JPH03146442A - Production of molding material - Google Patents

Production of molding material

Info

Publication number
JPH03146442A
JPH03146442A JP1281781A JP28178189A JPH03146442A JP H03146442 A JPH03146442 A JP H03146442A JP 1281781 A JP1281781 A JP 1281781A JP 28178189 A JP28178189 A JP 28178189A JP H03146442 A JPH03146442 A JP H03146442A
Authority
JP
Japan
Prior art keywords
glass fiber
fiber bundle
bundle
wound body
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1281781A
Other languages
Japanese (ja)
Other versions
JPH0530783B2 (en
Inventor
Yoshiro Shinno
義朗 新野
Shigeharu Arai
新井 重治
Akira Kozuka
狐塚 章
Atsuto Kobayashi
小林 淳人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP1281781A priority Critical patent/JPH03146442A/en
Publication of JPH03146442A publication Critical patent/JPH03146442A/en
Publication of JPH0530783B2 publication Critical patent/JPH0530783B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE:To obtain the molding material for fiber reinforced thermoplastic resin which is free from fluffing and thread breakage and homogeneous by applying a sizing agent to glass fiber to make a glass fiber bundle and forming this bundle into a cylindrically wound body and pulling out the glass fiber bundle in a state of specified water content, dividing and drying it and thereafter coating thermoplastic resin thereon. CONSTITUTION:A sizing agent such as a coupling agent, a lubricator and a film forming agent is applied to many glass fibers pulled out from a bushing to make a glass fiber bundle. This bundle is led to a guiding member. This guide member is moved back and forth along a rotary shaft and the glass fiber bundle is wound into a cylindrical shape to make a wound body. When this wound body contains large amounts of water, it is preliminarily dried before pulling out it and moisture content is regulated to 0.5-13wt.% preferably 3-8wt.%. Then the glass fiber bundle is pulled out from the wound body and divided (preferably 50-300g weight per 1000m) by utilizing a sinking comblike dividing member having a plurality of grooves. This divided fiber bundle is dried while allowing it to run and passed through the melt of thermoplastic resin to coat resin thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、繊維補強熱可塑性樹脂体(FRTP)の製造
に有用な成型材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a molding material useful for producing fiber-reinforced thermoplastic bodies (FRTP).

〔従来の技術〕[Conventional technology]

FRTPはガラス繊維のような補強繊維と熱可塑性樹脂
を含むペレット(繊維含有ペレット)を原料とし、射出
成型法によって製造される。
FRTP is manufactured by injection molding using pellets (fiber-containing pellets) containing reinforcing fibers such as glass fibers and thermoplastic resin as raw materials.

繊維含有ペレットは通常補強繊維切断物(例えばチョン
プドストランド、C8と略称〉と熱可塑性樹脂を加熱下
に混練することによって製造されるが、混線操作中に補
強m維が寸断され易く、このため、このベレットを使用
して得られたFRTPの強度が低下する難点がある。
Fiber-containing pellets are usually produced by kneading cut reinforcing fibers (for example, chopped strands, abbreviated as C8) and a thermoplastic resin under heating, but the reinforcing fibers are likely to be shredded during the cross-crossing operation. Therefore, there is a problem that the strength of FRTP obtained using this pellet is reduced.

上記難点を解消するため、ストランド、ロービングのよ
うな連続したガラス繊維束に熱可塑性樹脂を被着させた
後、切断して繊維含有ペレットを製造する方法(長尺法
と呼ぶ〉が提案されて長尺法においては連続したガラス
繊維束が使用されるが、工業的にはガラス繊維束を円筒
状に回巻した回巻体(円筒状回巻体)が使用され、ガラ
ス繊維束は円筒状回巻体から引出され、熱可塑性樹脂被
着装置に連続して供給される。
In order to solve the above-mentioned difficulties, a method (referred to as the long method) has been proposed in which continuous glass fiber bundles such as strands or rovings are coated with thermoplastic resin and then cut to produce fiber-containing pellets. Continuous glass fiber bundles are used in the long method, but industrially, a cylindrical wound body (cylindrical wound body) of glass fiber bundles is used; It is drawn out from the roll and continuously fed to a thermoplastic resin coating device.

