JPH03146713A - Sheath-core conjugated fiber - Google Patents

Sheath-core conjugated fiber

Info

Publication number
JPH03146713A
JPH03146713A JP1277508A JP27750889A JPH03146713A JP H03146713 A JPH03146713 A JP H03146713A JP 1277508 A JP1277508 A JP 1277508A JP 27750889 A JP27750889 A JP 27750889A JP H03146713 A JPH03146713 A JP H03146713A
Authority
JP
Japan
Prior art keywords
core
sheath
component
composite fiber
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1277508A
Other languages
Japanese (ja)
Other versions
JP2817269B2 (en
Inventor
Chikara Honda
主税 本田
Takuji Sato
卓治 佐藤
Isoo Saito
磯雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1277508A priority Critical patent/JP2817269B2/en
Publication of JPH03146713A publication Critical patent/JPH03146713A/en
Application granted granted Critical
Publication of JP2817269B2 publication Critical patent/JP2817269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To provide the subject sheath-core type conjugated fiber composed of polyethylene-2,6-naphthalate as the core component and a polyamide as the sheath component, respectively having a specified viscosity, birefringence and density, excellent in heat resistance and fatigue resistance, having a high strength and a high elasticity and suitable for a reinforcing material for rubber, etc. CONSTITUTION:Polyethylene-2,6-naphthalate mainly composed of ethylenenaphthalene-2,6-dicarboxylate is used as the core component and a polyamide is used as the sheath component. Both the components are melted, discharged through a sheath-core conjugated fiber spinning nozzle, cooled and, after application of an oil agent, stretched to obtain the objective conjugated fiber having 30-90wt.% core component ratio occupying in the total fiber, >=0.5 intrinsic viscosity [eta], 230X10<-3>-350X10<-3> birefringence, >=1.340g/cm<3> density respectively in the core component, >=2.8 sulfuric acid-based relative viscosity [etar], >=45X10<->3 birefringence, 1.135g/cm<3> density respectively in the sheath component and a structure where the core and sheath components are highly orientated and highly crystallized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は産業用資材用途、特にゴム補強材に適した高強
度高弾性繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to high-strength, high-modulus fibers suitable for industrial material applications, particularly for rubber reinforcing materials.

更に詳しくは高強度、ハイモジュラス、改良された寸法
安定性等の優れた機械特性を有し、かつゴムとの接着性
、ゴム中における耐熱性、及び耐疲労性等の改良された
ゴム補強用複合繊維を提供することにある。
More specifically, it has excellent mechanical properties such as high strength, high modulus, and improved dimensional stability, and has improved rubber reinforcement such as adhesion to rubber, heat resistance in rubber, and fatigue resistance. Our goal is to provide composite fibers.

[従来の技術] ナフタレートポリエステル繊維を代表するエチレンナフ
タレン−2,6−ジカルボキシレートを主成分とするポ
リエチレン−2,6−ナフタレート(以下2.6−PE
Nという)からなる繊維は高強度、ハイモジュラス、高
いゴム中耐熱性を有し、各種産業資材、特にタイヤコー
ド、伝動用ベルト、搬送用ベルト等のゴム補強材としこ
の用途開発が進められつつある。
[Prior art] Polyethylene-2,6-naphthalate (hereinafter referred to as 2.6-PE
Fibers consisting of N) have high strength, high modulus, and high heat resistance in rubber, and are being used as rubber reinforcing materials for various industrial materials, especially tire cords, power transmission belts, and conveyor belts. be.

従来から、ポリエチレンテレフタレート、ポリエチレン
ナフタレート等のポリエステル繊維の欠点であるゴムと
の接着性を改良しようとする試みは数多く提案されてお
り、その一つとして最近ポリエステルの表層をポリアミ
ドで被覆する方法が例えば特開平1−97211号公報
に開示されている。さらに、該特開平l−97211号
公報にはポリエステルを芯にナイロン66を鞘にした複
合繊維について、それぞれの成分ポリマの重合度および
芯部ポリマの割合を特定した製糸方法について記載され
ている。
Many attempts have been made to improve the adhesion to rubber, which is a drawback of polyester fibers such as polyethylene terephthalate and polyethylene naphthalate, and one of them has recently been proposed to cover the surface layer of polyester with polyamide. For example, it is disclosed in Japanese Patent Application Laid-Open No. 1-97211. Further, JP-A No. 1-97211 describes a yarn spinning method in which the degree of polymerization of each component polymer and the proportion of the core polymer are specified for a composite fiber having a core of polyester and a sheath of nylon 66.

[発明が解決しようとする課題] 前記特開平1−97211号公報に記載された複合繊維
は接着性、耐久性等が改善されているが、高速で走行す
る乗用車、トラック、バス、オフロードカー等の苛酷な
条件で使用するタイヤにおいては満足されるものではな
く、尚−層改善された耐久性と、乗り心地が要求される
という課題を有する。
[Problems to be Solved by the Invention] Although the composite fiber described in JP-A-1-97211 has improved adhesiveness, durability, etc., it cannot be used for high-speed passenger cars, trucks, buses, off-road cars, etc. This is not satisfactory for tires used under such severe conditions, and still requires improved durability and ride comfort.

また、前記特開平1−97211号公報に記載された芯
鞘型の繊維は鞘のポリアミド成分により改良されたゴム
との接着性をもたせ、芯のポリエステル成分によってモ
ジュラスや寸法安定性を保持しようとしたものであった
。該方法によって確かに接着性は十分に改良されるもの
の、モジュラス、寸法安定性はポリエステル繊維の有す
るモジュラスと寸法安定性を十分保持することはできな
いという課題を有していた。
In addition, the core-sheath type fiber described in JP-A-1-97211 has a polyamide component in the sheath to provide improved adhesion to rubber, and a polyester component in the core to maintain modulus and dimensional stability. That's what I did. Although this method certainly improves adhesion, it has the problem that the modulus and dimensional stability of polyester fibers cannot be sufficiently maintained.

