
イド4は第5図に図示の1個のみに限定した上で、奥行
り方向の両側面位置を検出して、直方体状の被測定体の
奥行りを測定する方法を次に説明する。
Furthermore, in addition to the height H of the object to be measured A, the method according to the present invention can also be put to practical use in measuring planar dimensions, that is, the width W and depth. However, when measuring the depth, for example, a guide in the direction parallel to the principal beam is added along the back side of the object A so that the measurement can be performed only by detecting the side position in the same way as when measuring the height H. If the number of units is increased, it becomes difficult to carry in/out and install the object to be measured A. Therefore, we decided to limit the number of actually installed guides 4 to only one as shown in Fig. 5, and then detect the positions of both sides in the depth direction to measure the depth of the rectangular parallelepiped-shaped object to be measured. This will be explained next.

第5図において、発光ユニットlはセンタラインCLの
両側に発光素子L1〜LllととL1°〜L8゛を対称
的に配列し、受光ユニット2には同様に発光素子PI〜
P7とP1゛〜P7゛ とをセンタラインCLの両側に
対称的に配列している。センタラインCLを基準とした
被測定体Aの奥行方向の寸法D1とD2が、素 6 子間隔の2分の1の分解能で個別に測定され、求める奥
行寸法りはり、+D*で与えられる。第3図の4分割、
第4図の5分割及び第1表に示した他の分割数による2
組の片面測定装置を同様に対称的に配列し、D=D++
Daとして同様に両面測定による寸法測定ができること
は云うまでもない。
In FIG. 5, the light emitting unit 1 has light emitting elements L1 to Lll and L1° to L8' arranged symmetrically on both sides of the center line CL, and the light receiving unit 2 has light emitting elements PI to Lll symmetrically arranged.
P7 and P1'' to P7'' are arranged symmetrically on both sides of the center line CL. Dimensions D1 and D2 in the depth direction of the object A to be measured with respect to the center line CL are individually measured at a resolution of 1/2 of the element interval, and the determined depth dimension is given by +D*. The four divisions in Figure 3,
2 according to the 5 divisions in Figure 4 and other division numbers shown in Table 1
A set of single-sided measuring devices are similarly arranged symmetrically, and D=D++
It goes without saying that the dimensions of Da can be similarly measured by double-sided measurement.

板材やシートの幅或いは長さを測定するための本発明に
係る方法は種々考えられるが、例えば第5図を反時計方
向に90度回転させたものが平面図ではなく側面図と考
え、被測定体Aの幅Wが極めて小さく、幅Wが板材の厚
さに該当するものと解すれば、ガイド4に載置された板
材の長さDを0、+0.として測定できることが判る。
Various methods according to the present invention can be considered for measuring the width or length of a board or sheet, but for example, if FIG. 5 is rotated 90 degrees counterclockwise and considered to be a side view rather than a plan view, If we understand that the width W of the measurement object A is extremely small and that the width W corresponds to the thickness of the plate material, then the length D of the plate material placed on the guide 4 is 0, +0. It turns out that it can be measured as .

その場合に、矯正困難な板材の反りなどにより板材の下
面端部と受光ユニット2との距離Sが若干変化しても、
発生する誤差が極めて少ないことは既に述べた通りであ
る。
In that case, even if the distance S between the lower end of the plate and the light receiving unit 2 changes slightly due to a warp of the plate that is difficult to correct,
As already mentioned, the errors that occur are extremely small.

なお、実施例においては、符号lを発光ユニット、2を
受光ユニットとして説明してきたが、両者を入れ換えて
、符号1を受光ユニット、2を発光ユニットとしても本
発明の基本機能に変わるところはない。
In addition, in the embodiment, the explanation has been made with reference numeral 1 as a light emitting unit and 2 as a light receiving unit, but even if the two are interchanged and the reference numeral 1 is a light receiving unit and 2 is a light emitting unit, the basic function of the present invention remains the same. .