ガラス繊維束が水分を含有していると、この水分がFR
TP成型の際気化しFRTPの性能が低下するので、円
筒状回巻体としては予め乾燥したもの、例えばタイプ3
0のような直捲ロービング回巻体が使用される。
If the glass fiber bundle contains moisture, this moisture will cause the FR
Since FRTP performance deteriorates due to vaporization during TP molding, the cylindrical wound body should be dried in advance, such as type 3.
Directly wound roving turns such as 0 are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の長尺法は、次のような問題点を有する。 The conventional long length method has the following problems.

乾燥した円筒状回巻体からガラス繊維束を引出し、熱可
塑性樹脂被着装置へ送る間に、ガラス繊維にも毛羽立ち
を生じて、樹脂のガラス繊維束に対する被着が不均一と
なり、FRTPの品質にバラツキを生じ易く、又ガラス
繊維束が切断してしまうことがある。特にこの傾向は集
束剤として、アクリル樹脂、ウレタン樹脂、AS樹脂を
含むものを使用した場合著しい。又ガラス繊維束を引出
す際、ガラス繊維束が完全に直線状とならず、撚れ、弯
曲等の歪が残存し、このため熱可塑性樹脂の被着が不均
一となり、FRTPの品質に□バラツキを生ずる原因と
なる。このような歪は円筒状回巻体からガラス繊維束を
引出す際、回巻体の長手方向に引出すと引出されたガラ
ス繊維束に発生する、円筒状回巻体の周長当り1回の撚
れによるものと考えられ、円筒状回巻体を円筒の軸を中
心として回転自在に支持して引出しを行なうことにより
、上述した引出しによって生ずる撚れの発生を防止する
ことも試みられるが、残存歪を完全に除去し、均質なF
RTPを得ることは困難である。
While the glass fiber bundle is pulled out from the dried cylindrical roll and sent to the thermoplastic resin coating device, the glass fibers also become fluffy, resulting in uneven adhesion of the resin to the glass fiber bundle, which deteriorates the quality of the FRTP. It is easy to cause variations in the glass fiber bundles, and the glass fiber bundles may be broken. This tendency is particularly remarkable when a sizing agent containing acrylic resin, urethane resin, or AS resin is used. Furthermore, when the glass fiber bundle is pulled out, the glass fiber bundle is not perfectly straight, and distortions such as twisting and curving remain, resulting in uneven adhesion of the thermoplastic resin and variations in the quality of FRTP. This may cause Such strain occurs when a glass fiber bundle is pulled out from a cylindrical wound body in the longitudinal direction of the cylindrical body. It is thought that this is due to this, and attempts have been made to prevent the twisting caused by the above-mentioned drawing by supporting the cylindrical wound body rotatably around the axis of the cylinder and pulling it out. Completely removes distortion and produces a homogeneous F
Obtaining RTP is difficult.

更に又従来技術は次のような問題点を有する。Furthermore, the prior art has the following problems.

ガラス繊維束の集束本数を増加し、ガラス繊維束を太<
  (1,000m当りの重量を大と)する程、生産性
が向上するが、繊維束を太くすると、繊維束に被着した
熱可塑性樹脂が繊維束の内部に滲透し難くなり、この繊
維束を使用して得られたFRTPの品質にバラツキを生
ずる。
Increase the number of glass fiber bundles and make the glass fiber bundles thicker.
(The larger the weight per 1,000m), the higher the productivity, but when the fiber bundle is made thicker, it becomes difficult for the thermoplastic resin adhered to the fiber bundle to seep into the inside of the fiber bundle. This causes variations in the quality of FRTP obtained using FRTP.

このため集束剤を附与したガラス繊維を複数の群に分割
して集束して複数の細い繊維束となし、この複数の繊維
束を同時に巻取って回巻体とすることも提案されている
が、この方法によるときは繊維束の長さを完全に同一と
することはできず、ループが生じ、繊維束の回巻体から
の引出しが円滑に行なわれ難くなり、又繊維束を次の工
程へ送る際使用されるガイドに繊維束が引懸って切断し
たり、毛羽立ちを生じたりし易い。
For this reason, it has also been proposed to divide glass fibers to which a sizing agent has been added into multiple groups and bundle them into multiple thin fiber bundles, and to simultaneously wind these multiple fiber bundles to form a wound body. However, when using this method, the length of the fiber bundle cannot be made completely the same, and loops occur, making it difficult to smoothly pull out the fiber bundle from the wound body. The fiber bundles tend to get caught on the guides used when sending the fibers to the process, causing them to break or become fluffy.