一方、前記の2.6−PEN繊維はゴムとの接着性に劣
り、特に高温雰囲気下で長時間繰り返し曝れるとゴムと
の接着力が著しく低下する。
On the other hand, the above-mentioned 2.6-PEN fiber has poor adhesion to rubber, and especially when repeatedly exposed to a high temperature atmosphere for a long time, the adhesion to rubber decreases significantly.

特にタイヤコードとして用いた時、自動車走行1、!f
に発生した熱がタイヤ内に苓積されて品温となりゴムと
の接着力を失い剥離してしまうことがあり、またタイヤ
がうける繰り返し圧縮伸張によりタイヤコードが破断し
てしまうという課題を有していた。
Especially when used as a tire cord, automobile driving 1,! f
The heat generated in the tire builds up inside the tire and becomes hot, causing the tire to lose its adhesive strength with the rubber and peel off.Additionally, the tire cord can break due to the repeated compression and stretching that the tire undergoes. was.

本発明の目的は、前記の従来技術における課題を克服す
ることにより、ゴムとの接着性に優れ、従来の複合繊維
に比較して著しく改良された寸法安定性、ハイモジュラ
ス、ゴム中耐熱性及び耐疲労性の改良されたゴム補強用
に好適な複合繊維を提供することにある。
The object of the present invention is to overcome the problems in the prior art as described above, thereby achieving excellent adhesion to rubber, significantly improved dimensional stability, high modulus, and heat resistance in rubber compared to conventional composite fibers. The object of the present invention is to provide a composite fiber suitable for rubber reinforcement with improved fatigue resistance.

[課題を解決するための手段及び作用]本発明の構成は
、 (1)芯鞘複合繊維において、芯成分がエチレンナフタ
レン−2,6−ジカルボキシレートを主成分とするポリ
エチレン−2,6−ナフタレートからなり、鞘成分がポ
リアミドからなる芯鞘複合繊維であり、該繊維に占める
芯成分の割合が30〜90重量%、該芯成分極限粘度〔
η〕が0.5以上、複屈折が230×10−8〜350
X10−3、密度が1.340g/cm3以上、ポリア
ミド鞘成分の硫酸相対粘度ηrが2.8以上、複屈折が
45×1()−8以上、密度が1.135g/cm”以
上であり、前記芯成分および鞘成分が高配向、高結晶繊
維構造を形成してなることを特徴とする芯鞘複合繊維。
[Means and effects for solving the problems] The structure of the present invention is as follows: (1) In the core-sheath composite fiber, the core component is polyethylene-2,6-dicarboxylate whose main component is ethylenenaphthalene-2,6-dicarboxylate. It is a core-sheath composite fiber consisting of naphthalate and a sheath component consisting of polyamide, the proportion of the core component in the fiber is 30 to 90% by weight, and the intrinsic viscosity of the core component [
η] is 0.5 or more, birefringence is 230 x 10-8 to 350
X10-3, the density is 1.340 g/cm3 or more, the sulfuric acid relative viscosity ηr of the polyamide sheath component is 2.8 or more, the birefringence is 45×1()-8 or more, and the density is 1.135 g/cm” or more. A core-sheath composite fiber, characterized in that the core component and the sheath component form a highly oriented, highly crystalline fiber structure.

(2)前記(1)に記載された芯鞘複合繊維において、
該複合繊維の強度が6.0g/d以上、伸度が20%以
下、初期引張り抵抗度が150g/d以上、乾熱収縮率
が3%以下であることを特徴とする芯鞘複合繊維。
(2) In the core-sheath composite fiber described in (1) above,
A core-sheath composite fiber characterized in that the composite fiber has a strength of 6.0 g/d or more, an elongation of 20% or less, an initial tensile resistance of 150 g/d or more, and a dry heat shrinkage rate of 3% or less.

にある。It is in.

前記の本発明に係る芯鞘複合繊維は芯成分が2.6−P
EN、鞘成分がポリアミドであり、これらの芯成分およ
び鞘成分の割合、芯成分および鞘成分の特徴を特定の範
囲で組合わせることによって、従来の複合繊維では達せ
られなかった、著しく改良された寸法安定性、ハイモジ
ュラス、耐熱性、耐疲労性、及び芯鞘複合界面のポリマ
の剥離耐久性等に優れた産業用用途、特にゴム補強用繊
維が得られる。
The core-sheath composite fiber according to the present invention has a core component of 2.6-P.
EN, the sheath component is polyamide, and by combining the proportions of these core and sheath components and the characteristics of the core and sheath components within a specific range, significant improvements have been achieved that could not be achieved with conventional composite fibers. A fiber for industrial use, particularly for rubber reinforcement, which is excellent in dimensional stability, high modulus, heat resistance, fatigue resistance, and peeling durability of the polymer at the core-sheath composite interface can be obtained.

本発明に係る芯鞘複合繊維の芯成分となる2゜6−PE
Nは実質的にエチレンナフタレン−2゜6−ジカルボキ
シレートを主成分とし、必要に応じて2.6−PENの
物理的、化学的特性を実質的に低下させない程度、例え
ば10%未満の共重合成分を含んでもよい。共重合成分
としてはイソフタル酸、ジフェニルジカルボン酸等のジ
カルボン酸、及びエチレンオキサイド、プロピレングリ
コール、ブチレングリコール等のジオール成分、あるい
は他の成分等が用いられる。
2゜6-PE serving as the core component of the core-sheath composite fiber according to the present invention
N is essentially ethylenenaphthalene-2゜6-dicarboxylate as a main component, and if necessary, it may be added to an amount that does not substantially reduce the physical and chemical properties of 2.6-PEN, for example less than 10%. It may also contain a polymeric component. As copolymerization components, dicarboxylic acids such as isophthalic acid and diphenyl dicarboxylic acid, diol components such as ethylene oxide, propylene glycol, butylene glycol, and other components are used.

本発明に係る芯鞘複合繊維に用いられる2゜6−PEN
の極限粘度〔η〕は0.5以上とすることによって得ら
れる芯鞘複合繊維の強度を6、Og/d以上となすこと
ができる。
2゜6-PEN used in the core-sheath composite fiber according to the present invention
By setting the intrinsic viscosity [η] of 0.5 or more, the strength of the obtained core-sheath composite fiber can be made 6.0 g/d or more.