分割測定に使用する補助光束は主光束に対し若干傾斜し
ているが、そのために光学系を特別に設計する必要は全
くなく、発光ダイオードから主光束方向を中心軸として
、その周りにも同時に分布放射される光束の一部を補助
光束として利用しているに過ぎない。しかも、主光束と
補助光束の角度差、即ち傾斜角は実用上たかだか数度に
過ぎないから、照射の光強度差は少なく、単純に光束の
非遮光・遮光を検出する本発明の適用洗上の支障はない
The auxiliary beam used for split measurement is slightly inclined with respect to the main beam, but there is no need to specially design the optical system for this purpose. Only a part of the emitted luminous flux is used as an auxiliary luminous flux. Moreover, since the angular difference between the main beam and the auxiliary beam, that is, the angle of inclination, is practically only a few degrees at most, the difference in light intensity of irradiation is small, and the present invention can be applied to simply detect whether the beam is unblocked or blocked. There is no problem.

[発明の効果] 以上説明したように本発明に係る物体寸法測定方法は、
被測定体を置く位置に関し若干の制約を設けるものの、
測定シーケンスの改良により例えば1本の補助光束を併
用した場合には、発光素子、受光素子数を2倍に増加し
たことと同等の効果を生じ、素子間隔を複数分割した分
解能により寸法が測定でき、極めて安価で実用的な高精
度の測定が可能となる。
[Effects of the Invention] As explained above, the method for measuring object dimensions according to the present invention has the following effects:
Although there are some restrictions regarding the location of the object to be measured,
By improving the measurement sequence, for example, when one auxiliary light beam is used in combination, the effect is equivalent to doubling the number of light-emitting elements and light-receiving elements, and dimensions can be measured with a resolution that divides the element spacing into multiple parts. , it becomes possible to perform extremely inexpensive, practical, and highly accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

図面第1図〜第5図は本発明に係る物体寸法測定方法を
実現するための装置の実施例を示し、第1図は構成図、
第2図はその特性図、第3図、第4図、第5図は他の実
施例の構成図であり、第6図は従来の物体寸法測定方法
の構成図、第7図はその特性図である。 符号1は発光ユニット、2は受光ユニット、3は基準面
、4はガイド、Aは被測定体、L1〜L、、 、L、°
〜L8゛は発光素子、p、−p、、 、p、’〜P7°
は受光素子である。
Drawings 1 to 5 show an embodiment of an apparatus for realizing the object dimension measuring method according to the present invention, and FIG. 1 is a configuration diagram;
Figure 2 is a diagram of its characteristics; Figures 3, 4, and 5 are diagrams of other embodiments; Figure 6 is a diagram of a conventional method for measuring object dimensions; and Figure 7 is its characteristics. It is a diagram. 1 is a light emitting unit, 2 is a light receiving unit, 3 is a reference plane, 4 is a guide, A is a measured object, L1 to L, , L, °
~L8゛ is a light emitting element, p, -p, , p,'~P7°
is a light receiving element.

Claims (1)