太い繊維束を引出し、ついで複数の繊維束に分割するこ
とも試みられたが、分割の際毛羽立ちが生じて良好な結
果をうろことができなかった。
Attempts have been made to draw out a thick fiber bundle and then divide it into a plurality of fiber bundles, but fuzzing occurs during the division, and good results have not been obtained.

本発明は、ガラス繊維束を引出すときの毛羽立ち、切断
を生ずることなく、且つ生産性を阻害することもなく熱
可塑性樹脂が内部逸物−に滲透しており、均質なFRT
Pかえられるような熱可塑性樹脂を被着したFRTP用
成型材の製造方法を提供することを目的としている。
The present invention provides a homogeneous FRT in which the thermoplastic resin permeates into the internal material without causing fuzz or cutting when pulling out the glass fiber bundle, and without impeding productivity.
It is an object of the present invention to provide a method for manufacturing a molding material for FRTP coated with a thermoplastic resin that can be replaced with P.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するこめに、本発明においては、ブッシ
ングから引出された多数のガラス繊維に集束剤を附与集
束してガラス繊維束とする工程、ガラス繊維束を回転す
る軸に沿って往復動する案内部材に係合せしめて上記軸
に巻取って円筒状回巻体とする工程、上記回巻体の水分
含有量が0.5〜13−1%の状態において回巻体から
ガラス繊維束を引出す工程、引出されたガラス繊維束を
複数の繊維束に分割する工程、分割されたガラス繊維束
を走行状態において乾燥し、ついで熱可塑性樹脂を被着
させる工程とにより成型材料を製造する。
In order to achieve the above object, the present invention includes a step of adding a sizing agent to a large number of glass fibers pulled out from a bushing and converging them into a glass fiber bundle, and a step of reciprocating the glass fiber bundle along a rotating axis. A step of engaging the guide member to form a cylindrical wound body by winding it around the shaft, and removing the glass fiber bundle from the wound body in a state where the moisture content of the wound body is 0.5 to 13-1%. A molding material is manufactured by a drawing process, a process of dividing the drawn glass fiber bundle into a plurality of fiber bundles, a process of drying the divided glass fiber bundle in a running state, and then a process of covering it with a thermoplastic resin.

又分割されたガラス繊維束の太さを乾燥状態における1
、000 m当りの重量が10〜500gr望ましくは
50〜300grたらしめる。
Also, the thickness of the divided glass fiber bundles is 1 in the dry state.
The weight per ,000 m is 10 to 500 gr, preferably 50 to 300 gr.

次に本発明を更に具体的に説明する。Next, the present invention will be explained in more detail.

ブッシングから引出した多数のガラス繊維に集束剤を附
与し、集束部材で集束する。
A sizing agent is applied to a large number of glass fibers pulled out from a bushing, and the fibers are bundled by a sizing member.

ガラス繊維としては直径3〜23μ、望ましくは9〜1
6μのものが好適に使用できる。
The glass fiber has a diameter of 3 to 23 μm, preferably 9 to 1 μm.
A material having a diameter of 6μ can be suitably used.

ガラス繊維束を製造する際、或は回巻体からガラス繊維
束を引出して使用する際の毛羽立ち、糸切れを防止して
作業性を良好ならしめ、又ガラス繊維と熱可塑性樹脂の
馴染みを良好ならしめてFRTPの強度を向上させる為
、集束剤としてカップリング 剤、潤滑剤、被膜形成剤
を含むものを使用する。
Prevents fuzzing and thread breakage when manufacturing glass fiber bundles or when pulling out glass fiber bundles from rolled bodies to improve workability, and improves compatibility between glass fibers and thermoplastic resin. In order to smoothen and improve the strength of FRTP, a binding agent containing a coupling agent, lubricant, and film forming agent is used as a sizing agent.

カップリング剤としてはアミノシラン、エポキシシラン
3 ビニルシランのようなシランカップリング剤或はチ
タン系カップリング剤、特にシランカップリング剤が好
適に用いられる。
As the coupling agent, a silane coupling agent such as aminosilane, epoxysilane, 3-vinylsilane, or a titanium-based coupling agent, particularly a silane coupling agent, is preferably used.