一方、本発明に係る芯鞘複合繊維の鞘成分として用いら
れるポリアミドはポリカプラミド、ポリヘキサメチレン
アジパミド、ポリテトラメチレンアジパミド、ポリへキ
サメチレンドデカミド、ポリへキサメチレンドデカミド
、ポリへキサメチレンテレフタルアミド、ポリへキサメ
チレンイソフタルアミド等であり、中でもポリヘキサメ
チレンアジパミド系ポリマが好ましく用いられる。また
、前記のポリアミドには特に強度などの物性を実質的に
低下させない程度に、ポリヘキサメチレンアジパミドに
対して例えば10%未満のε−カブラミド、テトラメチ
レンアジパミド、ヘキサメチレンドデカミド、ヘキサメ
チレンドデカミド、ポリへキサメチレンテレフタルアミ
ド、ポリへキサメチレンイソフタルアミド等の成分を共
重合したり、あるいはブレンドしてもよい。
On the other hand, the polyamides used as the sheath component of the core-sheath composite fiber according to the present invention include polycapramide, polyhexamethylene adipamide, polytetramethylene adipamide, polyhexamethylene dodecamide, polyhexamethylene dodecamide, and polyhexamethylene dodecamide. These include xamethylene terephthalamide, polyhexamethylene isophthalamide, etc. Among them, polyhexamethylene adipamide-based polymers are preferably used. In addition, the polyamide may contain, for example, less than 10% of ε-cabramide, tetramethylene adipamide, hexamethylene dodecamide, etc., to the extent that physical properties such as strength are not substantially reduced. Components such as hexamethylene dodecamide, polyhexamethylene terephthalamide, and polyhexamethylene isophthalamide may be copolymerized or blended.

また前記のポリアミドには、必要に応じて、本発明繊維
の強度などの物性を低下させない程度に、他の特性を付
加する熱酸化劣化防止剤、艶消剤、顔料、光安定剤、熱
安定剤、酸化防止剤、帯電防止剤、染色性向上剤、接着
性向上剤等を添加することができる。特に熱酸化劣化防
止剤としては銅塩、及びその他の有機、無機化合物が添
加できる。産業用用途として用いる場合は、特に沃化鋼
、酢酸銅、塩化銅、ステアリン酸銅等の銅塩を銅として
30〜500ppmと沃化カリウム、沃化ナトリュウム
、臭化カリウム等のハロゲン化アルカリ金属を0.01
〜0.5重量%及び/或いは有機、無機の燐化合物を0
.01〜0.1重量%含有させることが好ましい。
In addition, the above-mentioned polyamide may optionally contain thermal oxidative deterioration inhibitors, matting agents, pigments, light stabilizers, heat stabilizers, etc. that add other properties to the extent that the physical properties such as strength of the fibers of the present invention are not reduced. Agents, antioxidants, antistatic agents, dyeability improvers, adhesion improvers, etc. can be added. In particular, copper salts and other organic and inorganic compounds can be added as thermal oxidative deterioration inhibitors. When used for industrial purposes, in particular, copper salts such as iodized steel, copper acetate, copper chloride, and copper stearate should be used in an amount of 30 to 500 ppm as copper, and alkali metal halides such as potassium iodide, sodium iodide, potassium bromide, etc. 0.01
~0.5% by weight and/or 0 organic or inorganic phosphorus compounds
.. It is preferable to contain 01 to 0.1% by weight.

本発明に係る芯鞘複合繊維における2)6−PENから
なる芯成分の割合は30〜90重量%である。2.6−
PEN成分が30重量%未満では寸法安定性及び、モジ
ュラスを目的とする値まで向上させることができなく、
耐熱性も改善されない。2.6−PEN芯成分が90重
量%以上占めると、複合繊維の柔軟性が失われて耐疲労
性が低下する。
The ratio of the core component consisting of 2) 6-PEN in the core-sheath composite fiber according to the present invention is 30 to 90% by weight. 2.6-
If the PEN component is less than 30% by weight, the dimensional stability and modulus cannot be improved to the desired values,
Heat resistance is also not improved. When the 2.6-PEN core component accounts for 90% by weight or more, the flexibility of the composite fiber is lost and fatigue resistance is reduced.

本発明に係る芯鞘複合繊維は2.6−PEN芯成分、お
よびポリアミド鞘成分のいずれも高度に配向、結晶化し
ていることが特徴である。
The core-sheath composite fiber according to the present invention is characterized in that both the 2.6-PEN core component and the polyamide sheath component are highly oriented and crystallized.

すなわち2.6−PEN芯成分の複屈折は230XIO
−”〜350X10−”である。複屈折が230X10
−”未満では複合糸の強度6.0g/d以上、初期引張
り抵抗度150 g/d以上を達することはできない。
In other words, the birefringence of the 2.6-PEN core component is 230XIO
-"~350X10-". Birefringence is 230X10
-'', the composite yarn cannot achieve a strength of 6.0 g/d or more and an initial tensile resistance of 150 g/d or more.

一方、ポリアミド鞘成分の複屈折は45×1o−8以上
と高配向である。複屈折が45X40−3以上とするこ
とによって高強度で高い初期引張り抵抗度を有する複合
繊維が得られる。複屈折が40X10−”の場合には本
発明の他の要件を満足したとしても、高強度で高い初期
引張り抵抗度を有する芯鞘複合繊維が得られない。
On the other hand, the birefringence of the polyamide sheath component is 45x1o-8 or more, which is highly oriented. By setting the birefringence to 45×40 −3 or more, a composite fiber having high strength and high initial tensile resistance can be obtained. If the birefringence is 40 x 10-'', even if the other requirements of the present invention are satisfied, a core-sheath composite fiber having high strength and high initial tensile resistance cannot be obtained.

密度は2.6−PEN芯成分が1,340g/am”以
上、ポリアミド鞘成分が1,135g/cm”以上であ
り、高度に結晶化している。
The density of the 2.6-PEN core component is 1,340 g/am" or more, and the polyamide sheath component is 1,135 g/cm" or more, and is highly crystallized.

密度がそれぞれ上記の値以上となすことによって芯鞘複
合繊維の寸法安定性、耐疲労性、およびゴム中耐熱性が
改良される。
By setting the density to each of the above values or more, the dimensional stability, fatigue resistance, and heat resistance in rubber of the core/sheath composite fiber are improved.

前記の様に本発明に係る芯鞘複合繊維は6゜0g/d以
上の高強度、150 g / d以上の初期引張り抵抗
度を有し、伸度は20%以下である。より好ましい複合
繊維特性は強度7.0g/d以上、初期引張り抵抗度2
00 g/d以上、伸度は8〜16%であり、これは前
記条件を適正に組合わせることによって達せられる。
As described above, the core-sheath composite fiber according to the present invention has a high strength of 6°0 g/d or more, an initial tensile resistance of 150 g/d or more, and an elongation of 20% or less. More preferable composite fiber properties are a strength of 7.0 g/d or more and an initial tensile resistance of 2.
00 g/d or more, the elongation is 8-16%, which can be achieved by appropriately combining the above conditions.

本発明に係る複合繊維は以下に詳述する新規な方法によ
って製造される。
The composite fiber according to the present invention is produced by a novel method detailed below.

前記した2)6−PEN芯成分の物性を得るためには、
極限粘度〔η〕が0.5以上、通常は0.6以上の実質
的にエチレンナフタレン−2,6−ジカルボキシレート
からなるポリマを用いる。
2) In order to obtain the physical properties of the 6-PEN core component,
A polymer consisting essentially of ethylenenaphthalene-2,6-dicarboxylate having an intrinsic viscosity [η] of 0.5 or more, usually 0.6 or more is used.

ポリアミド鞘成分ポリマは硫酸相対粘度で2゜8以上、
通常は3.0以上の高重合度ポリマを用い溶融紡糸され
る。
The polyamide sheath component polymer has a sulfuric acid relative viscosity of 2°8 or more,
Usually, a polymer with a high degree of polymerization of 3.0 or higher is used for melt spinning.

該ポリマの溶融紡糸には2基のエクストルーダー型紡糸
機を用いる。芯成分2.6−PENポリマは300〜3
30℃の溶融温度で一方のエクストルーダーで溶融され
、鞘成分のポリアミドポリマは280〜310℃で他方
のエクストルダーで溶融される。それぞれのポリマーを
300〜310℃の温度の複合紡糸装置に導き、複合紡
糸用口金を通して芯部に2.6−PEN。
Two extruder type spinning machines are used for melt spinning the polymer. Core component 2.6-PEN polymer is 300-3
It is melted in one extruder at a melting temperature of 30°C, and the polyamide polymer of the sheath component is melted in the other extruder at a melting temperature of 280-310°C. Each polymer was introduced into a composite spinning device at a temperature of 300 to 310°C, and 2.6-PEN was added to the core through a composite spinning nozzle.

鞘部にポリアミドを配した複合繊維として紡糸する。Spun as a composite fiber with polyamide in the sheath.

紡糸速度は1000m/分以上、好ましくは1500m
/分以上の高速とする。紡糸口金直下に10cm以上、
1m以内にわたって200℃以上、好ましくは260℃
以上の加熱雰囲気を、保温筒、加熱筒を設けることによ
って作る。
The spinning speed is 1000 m/min or more, preferably 1500 m/min.
The speed should be at least 1/min. 10cm or more directly below the spinneret,
200°C or more, preferably 260°C within 1 m
The above heating atmosphere is created by providing a heat retaining cylinder and a heating cylinder.

紡出糸条は上記加熱雰囲気中を通過した後冷風で急冷固
化され、ついで油剤を付与された後紡糸速度を制御する
引取ロールで引取られる。
After passing through the above-mentioned heating atmosphere, the spun yarn is quenched and solidified with cold air, and then, after being applied with an oil agent, it is taken off by a take-off roll that controls the spinning speed.

前記口金直下の加熱雰囲気の制御は本発明の高速紡糸時
の曳糸性を保持するため重要である。
Control of the heating atmosphere directly below the spinneret is important in order to maintain stringiness during high-speed spinning of the present invention.

引取られた未延伸糸は通常−旦巻き取ることなく連続し
て延伸するか、もしくは−旦巻き取った後、別工程で延
伸される。延伸前の未延伸糸の物性を把握する目的で引
取ロール上を通過させた後サンプリングした未延伸糸の
複屈折はポリアミド鞘部が20X10−”以上、好まし
くは30X10−”以上、2.6−PEN芯部も70X
IO””以上、好ましくは80X10−’以上、と高度
に配向している。
The taken-off undrawn yarn is usually drawn continuously without being wound up or drawn in a separate step after being wound up. In order to understand the physical properties of the undrawn yarn before drawing, the birefringence of the undrawn yarn sampled after passing over a take-up roll is such that the polyamide sheath portion is 20X10-'' or more, preferably 30X10-'' or more, 2.6- PEN core is also 70X
It is highly oriented with an orientation of IO"" or more, preferably 80X10-' or more.

高速紡糸の採用は複合繊維の高温時の寸法安定性、およ
び耐久性の改良効果をもたらすが、驚くべきことに芯鞘
複合界面の剥離耐久性が著しく改良される。おそら〈従
来の低速紡糸法のように、吸湿結晶化の進んだポリアミ
ド成分と非晶状態の2.6−PEN成分が組合される場
合と異なり、高速紡糸法ではポリアミド成分と2.6−
PEN成分との双方の配向結晶化が進んでいること、紡
糸後の延伸倍率が少なくて済むこと等が複合界面の剥離
耐久性に寄与しているものと考えられる。
Adoption of high-speed spinning improves the dimensional stability and durability of the composite fiber at high temperatures, but surprisingly, the peeling durability of the core-sheath composite interface is significantly improved. Unlike the conventional low-speed spinning method, in which a highly hygroscopic and crystallized polyamide component is combined with the amorphous 2.6-PEN component, in the high-speed spinning method, the polyamide component and the 2.6-PEN component are combined.
It is thought that the progress of oriented crystallization of both the PEN component and the fact that the stretching ratio after spinning is small contributes to the peel durability of the composite interface.

次に前記の未延伸糸は180℃以上、好ましくは200
℃以上の温度で熱延伸される。延伸は2段以上、通常は
3段以上の多段で行い、延伸倍率は1.1〜4.0の範
囲である。
Next, the undrawn yarn has a temperature of 180°C or higher, preferably 200°C.
It is hot stretched at a temperature of ℃ or higher. The stretching is carried out in two or more stages, usually three or more stages, and the stretching ratio is in the range of 1.1 to 4.0.

本発明のかかる高温熱延伸の採用も複合界面の剥離耐久
性の改良に寄与している。
The use of such high-temperature hot stretching according to the present invention also contributes to improving the peel durability of the composite interface.

前記の延伸による延伸温度が低い場合、例えば160℃
未満ではしばしば延伸時に芯と鞘との界面剥離が生じ、
また180℃未満で延伸した場合は、例えばタイヤコー
ドとして用いる場合においてはタイヤコード加工工程中
、加硫工程中、またはタイヤ走行中に界面剥離が起こる
ことが確認されている。
When the stretching temperature in the above stretching is low, for example, 160°C
If it is less than
Furthermore, it has been confirmed that when stretched at a temperature lower than 180°C, interfacial peeling occurs during the tire cord processing process, vulcanization process, or tire running when used as a tire cord, for example.

かくして得られる繊維は前記の本発明に係る芯鞘複合繊
維の特徴を有する。
The fiber thus obtained has the characteristics of the core-sheath composite fiber according to the present invention described above.

次に実施例に基づいて説明するが、本発明の明細書本文
、および実施例中に記載した繊維特性、コード特性の定
義及び測定方法は次の通りである。
Next, explanations will be given based on Examples, and the definitions and measurement methods of the fiber characteristics and cord characteristics described in the main text of the specification and Examples of the present invention are as follows.

2.6−PEN芯繊維の特性 (イ)極限粘度〔η〕 : 試料をフェノールとオルトジクロロベ ンゼン混合溶媒(混合比6:4)に溶解し、オストワル
ド粘度計を用いて25℃で測定した。
2. Characteristics of 6-PEN core fiber (a) Intrinsic viscosity [η]: A sample was dissolved in a mixed solvent of phenol and orthodichlorobenzene (mixing ratio 6:4), and measured at 25°C using an Ostwald viscometer.

(o) ?uljlui : カールツアイスイエナ社(東独)製透 過定量型干渉顕微鏡を用いて、干渉縞法によって繊U[
の側面から観察した平均複屈折を求めた。試料はポリア
ミド成分を蟻酸で溶解除去し、2.6−PEN芯繊維成
分を測定した。
(o)? uljlui: Fiber U[
The average birefringence observed from the side was determined. The polyamide component of the sample was dissolved and removed with formic acid, and the 2.6-PEN core fiber component was measured.

(ハ)密度: 四塩化炭素を重液、n−へブタンを軽 液として製作した密度勾配管を用い、25℃で測定した
。試料はポリアミド成分を蟻酸で溶解除去し、2.6−
PEN芯繊維成分を測定した。
(c) Density: Measurement was performed at 25° C. using a density gradient tube prepared using carbon tetrachloride as a heavy liquid and n-hebutane as a light liquid. The sample was prepared by dissolving and removing the polyamide component with formic acid.
The PEN core fiber component was measured.

ポリアミド鞘繊維の特性 (イ)硫酸相対粘度ηr: 試料0.25gを98%硫酸25cc に溶解し、オストヮルド粘度計を用いて25℃で測定し
た。
Characteristics of polyamide sheath fibers (a) Relative viscosity of sulfuric acid ηr: 0.25 g of a sample was dissolved in 25 cc of 98% sulfuric acid, and measured at 25° C. using an Ostold viscometer.

(ロ)複屈折: 2.6−PEN芯繊維成分と同様透過 定損型干渉顕微鏡による干渉縞法で側面から表層のポリ
アミド繊維部分のみを測定した。
(B) Birefringence: Similar to the 2.6-PEN core fiber component, only the polyamide fiber portion in the surface layer was measured from the side using the interference fringe method using a transmission constant loss interference microscope.

(ハ)密度: 複合繊維の密度と2.6−PEN芯成 分の密度から計算によって求めた。(c) Density: Composite fiber density and 2.6-PEN core composition It was calculated from the density of minutes.

複合繊維の特性 (イ)密度: 四塩化炭素を重液、n−へブタンを軽 液として製作した密度勾配管を用い、25℃で測定した
Characteristics of Composite Fibers (a) Density: Measured at 25°C using a density gradient tube prepared using carbon tetrachloride as a heavy liquid and n-hebutane as a light liquid.

(ロ)強度、伸度、初期引張り抵抗度二強度、伸度、初
期引張り抵抗度はJI S  L1017の定義及び測定法によった。尚、SS
曲線を得るための引張り試験の具体的条件は次の通りで
ある。
(b) Strength, elongation, and initial tensile resistance Strength, elongation, and initial tensile resistance were in accordance with the definition and measurement method of JI S L1017. In addition, SS
The specific conditions for the tensile test to obtain the curve are as follows.

試料を総状にとり、20℃、65%R Hの温湿度調整された部屋に24時間以上放置後、“テ
ンシロンUTL−4L”型引張試験機(オリエンチック
(株)製)を用い、試長25 c m−、引張速度30
cm/分で測定した。
A sample was taken into a general shape, and after being left in a temperature- and humidity-controlled room at 20°C and 65% RH for more than 24 hours, it was tested using a "Tensilon UTL-4L" type tensile tester (manufactured by Orientic Co., Ltd.) with a test length of 25. cm-, tensile speed 30
Measured in cm/min.

(ハ)乾熱収縮率: 試料を総状にとり、20℃、65%R Hの温湿度調整された部屋に24時間以上放置後、試料
のO,Ig/dに相当する荷重を掛けて測定した長さL
の試料を無緊張状態で150℃のオーブン中で30分間
処理する。処理後のサンプルを風乾し、上記温湿度調節
室で24時間以上放置後、再上記荷重を掛けて測定した
長さLoから次式によって算出した。
(c) Dry heat shrinkage rate: A sample was taken in a general shape, left in a temperature and humidity controlled room at 20°C and 65% RH for 24 hours or more, and then measured by applying a load equivalent to O, Ig/d of the sample. length L
The sample is processed in an oven at 150° C. for 30 minutes under no tension. The treated sample was air-dried, left in the above-mentioned temperature and humidity control room for 24 hours or more, and then the above-mentioned load was applied again, and the measured length Lo was calculated using the following formula.

乾熱収縮率= (L−LO) /LX100複合繊維コ
ードの特性 (イ)強度、伸度、初期引張り抵抗度、及び中間伸度: 前記繊維の場合と同様に測定した。中 間伸度は下記式で定める強力を示す時の伸度をいう。
Dry heat shrinkage rate = (L-LO) /LX100 Characteristics of composite fiber cord (a) Strength, elongation, initial tensile resistance, and intermediate elongation: Measured in the same manner as in the case of the fibers. Intermediate elongation refers to the elongation at which strength is shown as determined by the formula below.

(4,5X D X n ) / (1000X2) 
K g但し、D=延伸糸繊度 n:合撚糸数 例えば、延伸糸繊度1500デニール 糸を2本合撚糸したコードエ500/2は6.75Kg
の時の伸度が中間伸度である。
(4,5X D X n ) / (1000X2)
K g However, D = drawn yarn fineness n: number of yarns combined and twisted. For example, CORDE 500/2, which is made by combining and twisting two yarns with a drawn yarn fineness of 1500 denier, is 6.75 kg.
The elongation at the time is the intermediate elongation.

(ロ)乾熱収縮率: 処理温度を177℃とした以外は、前 記複合繊維と同様に測定した。(b) Dry heat shrinkage rate: Same as before except that the processing temperature was 177℃. Measurements were made in the same manner as for the composite fiber.

(ハ)GY疲労寿命: JIS  L1017−1.3,2.IA法に準拠した
。但し曲げ角度は90゜とした。
(c) GY fatigue life: JIS L1017-1.3, 2. Compliant with IA law. However, the bending angle was 90°.

(ニ)GD疲労寿命 JIS  L1017−1.3.2.2に準拠した。但
し伸張6.3%、圧縮12.6%とした。
(d) GD fatigue life Compliant with JIS L1017-1.3.2.2. However, the expansion was 6.3% and the compression was 12.6%.

(ホ)接着性: JIS  1017−3.3.1Aによった。(e) Adhesiveness: According to JIS 1017-3.3.1A.

(へ)耐熱接着性: 加硫時の熱処理を170℃で60分と した以外上記(ホ)項と同様の方法で評価した。(f) Heat-resistant adhesion: Heat treatment during vulcanization at 170℃ for 60 minutes Evaluation was made in the same manner as in section (e) above, except that

(ト)ゴム中耐熱性: ゴムシート上に並べたデイツプコード を、別に用意したゴムシートでサンドイッチ状に挟み、
170℃に加熱したプレス機で50kg/am2の圧力
下に3時間熱処理した。処理前後のコード強力を測定し
、強力保持率を求めて耐熱性の尺度とした。
(G) Heat resistance in rubber: Dip cords lined up on a rubber sheet are sandwiched between separately prepared rubber sheets.
Heat treatment was performed for 3 hours under a pressure of 50 kg/am2 using a press heated to 170°C. The cord strength before and after treatment was measured, and the strength retention rate was determined, which was used as a measure of heat resistance.

[実施例] 実施例1 極限粘度〔η〕0.8の2.6−PEN及び、沃化鋼0
.02重量%と沃化カリウム0.1重量%を含む硫酸相
対粘度ηr3.3のヘキサメチレンアジパミドをそれぞ
れ40φ工クストルーダー型紡糸機で溶融し、複合紡糸
バックに導き、芯鞘複合紡糸口金より芯に2.6−PE
N。
[Example] Example 1 2.6-PEN with intrinsic viscosity [η] 0.8 and iodized steel 0
.. Hexamethylene adipamide with a relative viscosity ηr of 3.3 containing 0.02% by weight of potassium iodide and 0.1% by weight of potassium iodide was melted in a 40φ xtruder-type spinning machine, guided into a composite spinning bag, and then passed through a core-sheath composite spinneret. 2.6-PE twisted core
N.

鞘部にヘキサメチレンアジパミドの複合繊維として紡出
した。芯成分及び鞘成分の割合は表1の様に変化させた
。口金は孔径0.4mmφ、孔数120ホールを用いた
。ポリマー温度は2゜6−PENを305℃、ヘキサメ
チレンアジパミドを290℃でそれぞれ溶融し、紡糸バ
ック温度を300℃として紡出した。口金直下には15
cmの加熱筒を取り付け、筒内雰囲気温度を300℃と
なるよう加熱した。筒内雰囲気温度とは口金面より10
cm下の位置で、且つ最外周糸条より1cm離れた位置
で測定した雰囲気温度である。加熱筒の下には長さ40
cmの環状型チムニ−を取り付け、糸条の周囲より20
°Cで40m/分の冷風を糸条に直角に吹きつけ、冷却
した。ついで油剤を付与した後、表1に示した速度で回
転する引取ロールで糸条速度を制御した後−旦巻き取る
ことなく連続して延伸した。延伸は5対のネルソン型ロ
ールによって3段延伸した後3%のリラックスを与えて
弛緩熱処理して巻き取った。延伸条件は、引取ロール温
度を60℃、第1延伸ロール温度を120℃、第2延伸
ロール温度を190℃、第3延伸ロール温度を220℃
、延伸後の張力調整ロールは非加熱とし、1段延伸倍率
は全延伸倍率の70%、残りを2段にわけて配分し延伸
した。
It was spun as a composite fiber with hexamethylene adipamide in the sheath. The proportions of the core component and sheath component were varied as shown in Table 1. The cap used had a hole diameter of 0.4 mmφ and 120 holes. The polymer temperature was 2.6-PEN and hexamethylene adipamide were melted at 305°C and 290°C, respectively, and spun at a spinning back temperature of 300°C. 15 directly below the base
A cm heating cylinder was attached and the cylinder was heated to an atmospheric temperature of 300°C. The atmosphere temperature inside the cylinder is 10% from the mouth surface.
This is the atmospheric temperature measured at a position 1 cm below the outermost thread and 1 cm away from the outermost thread. There is a length of 40 mm under the heating cylinder.
Attach a circular chimney of 20cm in diameter and
The yarn was cooled by blowing cold air at 40 m/min perpendicularly to the yarn at °C. After applying an oil agent, the yarn speed was controlled with a take-up roll rotating at the speed shown in Table 1, and then the yarn was continuously stretched without being wound up. The film was stretched in three stages using five pairs of Nelson type rolls, then subjected to a relaxation heat treatment with 3% relaxation, and then wound up. The stretching conditions are: take-up roll temperature of 60°C, first stretching roll temperature of 120°C, second stretching roll temperature of 190°C, and third stretching roll temperature of 220°C.
After stretching, the tension adjustment roll was not heated, the first stage stretching ratio was 70% of the total stretching ratio, and the remainder was divided into two stages for stretching.

紡糸速度、延伸倍率に対応させて吐出量を変化させて製
糸したが、延伸糸の繊度が約500デニールとなるよう
紡糸速度、延伸倍率に対応させて吐出量を変化させた。
Silk production was carried out by changing the discharge amount in accordance with the spinning speed and the draw ratio, and the discharge amount was varied in accordance with the spinning speed and the draw ratio so that the fineness of the drawn yarn was about 500 denier.

得られた延伸糸は3本合糸して1500デニールとした
Three of the obtained drawn yarns were combined to have a denier of 1,500.

製糸条件、得られた延伸糸特性、及び繊維構造パラメー
ターを、市販のタイヤコード用ナイロン66繊維(12
60−204−1781)、及びポリエチレンテレフタ
レート(PET)!維(1500−288−702C)
 、及び試験的に製糸した2)6−PEN単成分繊維の
それらと合わせ表1に示した。
The spinning conditions, the obtained drawn yarn properties, and the fiber structure parameters were determined using commercially available nylon 66 fiber for tire cords (12
60-204-1781), and polyethylene terephthalate (PET)! Wi (1500-288-702C)
, and those of 2) 6-PEN monocomponent fibers that were experimentally spun are shown in Table 1.

実施例2 実施例1で得た延伸糸を用い、上撚り及び下撚りをそれ
ぞれ反対方向に40T/10cmづつかけて1500/
2の生コードとした。但し、比較例5のN66は撚り数
を39T/10cmとし、1260/2の生コードとし
た。この生コードをリッラー社製ディッピング機によっ
て接着剤付与および熱処理をしてデイツプコードとした
Example 2 Using the drawn yarn obtained in Example 1, the first twist and the second twist were applied in opposite directions at a rate of 40T/10cm, and the yarn was twisted at a rate of 1500/10cm.
2 raw code. However, N66 of Comparative Example 5 had a twist number of 39T/10cm and was made into a raw cord of 1260/2. This raw cord was applied with an adhesive and heat-treated using a dipping machine manufactured by Riller Co., Ltd. to obtain a dip cord.

デイツプ液は20%のレゾルシン、ホルマリン、ラテッ
クスよりなる接着剤成分を含み、接着剤成分がコードに
4%付着するよう調整した。
The dip liquid contained an adhesive component consisting of 20% resorcinol, formalin, and latex, and was adjusted so that 4% of the adhesive component adhered to the cord.

熱処理は225℃で80秒、デイツプコードの中間伸度
が約5%となるようストレッチをかけながら処理した。
The heat treatment was carried out at 225° C. for 80 seconds while stretching the dip cord so that the intermediate elongation was about 5%.

ナイロン66は同様熱処理条件で、中間伸度が約9%と
なるようストレッチして処理した。
Nylon 66 was stretched under the same heat treatment conditions so that the intermediate elongation was approximately 9%.

またPETと2.6−PEN単成分繊維は常法により2
浴接着処理を行い、熱処理は240℃、120秒行い、
中間伸度が約5%となるようストレッチして処理した。
In addition, PET and 2.6-PEN monocomponent fibers were prepared using a conventional method.
Bath adhesion treatment was performed, heat treatment was performed at 240°C for 120 seconds,
It was stretched and processed so that the intermediate elongation was about 5%.

かくして得られたデイツプコードについてゴム中耐熱性
、接着性、耐疲労性等を評価し表2に示した。
The dip cord thus obtained was evaluated for heat resistance in rubber, adhesiveness, fatigue resistance, etc., and the results are shown in Table 2.

本発明複合繊維デイツプコードは従来のポリエステルデ
イツプコードと同等以上の寸法安定性を有し、且つ著し
く改良されたモジュラス、ゴム中耐熱性、耐熱接着性、
及び耐疲労性を有する高強力デイツプコードであること
を示している。
The composite fiber dip cord of the present invention has dimensional stability equal to or higher than conventional polyester dip cord, and has significantly improved modulus, heat resistance in rubber, heat resistant adhesiveness,
This shows that it is a high-strength deep dip cord with excellent fatigue resistance.

[発明の効果] 本発明複合繊維は従来の複合繊維に比べ著しく改良され
た寸法安定性、及びモジュラス、ゴム中耐熱性を有し、
且つ接着性、特に高温履歴を受けた後の耐熱接着性、及
び耐疲労性が著しく改良されている。そのため、例えば
タイヤコードとして用いるとタイヤ走行時の繰り返し疲
労、及び走行時の発熱に対する耐久性が極めて良好とな
る。そこで比較的大型の乗用車、ライトトラック、及び
トラック、バス用のタイヤコードとして有用できる。特
に大型のラジアルタイヤのカーカスコードとして最適で
ある。
[Effect of the invention] The composite fiber of the present invention has significantly improved dimensional stability, modulus, and heat resistance in rubber compared to conventional composite fibers,
In addition, adhesion properties, particularly heat-resistant adhesion properties and fatigue resistance after being subjected to high-temperature history, are significantly improved. Therefore, when used as a tire cord, for example, it has extremely good durability against repeated fatigue during tire running and heat generation during running. Therefore, it can be useful as a tire cord for relatively large passenger cars, light trucks, trucks, and buses. It is especially suitable as a carcass cord for large radial tires.

また本発明複合繊維は上記優れた物性を有するので、タ
イヤコード以外のゴム補強材としては勿論、一般の産業
資材用途にも有用できる。
Moreover, since the composite fiber of the present invention has the above-mentioned excellent physical properties, it can be useful not only as a rubber reinforcing material other than tire cords, but also for general industrial material applications.

Claims (2)

【特許請求の範囲】[Claims] (1)芯鞘複合繊維において、芯成分がエチレンナフタ
レン−2,6−ジカルボキシレートを主成分とするポリ
エチレン−2,6−ナフタレートからなり、鞘成分がポ
リアミドからなる芯鞘複合繊維であり、該繊維に占める
芯成分の割合が30〜90重量%、該芯成分極限粘度〔
η〕が0.5以上、複屈折が230×10^−^3〜3
50×10^−^3、密度が1.340g/cm^3以
上、ポリアミド鞘成分の硫酸相対粘度ηrが2.8以上
、複屈折が45×10^−^3以上、密度が1.135
g/cm^3以上であり、前記芯成分および鞘成分が高
配向、高結晶繊維構造を形成してなることを特徴とする
芯鞘複合繊維。
(1) A core-sheath composite fiber in which the core component is made of polyethylene-2,6-naphthalate whose main component is ethylene-naphthalene-2,6-dicarboxylate, and the sheath component is made of polyamide, The proportion of the core component in the fiber is 30 to 90% by weight, and the core component has an intrinsic viscosity of [
η] is 0.5 or more, birefringence is 230×10^-^3~3
50 x 10^-^3, density is 1.340 g/cm^3 or more, sulfuric acid relative viscosity ηr of polyamide sheath component is 2.8 or more, birefringence is 45 x 10^-^3 or more, density is 1.135
g/cm^3 or more, and wherein the core component and the sheath component form a highly oriented, highly crystalline fiber structure.
(2)特許請求の範囲第1項に記載された芯鞘複合繊維
において、該複合繊維の強度が6.0g/d以上、伸度
が20%以下、初期引張り抵抗度が150g/d以上、
乾熱収縮率が3%以下であることを特徴とする芯鞘複合
繊維。
(2) In the core-sheath composite fiber described in claim 1, the composite fiber has a strength of 6.0 g/d or more, an elongation of 20% or less, and an initial tensile resistance of 150 g/d or more,
A core-sheath composite fiber characterized by a dry heat shrinkage rate of 3% or less.
JP1277508A 1989-10-25 1989-10-25 Core-sheath composite fiber Expired - Lifetime JP2817269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277508A JP2817269B2 (en) 1989-10-25 1989-10-25 Core-sheath composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277508A JP2817269B2 (en) 1989-10-25 1989-10-25 Core-sheath composite fiber

Publications (2)

Publication Number Publication Date
JPH03146713A true JPH03146713A (en) 1991-06-21
JP2817269B2 JP2817269B2 (en) 1998-10-30

Family

ID=17584574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277508A Expired - Lifetime JP2817269B2 (en) 1989-10-25 1989-10-25 Core-sheath composite fiber

Country Status (1)

Country Link
JP (1) JP2817269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049027A1 (en) * 2013-10-02 2015-04-09 Carl Freudenberg Kg Fabric sheet with high thermal stability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049027A1 (en) * 2013-10-02 2015-04-09 Carl Freudenberg Kg Fabric sheet with high thermal stability

Also Published As

Publication number Publication date
JP2817269B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
EP0311386B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JPH11222775A (en) Cord for reinforcing rubber
JP2659724B2 (en) Manufacturing method of high strength composite fiber
EP4026935A1 (en) Polyester tire cord having excellent heat resistance, and tire comprising same
JPH03146713A (en) Sheath-core conjugated fiber
KR102227154B1 (en) Polyester tire cord with improved heat resistance and tire comprising the same
JPH03152215A (en) High-strength and highly durable conjugate fiber
KR100630263B1 (en) High performance radial tire using hybrid cord for carcass ply
JPH08176963A (en) Polyhexamethylene adipamide fiber having high toughness and its production
JP2647661B2 (en) Composite fiber with high strength
JPH03294519A (en) Sheath-core conjugate fiber
JPH0274610A (en) Conjugate fiber having high tenacity and excellent durability
JPH0274612A (en) Conjugate fiber having high tenacity
JPH03146714A (en) Conjugated fiber
JP2839817B2 (en) Manufacturing method of polyester fiber with excellent thermal dimensional stability
JPH03161518A (en) Sheath-core conjugate fiber
JP2003073920A (en) High strength polybutylene terephthalate-based fiber
KR910004458B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JPH0274611A (en) Conjugate fiber having excellent durability
JPH09268471A (en) Polyamide yarn for reinforcing material for rubber product and its production
KR102241107B1 (en) Cap ply cord and manufacturing method of the same
KR102166025B1 (en) Process for manufacturing high modulus low shrinkage polyethylene terephthalate fiber and the polyethylene terephthalate fiber manufactured thereby
JPH03294518A (en) Conjugate fiber
KR101849196B1 (en) Pneumatic tire
JPH02145813A (en) Conjugate fiber having high strength and production thereof