【特許請求の範囲】[Claims] 1、発光素子を等間隔で直線上に配列した発光ユニット
と、受光素子を同一等間隔で直線上に配列した受光ユニ
ットとを距離Rを隔てて平行に配設し、対向する前記発
光素子と受光素子をそれぞれ対として結ぶ平行な主光束
のうち、前記発光ユニットと受光ユニット間に置いた直
方体状の被測定体により遮光又は非遮光の主光束の本数
を計数し被測定体の寸法を求める方法において、前記受
光ユニット又は発光ユニットと被測定体の側面との距離
Sが前記距離Rの整数分の1になるように被測定体を配
置し、遮光・非遮光に分れる2本の隣接した主光束の近
辺で、対向しない前記発光素子と受光素子とを主光束に
対して斜めに結び一部又は全部が前記両主光束の間を通
る少なくとも1本の補助光束を使用し、前記主光束及び
補助光束の遮光・非遮光の別による前記受光素子の出力
を判定することにより、前記発光ユニットと受光ユニッ
トに平行する方向の被測定体の寸法を測定することを特
徴とする物体寸法測定方法。
1. A light-emitting unit in which light-emitting elements are arranged in a straight line at equal intervals, and a light-receiving unit in which light-receiving elements are arranged in a straight line at equal intervals are arranged in parallel with a distance R between them, and the light-emitting elements facing each other and Of the parallel principal beams connecting the light-receiving elements as a pair, count the number of principal beams that are blocked or unblocked by the rectangular parallelepiped-shaped object placed between the light-emitting unit and the light-receiving unit, and determine the dimensions of the object to be measured. In the method, the object to be measured is arranged such that the distance S between the light receiving unit or the light emitting unit and the side surface of the object to be measured is an integer fraction of the distance R, and two adjacent lines divided into light shielding and non-light shielding are arranged. The light emitting element and the light receiving element, which do not face each other, are connected diagonally to the main beam in the vicinity of the main beam, and at least one auxiliary beam is used, a part or all of which passes between the two main beams. and an object dimension measuring method, characterized in that the dimensions of the object to be measured in a direction parallel to the light emitting unit and the light receiving unit are measured by determining the output of the light receiving element depending on whether the auxiliary light beam is blocked or not. .
JP28716989A 1989-11-02 1989-11-02 Object size measurement method Expired - Fee Related JPH0678887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28716989A JPH0678887B2 (en) 1989-11-02 1989-11-02 Object size measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28716989A JPH0678887B2 (en) 1989-11-02 1989-11-02 Object size measurement method

Publications (2)

Publication Number Publication Date
JPH03148002A true JPH03148002A (en) 1991-06-24
JPH0678887B2 JPH0678887B2 (en) 1994-10-05

Family

ID=17713973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28716989A Expired - Fee Related JPH0678887B2 (en) 1989-11-02 1989-11-02 Object size measurement method

Country Status (1)

Country Link
JP (1) JPH0678887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260150A (en) * 2005-03-17 2006-09-28 Toshiba Tec Corp Image reading device
JP2009216451A (en) * 2008-03-07 2009-09-24 Asahi Kasei E-Materials Corp Film width measurement method and film width measurement device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043409A (en) 1999-07-30 2001-02-16 Yamato Scale Co Ltd Article discriminating device and size measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260150A (en) * 2005-03-17 2006-09-28 Toshiba Tec Corp Image reading device
JP2009216451A (en) * 2008-03-07 2009-09-24 Asahi Kasei E-Materials Corp Film width measurement method and film width measurement device

Also Published As

Publication number Publication date
JPH0678887B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
EP0039082B1 (en) Method and apparatus for measuring the displacement between a code plate and a sensor array
US20020053635A1 (en) Arrangement for determining the angle of incidence of light
US4606642A (en) Measuring arrangement for the clear scanning of at least one reference mark allocated to a graduation
JPH05248895A (en) Light-electron type graticule reader
US4163157A (en) Data medium scanning process and apparatus
EP0372209B1 (en) Length measuring apparatus
JPH03148002A (en) Measuring method of size of object
JPH02129518A (en) Photoelectric position measuring apparatus
US6337473B2 (en) Beam position detector having a photodetection unit
EP0434371B1 (en) Image reader
JPS58173408A (en) Edge detector in optical measuring apparatus
JP2861804B2 (en) Length measuring device
JPS587345Y2 (en) Radiation measuring device
JPH0585004B2 (en)
JP2571694B2 (en) Light receiving position detecting device using optical fiber for level survey staff
JPS6232403B2 (en)
JP2571420B2 (en) Optical detector
US4868591A (en) Photodetector element for optical rangefinders
JP2581555B2 (en) Light receiving position detection method using optical fiber
JPH06307816A (en) Non-contact plate width measuring device
JPH0481729B2 (en)
JP4343350B2 (en) Optical encoder
JPS58217091A (en) Counting method of plastic card
WO1993023764A1 (en) Gauging apparatus
JPH0572967B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees