JPH03146911A - Method for connecting metallic jacket tube of optical fiber cord or cable - Google Patents

Method for connecting metallic jacket tube of optical fiber cord or cable

Info

Publication number
JPH03146911A
JPH03146911A JP28503189A JP28503189A JPH03146911A JP H03146911 A JPH03146911 A JP H03146911A JP 28503189 A JP28503189 A JP 28503189A JP 28503189 A JP28503189 A JP 28503189A JP H03146911 A JPH03146911 A JP H03146911A
Authority
JP
Japan
Prior art keywords
optical fiber
tube
welding
sleeve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28503189A
Other languages
Japanese (ja)
Other versions
JP2863222B2 (en
Inventor
Shimizu Yokoi
清水 横井
Kazufumi Tabata
和文 田畑
Osamu Hattori
修 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP1285031A priority Critical patent/JP2863222B2/en
Publication of JPH03146911A publication Critical patent/JPH03146911A/en
Application granted granted Critical
Publication of JP2863222B2 publication Critical patent/JP2863222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To hold an optical fiber below safety temperature and prevent it from damaging owing to heat in welding by interposing a overheating mitigating material between the jacket tube and optical fiber, and mutually welding jacket tubes. CONSTITUTION:The coated optical fiber 1 is inserted into a jacket tube 2 made of soft steel through a copper tube 4 and the jacket tube 2 is plasma-joined with a sleeve 3 to constitute a connection part. The sleeve 3 is a soft steel tube and a collar 5 is provided by welding. The coated optical fiber 1 is led out of the end part of the jacket tube 2, which is sheathed with the sleeve 3; while the fiber 1 is run through the tube 2, the copper tube 4 is inserted into the jacket tube 2. After fibers 1 are joined with each other, the steel tube 4 is moved and the sleeve 3 is further moved to superpose the collar 5 on the join part. In welding, the end surface of the sleeve 3 is fixed by spot welding in the order of positions W00, W20, W10, and W30 and then the entire periphery is welded by using DC plasma.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光ファイバコードまたはケーブルの接続に
おいて、金属製被覆管内に光ファイバが挿入された状態
で被覆管どうしを接続する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for connecting optical fiber cords or cables, with optical fibers being inserted into metal cladding tubes.

この発明における光ファイバとは、コアとクラッド層か
らなる光フアイバ素線、この光フアイバ素線を合成樹脂
、金属、セラミックなどでコーティングしたもの、なら
びにこれらの単心のもの、多心のもの、より線のものお
よびテープ状のものをいう。また、金属製被覆管とは鋼
、銅、アルミニウム、チタンその他の金属製被覆管をい
う。
The optical fiber in this invention includes an optical fiber consisting of a core and a cladding layer, an optical fiber coated with a synthetic resin, metal, ceramic, etc., a single core fiber, a multi-core fiber, etc. Refers to stranded wires and tape-shaped wires. Moreover, the metal cladding tube refers to a cladding tube made of steel, copper, aluminum, titanium, or other metals.

[従来の技術] 空中、海底、地下などに延線される光ファイバは、過度
の張力を防止したり、耐環境性をもたせるために金属管
などで被覆して用いられることがある。たとえば、近年
広く用いられるようになった九通郁用ケーブルには、光
ファイバが強度的に弱いことから、金属製被覆管に挿入
された光ファイバが一要求されるようになってきている
[Prior Art] Optical fibers that are extended in the air, under the sea, underground, etc. are sometimes coated with a metal tube or the like to prevent excessive tension or to provide environmental resistance. For example, the nine-way cables that have become widely used in recent years require optical fibers inserted into metal cladding tubes because the optical fibers are weak in strength.

また、海底光ケーブルのように長距離間に延線されるも
のでは、光ファイバが挿入された状態で金属製被覆管と
うしが接続される。このような接続では、接続部におい
て、被覆管どうしの間に接続管あるいは接続筒を介して
被覆管を接続する。
In addition, in cables that are extended over long distances, such as submarine optical cables, metal cladding tubes are connected with optical fibers inserted. In such a connection, the cladding tubes are connected through a connecting tube or a connecting tube between the cladding tubes at the connecting portion.

気密性または水密性が要求される個所では、溶接で接合
する方法が適している。たとえば、光ファイバを被覆す
る金属管どうしの接続方法として、実開昭59−330
15号公報で開示された方法がある。
Welding is suitable for locations where airtightness or watertightness is required. For example, as a method for connecting metal tubes covering optical fibers,
There is a method disclosed in Publication No. 15.

この方法では、接続筒と光フアイバケーブルのシース 
(金属製被覆管)との接続部を溶着または溶接により一
体化する際、接続筒および光フアイバケーブルのシース
のそれぞれにまたがる保護パイプ内に、光ファイバを挿
入している。
In this method, the connecting tube and the sheath of the optical fiber cable are
When integrating the connection portion with the (metal cladding tube) by welding or welding, the optical fiber is inserted into a protective pipe that spans the connection tube and the sheath of the optical fiber cable.

〜般に、プラスチックファイバは、光フアイバ素線の短
時間の耐熱温度が約200℃である。また、ガラス系光
ファイバでは、コアの外側のクラッドを薄く樹脂被覆し
である被覆材の短時間耐熱温度が約200℃である。い
ずれにしても、約200℃前後の温度にさらされると、
光フアイバ素線は熱損傷を受ける虞れが生じる。また、
これ以下の温度でも、プラスチック樹脂は軟化もしくは
溶融する可能性がある。光フアイバ素線に応力を与えた
まま凝固し、伝送損失を増加させる場合がある。従って
長時間の通信ラインの信頼性を得るためには軟化もしく
は溶融温度以下で溶着または溶接する必要がある。この
安全温度は約80℃である。
In general, plastic fibers have a short-term heat resistance temperature of about 200°C. Further, in a glass optical fiber, the short-time heat resistance temperature of the coating material, which is a thin resin coating on the outer cladding of the core, is about 200°C. In any case, when exposed to temperatures around 200℃,
There is a risk that the optical fiber wire may be thermally damaged. Also,
Even at temperatures below this, plastic resins can soften or melt. The optical fiber may solidify while still being stressed, increasing transmission loss. Therefore, in order to obtain long-term communication line reliability, it is necessary to weld or weld at a temperature below the softening or melting temperature. This safe temperature is approximately 80°C.

一方、光ファイバが挿入された金属製被覆管を接合する
場合、通常の溶融溶接では溶接部近傍が200℃を超え
る。被覆管の内径が大きく、光ファイバと被覆管内壁と
の間に十分な隙間がとれる場合には、接続部直下の光フ
ァイバに保護管をかぶせることによって、溶接n!iの
熱から光ファイバを絶縁することは容易である。ところ
が、被覆管が細径あるいは内径が小さくなるに従い、溶
接時の熱から光ファイバを遮断することは容易でなくな
る。また、被覆管が厚内になると一度に溶融すべき金属
量が多くなり、溶接に大量の入熱が必要となる。この結
果、溶接部の冷却が間に合わなくなり、管内の光ファイ
バは焼損する。逆に、肉厚が極めて薄くなると、溶融金
属が管内に溶は落ち、光ファイバは損傷する。光ファイ
バの損傷は、伝送損失の増大を招く。
On the other hand, when joining metal cladding tubes into which optical fibers have been inserted, the temperature near the welded portion exceeds 200° C. in normal fusion welding. If the inner diameter of the cladding tube is large and there is sufficient clearance between the optical fiber and the inner wall of the cladding tube, welding n! It is easy to insulate optical fibers from the heat of i. However, as the diameter or inner diameter of the cladding tube becomes smaller, it becomes difficult to shield the optical fiber from the heat during welding. Furthermore, when the cladding tube becomes thicker, the amount of metal that must be melted at once increases, and a large amount of heat input is required for welding. As a result, the welded part cannot be cooled in time, and the optical fiber inside the tube is burnt out. Conversely, if the wall thickness becomes extremely thin, molten metal will drip into the tube and damage the optical fiber. Damage to optical fibers results in increased transmission loss.

このような光ファイバの熱による損傷を防止するために
、1回に1点だけ溶接し、できるだけ最小入熱のアーク
を短時間照射しながら点をつないで溶接線を完成させる
方法が採用されている。また、開先形状に工夫を加えて
溶接入熱量を抑え、溶接熱を管の内部に及ぼさない手段
も取られている。さらにまた、水冷、空冷などの冷却方
法も併用されている。
In order to prevent such heat damage to optical fibers, a method has been adopted in which only one point is welded at a time, and the weld line is completed by connecting the points while irradiating an arc with the minimum heat input for a short period of time. There is. Additionally, measures have been taken to reduce the amount of welding heat input by modifying the groove shape to prevent welding heat from reaching the inside of the tube. Furthermore, cooling methods such as water cooling and air cooling are also used.

[発明が解決しようとする課題] しかし、金属製被覆管を接続する上記従来の方法には、
次のような課題があった。
[Problem to be solved by the invention] However, the above conventional method of connecting metal cladding tubes has the following problems:
The following issues were encountered.

1回に1点だけ溶接する方法では、実際の溶接において
内部温度を測定しながら作業できることが少なく、手探
りとなる。したがって、数十点の接合点のすべてが光フ
ァイバの許容温度を超えないという保証を与えるために
は、かなり低温度で接合できることが必要である。殊に
、長期にわたる通信ラインの信頼性を得るためには80
℃以下の低温度で接合できることが必要である。
With the method of welding only one point at a time, it is rare to be able to measure the internal temperature during actual welding, resulting in a lot of fumbling. Therefore, in order to guarantee that all of the dozens of bonding points do not exceed the permissible temperature of the optical fiber, it is necessary to be able to bond at a fairly low temperature. In particular, in order to obtain long-term communication line reliability,
It is necessary to be able to bond at low temperatures below ℃.

また、実際の溶接では常に正常な溶接が行われるとは限
らない。たとえば、溶接不良部を修正するときに、狙い
位置のずれなどで予定よりも太きな熱が管に与えられ、
管内温度が光ファイバの許容限界温度近くになることが
ある。そのため、管内温度の上昇限を更に低く抑えて溶
接する必要がある。
Furthermore, in actual welding, normal welding is not always performed. For example, when repairing a defective weld, a greater amount of heat than planned may be applied to the pipe due to misalignment of the target position.
The temperature inside the tube may be close to the allowable limit temperature of the optical fiber. Therefore, it is necessary to perform welding while keeping the temperature rise within the pipe even lower.

溶接部直下の管内温度を上げないために、耐火セラミッ
クまたは耐熱樹脂を遮熱材として使用する方法が考えら
れる。これら材料は熱伝導率がlXl051 x 10
−’ kcal/mh’cのオーダーで小さく、光ファ
イバへの熱移動を阻止できると期待さる。
In order to prevent the temperature inside the pipe immediately below the weld from increasing, it is possible to use fire-resistant ceramic or heat-resistant resin as a heat shield material. These materials have a thermal conductivity of lXl051 x 10
It is small on the order of -'kcal/mh'c and is expected to prevent heat transfer to the optical fiber.

しかし、使用形状が薄肉管で単位長さ当たりの質量が小
さく、熱容量か小さいため、遮熱材自身の温度が急速に
上昇し、光ファイバを熱から保護するには十分でない。
However, since the used shape is a thin-walled tube, the mass per unit length is small, and the heat capacity is small, the temperature of the heat shield material itself rises rapidly and is not sufficient to protect the optical fiber from heat.

そこで、この発明は溶接時の熱による光ファイバの損傷
を防止することができる、光ファイバコードまたはケー
ブルの金属製被覆管の接続方法を提供するものである。
Therefore, the present invention provides a method for connecting a metal cladding tube of an optical fiber cord or cable, which can prevent damage to the optical fiber due to heat during welding.

[課題を解決するための手段] この発明の光ファイバコードまたはケーブルの金属製被
覆管の接続方法は、光ファイバが金属製被覆管に隙間を
もって挿入された光ファイバコードまたはケーブルの被
覆管どうし・を溶融溶接により接続する際に、溶接部お
よびその前後にわたって上記隙間に過熱緩和材を介!E
させて溶融溶接する。
[Means for Solving the Problems] The method for connecting metal cladding tubes of optical fiber cords or cables of the present invention connects cladding tubes of optical fiber cords or cables in which optical fibers are inserted into metal cladding tubes with gaps. When connecting by fusion welding, use overheat mitigation material in the gap above the weld area and before and after it! E
to melt and weld.

過熱緩和材として、熱伝導率、単位体積当り熱容量もし
くは反射率が被覆管に比べて高い材料、またはこれら性
質の2もしくは3を併わせ持った材料が用いられる。高
熱伝導率物質としては、50〜350kcal/mh”
cの物質が望ましい。たとえば、SiCセラミックス、
銅、銅合金、アルミニュウム、アルミニュウム合金など
である。被覆管が鋼製である場合、鋼の熱伝導率が39
kcal/mh”cであり、高熱伝導率物質として入手
しゃすい銅のそれは340kcal/mh’cで8倍以
上である。単位体積当り高熱容量物質としては、銅、鋼
、ニッケルなどが用いられる。密度と比熱の積[kca
l・cm−3・oc−l ]か0.50以上が望ましい
。また、高反射率物質としては、研磨仕上げの金属など
がある。
As the superheat mitigation material, a material having higher thermal conductivity, higher heat capacity per unit volume, or higher reflectance than the cladding tube, or a material having two or three of these properties is used. As a material with high thermal conductivity, it is 50 to 350 kcal/mh”
Substance c is preferable. For example, SiC ceramics,
Copper, copper alloy, aluminum, aluminum alloy, etc. If the cladding is made of steel, the thermal conductivity of steel is 39
kcal/mh'c, and that of copper, which is available as a high thermal conductivity material, is 340 kcal/mh'c, which is more than eight times as high.As the high heat capacity material per unit volume, copper, steel, nickel, etc. are used. Product of density and specific heat [kca
l·cm-3·oc-l] is preferably 0.50 or more. Furthermore, examples of the high reflectance material include polished metal.

過熱緩和材を被覆管と光ファイバとの間に介在させる方
法として、管もしくは管を長手方向に沿って2〜4分割
した形状に高熱伝導率物質を成形したもので光ファイバ
を覆う方法、線状の過熱緩和材を光ファイバに巻き付け
る方法、または粉状もしくは粒状の過熱緩和材を被覆管
と光ファイバとの間の隙間に充填する方法などがある。
As a method of interposing a superheat mitigation material between the cladding tube and the optical fiber, there is a method of covering the optical fiber with a tube or a tube divided into 2 to 4 parts along the longitudinal direction with a high thermal conductivity material molded, and a wire. There is a method of winding a desuperheating material around an optical fiber, or a method of filling a gap between a cladding tube and an optical fiber with a powdered or granular desuperheating material.

過熱緩和材を介在させる範囲は溶接部およびこれの前後
であって、その長さは管内径の5〜20倍程度である。
The range in which the overheating alleviation material is interposed is the welded part, before and after the welded part, and its length is about 5 to 20 times the inner diameter of the pipe.

温度勾配を大にするために、被覆管や管状の過熱緩和材
の外の溶接部から離れた部分を冷却すれば、これが内部
の溶接部直下と連続している過熱緩和材を冷却して、溶
接部直下の熱は伝導により大きな移動速度で放散する。
In order to increase the temperature gradient, if you cool the outer part of the cladding or tubular desuperheating material away from the weld, this will cool the internal desuperheating material directly below the weld, and Heat immediately below the weld is dissipated by conduction at a high moving speed.

冷却方法としては水流、ガス流、空気流、トライアイス
、液体窒素等を被覆管または過熱緩和材に接触、循環さ
せる。
As a cooling method, water flow, gas flow, air flow, tri-ice, liquid nitrogen, etc. are brought into contact with the cladding tube or the superheat mitigation material and circulated.

[作用] 過熱緩和材が高熱伝導率物質よりなる場合には、被覆管
の溶接部の熱の大部分は熱伝導により溶接部から管の上
流側および下流側に分散される。過熱緩和材が単位体積
当り高熱容量物質よりなる場合には、溶接部の熱の大部
分は過熱緩和材により吸収される。また、過熱緩和材が
高反射率物質よりなる場合には、溶接部から管内に放射
された熱の大部分が被覆管の内壁側に反射され、光ファ
イバにはわずかじか到達しない。これらの結果、溶接部
直下にある光ファイバに伝達される熱量は小さく、光フ
ァイバが損傷しない程度に光ファイバの過熱は緩和され
る。すなわち、光ファイバは短時間の許容限界温度の2
00℃かつ軟化もしくは溶融に関する安全温度が約80
℃以下に保持される。
[Function] When the superheat mitigation material is made of a material with high thermal conductivity, most of the heat at the welded portion of the cladding tube is dispersed from the welded portion to the upstream and downstream sides of the tube by thermal conduction. When the desuperheating material is made of a material having a high heat capacity per unit volume, most of the heat in the weld zone is absorbed by the desuperheating material. Furthermore, when the overheating mitigation material is made of a highly reflective material, most of the heat radiated into the tube from the welded portion is reflected by the inner wall of the cladding tube, and only a small amount reaches the optical fiber. As a result, the amount of heat transferred to the optical fiber directly below the weld is small, and overheating of the optical fiber is alleviated to the extent that the optical fiber is not damaged. In other words, the optical fiber has a short-term permissible temperature limit of 2
00℃ and the safe temperature for softening or melting is approximately 80℃
kept below ℃.

[実施例コ 第1図(a)および(b)は、この発明による被覆管の
接続例を示している。
[Example 1] Figures 1(a) and 1(b) show examples of connections of cladding tubes according to the present invention.

光フアイバ心線1 (外径0.4mm)が銅管4 (外
径2 、8mm、内径2.4mm、長さ600mm)を
介して軟鋼製被覆管2 (外径8.0mm、内径3 、
0mm)に挿入されており、この被覆管2がスリーブ3
にプラズマ接合され接続部を構成する。スリーブ3 (
外径11 、0mm、内径8.1 mm)は軟鋼管であ
り、っば5(突出し長さ 1.0mm、厚さ 0.5m
m)を備えている。つば5は溶接の際溶加材として溶融
する。
An optical fiber core 1 (outer diameter 0.4 mm) is connected to a mild steel cladding tube 2 (outer diameter 8.0 mm, inner diameter 3,
0mm), and this cladding tube 2 is inserted into the sleeve 3.
is plasma bonded to form the connection part. Sleeve 3 (
The outer diameter 11.0 mm, inner diameter 8.1 mm) is a mild steel tube, and the tube 5 (projection length 1.0 mm, thickness 0.5 m) is made of mild steel.
m). The collar 5 is melted as a filler metal during welding.

まず、被覆管2の端部から光フアイバ心線1を口出しし
、スリーブ3を被覆管2にかぶせ、接合部の奥(第1図
(a)において左側)に後退させておく。ついで、内部
に光フアイバ心線1を通しながら、銅管4を被覆管2に
挿入する。光フアイバ心線1どうじの接合が終ったら、
接合部およびこれの前後にわたるように銅管4を移動す
る。さらに、スリーブ3を移動して接合部につば5を重
ねる。被覆管2とスリーブ3の重ね代は80IIIII
lである。
First, the optical fiber core 1 is brought out from the end of the cladding tube 2, the sleeve 3 is placed over the cladding tube 2, and the sleeve 3 is retracted to the back of the joint (to the left in FIG. 1(a)). Next, the copper tube 4 is inserted into the cladding tube 2 while the optical fiber core wire 1 is passed through the inside. Once the optical fiber core wire 1 has been spliced,
Move the copper tube 4 so that it spans the joint and the front and back of this. Furthermore, the sleeve 3 is moved to overlap the collar 5 at the joint. The overlap between cladding tube 2 and sleeve 3 is 80III
It is l.

溶接はまず、第1図(b)に示す位置W0゜+W2゜:
WIo:W2O順に移動して点接合し、スリーブ3の端
面を固定する。ついで、出発点Wooに戻って順次点接
合を繰り返し、全周溶接線を完成する。
Welding begins at the position W0° + W2° shown in Figure 1(b):
Moving in the order of WIo:W2O, point joining is performed to fix the end face of the sleeve 3. Then, returning to the starting point Woo, point joining is repeated one after another to complete the entire circumference weld line.

溶接は直流プラズマを用い、溶接トーチ方向6は第1図
(a)に示すように被覆管2と45′の角度をなし、溶
接ビームはつば5を狙って照射する。1溶接点の溶接条
件は、溶接電流80 A、アーク電圧28V、アーク照
射時間0.5secで、シールドはArシールド、流量
5 Q/minである。溶接は40点仕−Lげを標準と
している。
Welding is performed using direct current plasma, the welding torch direction 6 forms an angle 45' with the cladding tube 2, as shown in FIG. 1(a), and the welding beam is directed at the collar 5. The welding conditions for one welding point were a welding current of 80 A, an arc voltage of 28 V, an arc irradiation time of 0.5 sec, an Ar shield, and a flow rate of 5 Q/min. The standard welding is 40-point welding.

第2図は、この発明の他の実施例を示している。この実
施例では、スリーブは使用しない。すなわち、被覆管2
と光フアイバ心線1との間に管状の高熱伝導率物質4を
挿入し、2本の被覆管2を接合部7で突合わせ周溶接す
る。
FIG. 2 shows another embodiment of the invention. In this embodiment, no sleeve is used. That is, the cladding tube 2
A tubular high thermal conductivity material 4 is inserted between the optical fiber core 1 and the cladding tubes 2, and the two cladding tubes 2 are butted together at the joint 7 and circumferentially welded.

第3図は、溶接時の溶接点直下におけるピーク温度をア
ーク点ごとに示したものである。被覆管内の溶接点直下
に熱電対(クロメル−アルメル)を挿入して、温度を測
定した。また、室温の接合部にアークスポットを照射し
、ピーク温度に達すると同時に接合部を空気流で冷却し
、被覆管内が室温になるのを待って次の溶接点に移るま
でを1サイクルとし、全周について温度測定をな行った
FIG. 3 shows the peak temperature immediately below the welding point during welding for each arc point. A thermocouple (chromel-alumel) was inserted into the cladding just below the welding point to measure the temperature. In addition, one cycle consists of irradiating an arc spot onto a joint at room temperature, cooling the joint with an air flow as soon as the peak temperature is reached, waiting for the inside of the cladding tube to reach room temperature, and moving on to the next welding point. Temperature measurements were taken around the entire circumference.

第3図において、従来法は第1図に示す状態で銅管4な
しで溶接した場合であり、点溶接は23点1 で終γした。管内のピーク温度は、最高温度が97℃、
最低温度が72℃、平均83.8℃であった。また、第
3図の本発明法は第1図に示す状態で、つまり銅管4を
使用して溶接した場合であり、点溶接は36点で終了し
た。管内最高温度が68℃、最低温度が43℃、平均5
5.4℃であった。
In FIG. 3, the conventional method is welding without the copper tube 4 in the state shown in FIG. 1, and spot welding was completed at 23 points 1. The peak temperature inside the tube is 97℃,
The lowest temperature was 72°C and the average was 83.8°C. Further, the method of the present invention shown in FIG. 3 is performed in the state shown in FIG. 1, that is, when welding was performed using the copper tube 4, and spot welding was completed at 36 points. Maximum temperature inside the tube is 68℃, minimum temperature is 43℃, average 5
The temperature was 5.4°C.

第3図より明らかなように、この発明によれば従来方法
よりも30℃近く管内ピーク温度を引きFげることがで
き、しかも70℃以下の管内温度で溶接可能である。こ
れは短時間の許容限界温度の200℃よりもはるかに低
く、かつ軟化もしくは溶融に関する安全温度の約80℃
よりも低く、被覆管の溶接による光フアイバ心線の熱損
傷は避けられる。
As is clear from FIG. 3, according to the present invention, the peak temperature inside the pipe can be lowered by nearly 30°C compared to the conventional method, and welding can be performed at an inside temperature of 70°C or less. This is much lower than the short-term permissible limit temperature of 200°C, and the safe temperature for softening or melting of about 80°C.
thermal damage to the optical fiber core due to welding of the cladding tube can be avoided.

したがって、本発明の接合部は光フアイバ素線に熱損傷
のない高品質の製品を保証し少なくとも溶接部における
伝送損失の増大は心配しなくてよくなった。
Therefore, the joint of the present invention guarantees a high quality product without thermal damage to the optical fiber strands, and at least there is no need to worry about increased transmission loss at the weld.

[発明の効果] この発明では、被覆管と光ファイバとの間に過 2 熱緩和材を挿入して被覆管どうしを溶融溶接により接続
するので、光ファイバは許容限界温度以下かつ安全温度
以下に保持される。したがって、光ファイバは溶接時の
熱により損傷を受けることはなく、光ファイバの劣化に
よる伝送損失の増大を防止することができる。
[Effects of the Invention] In this invention, a heat-reducing material is inserted between the cladding tube and the optical fiber, and the cladding tubes are connected by fusion welding, so that the optical fiber temperature is below the allowable limit temperature and below the safe temperature. Retained. Therefore, the optical fiber is not damaged by heat during welding, and an increase in transmission loss due to deterioration of the optical fiber can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明による被覆管の接続方法を説明
するの斜視図、第1図(b)は第1図(a)の正面図、
第2図はこの発明の詳細な説明する断面図、および第3
図は溶接時の管内ピーク温度をこの発明と従来法とを比
較して示すグラフである。 1・・・光フアイバ心線、2・・・金属製被覆管、3・
・・スリーブ、4・・・高熱伝導率物質、5・・・つば
、6・・・アーク照射方向、7・・・接合部、W o 
o : W + o : W 2゜:W3o−・・点溶
接位置。
FIG. 1(a) is a perspective view illustrating the cladding pipe connection method according to the present invention, FIG. 1(b) is a front view of FIG. 1(a),
FIG. 2 is a sectional view explaining the invention in detail, and FIG.
The figure is a graph showing a comparison of the peak temperature inside the pipe during welding between the present invention and the conventional method. 1... Optical fiber core wire, 2... Metal cladding tube, 3...
...Sleeve, 4...High thermal conductivity material, 5...Brim, 6...Arc irradiation direction, 7...Joint part, W o
o: W + o: W 2°: W3o-...Spot welding position.

Claims (1)

【特許請求の範囲】[Claims] 1、光ファイバか金属製被覆管に隙間をもって挿入され
た光ファイバコードまたはケーブルの被覆管どうしを溶
融溶接により接続する方法において、溶接部およびその
前後にわたって前記隙間に過熱緩和材を介在させて溶融
溶接することを特徴とする光ファイバコードまたはケー
ブルの金属製被覆管の接続方法。
1. In a method of connecting the cladding tubes of optical fiber cords or cables inserted into optical fibers or metal cladding tubes with a gap therebetween by fusion welding, a desuperheating material is interposed in the gap at the welding part and before and after the welding part, and melting is performed. A method for connecting a metal cladding of an optical fiber cord or cable, characterized by welding.
JP1285031A 1989-11-02 1989-11-02 Connection method for metal cladding of optical fiber cord or cable Expired - Lifetime JP2863222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1285031A JP2863222B2 (en) 1989-11-02 1989-11-02 Connection method for metal cladding of optical fiber cord or cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1285031A JP2863222B2 (en) 1989-11-02 1989-11-02 Connection method for metal cladding of optical fiber cord or cable

Publications (2)

Publication Number Publication Date
JPH03146911A true JPH03146911A (en) 1991-06-21
JP2863222B2 JP2863222B2 (en) 1999-03-03

Family

ID=17686262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285031A Expired - Lifetime JP2863222B2 (en) 1989-11-02 1989-11-02 Connection method for metal cladding of optical fiber cord or cable

Country Status (1)

Country Link
JP (1) JP2863222B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690321A1 (en) * 1994-06-27 1996-01-03 Nkk Corporation A method for connecting optical fiber cables

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184313A (en) * 1983-04-05 1984-10-19 Fujikura Ltd Formation of intermediate connecting part and terminal part of metallic coat optical fiber
JPH0192705A (en) * 1987-10-05 1989-04-12 Nippon Steel Weld Prod & Eng Co Ltd Connecting part for optical fiber-contained metallic tube
JPH02142804U (en) * 1989-05-08 1990-12-04

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184313A (en) * 1983-04-05 1984-10-19 Fujikura Ltd Formation of intermediate connecting part and terminal part of metallic coat optical fiber
JPH0192705A (en) * 1987-10-05 1989-04-12 Nippon Steel Weld Prod & Eng Co Ltd Connecting part for optical fiber-contained metallic tube
JPH02142804U (en) * 1989-05-08 1990-12-04

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690321A1 (en) * 1994-06-27 1996-01-03 Nkk Corporation A method for connecting optical fiber cables
US5557697A (en) * 1994-06-27 1996-09-17 Nkk Corporation Method for connecting optical fiber cables

Also Published As

Publication number Publication date
JP2863222B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US4585304A (en) Technique for repairing and joining small diameter optical fiber cables
JPS59135415A (en) Optical coupler and assembly thereof
US6167177A (en) Optical fiber cable
JP6921803B2 (en) Joining device and joining method
US5658364A (en) Method of making fiber optic-to-metal connection seals
JPS5932768B2 (en) How to tightly couple fiber optic waveguides to light emitting devices
KR20170072292A (en) Apparatus and system for electro-fusion of polyethylene pipeline
CN113067236A (en) Laser output head
JP6938547B2 (en) Methods and equipment for sealing contacts at electrical cable connections
JP2014073637A (en) Heat-shrinkable tubing
JPH03174106A (en) Juncture of optical fiber with sealed metallic pipe and method for connecting the fiber
JPH03146911A (en) Method for connecting metallic jacket tube of optical fiber cord or cable
CN107427963B (en) Optic delivery filler for laser processing
JPH10296433A (en) High frequency brazing method for aluminum tube
KR20140030393A (en) Conductor welding apparatus for submarine cable
JP6561931B2 (en) Connection method of temperature sensor element wire and extension lead wire
JP2616671B2 (en) Optical module device
JPH039307A (en) Method for connecting optical fiber including metallic pipe
JPH0387703A (en) Method for fixing optical fiber end
JPH01154107A (en) Method for connecting metallic tube containing optical fiber
CN113042865B (en) Transition pipe welding system and process
JPH01138511A (en) Juncture of optical fiber-containing metallic tube
KR101183444B1 (en) Torch cable for welding
JPH0192705A (en) Connecting part for optical fiber-contained metallic tube
JPH0786576B2 (en) Connection part of metal tube with optical fiber