潤滑剤としては、脂肪酸アミド、非イオン系界面活性剤
等が、又被膜形成剤としてはウレタン樹脂、アクリル樹
脂、AS樹脂を用いるのが好ましい。
As the lubricant, it is preferable to use fatty acid amide, nonionic surfactant, etc., and as the film forming agent, it is preferable to use urethane resin, acrylic resin, or AS resin.

集束剤中のカンプリング剤、潤滑剤、被膜形成剤の濃度
は、夫々0.05〜0.8 wt%、 0.05〜0.
5 wt%、0.5〜10wt%としガラス繊維に集束
剤を固型分として0.01〜2 wt%、望ましくは0
.1〜0.8−t%附与するのが適当である。集束剤を
附与したガラス繊維は、常法に従って、集束してガラス
繊維束となし、案内部材に導く。
Concentrations of the compacting agent, lubricant, and film forming agent in the sizing agent are 0.05 to 0.8 wt% and 0.05 to 0.8 wt%, respectively.
5 wt%, 0.5 to 10 wt%, and the solid content of the sizing agent to the glass fiber is 0.01 to 2 wt%, preferably 0.
.. It is appropriate to add 1 to 0.8-t%. The glass fibers to which a sizing agent has been added are bundled into a glass fiber bundle according to a conventional method and guided to a guide member.

案内部材を回転する軸に沿って往復動させ、ガラス繊維
束を円筒状に巻取って回巻体とし、ついでこの回巻体か
らガラス繊維束を引出して次の工程に送る。
The guide member is reciprocated along the rotating shaft, the glass fiber bundle is wound up into a cylindrical shape, and the glass fiber bundle is then pulled out from this roll and sent to the next process.

回巻体が多量の水分を含んでいる場合、引出しに先立ち
予備乾燥して水分含有量を0.5〜13wt%、望まし
くは3〜8&4t%とする。
If the rolled body contains a large amount of water, it is pre-dried before being drawn out to reduce the water content to 0.5 to 13 wt%, preferably 3 to 8&4 t%.

この水分含有量があまり多いと、後述する乾燥工程での
乾燥が不充分となってFRTPの品質不良を生じ易く、
又この水分があまり少ないと毛羽立ち防止等の効果が不
充分となり、又マイグレーションが大となり易い。
If this water content is too high, drying in the drying process described below will be insufficient, which will likely result in poor quality of FRTP.
Furthermore, if this water content is too small, the effect of preventing fluffing etc. will be insufficient, and migration will tend to become large.

ついで、引出されたガラス繊維束を分割する。Then, the drawn glass fiber bundle is divided.

分割の手段に特に限定はないがガラス繊維束の先端を手
で複数個に分割し、複数の溝を有する櫛歯状の分割部材
を使用し、分割されたガラス繊維束を上記溝中を通して
引張ることにより毛羽立ちを生ずることなく、分割をス
ムースに行ない、長さが等しく、ループのない繊維束群
をうることかできる。
There is no particular limitation on the means of division, but the tip of the glass fiber bundle is manually divided into a plurality of pieces, a comb-like dividing member having a plurality of grooves is used, and the divided glass fiber bundle is pulled through the grooves. As a result, the division can be performed smoothly without causing fuzz, and a group of fiber bundles with equal length and no loops can be obtained.

なお、分割数は、分割された個々の繊維束の乾燥状態に
おける1、000 m当りの重量がlO〜500gr、
望ましくは50〜300grとなるよう定めるのが適当
である。分割されたガラス繊維束を走行状態において乾
燥することにより乾燥を均一に行ない、歪等のないガラ
ス繊維束をうろことができる。
In addition, the number of divisions is such that the weight of each divided fiber bundle in a dry state per 1,000 m is 10 to 500 gr,
Desirably, it is appropriate to set the amount to 50 to 300 gr. By drying the divided glass fiber bundle while it is running, the drying can be performed uniformly, and the glass fiber bundle can be rolled without distortion.

乾燥は、100〜300℃望ましくは120〜200℃
に保たれたオープン中を5〜200m/min望ましく
は10〜100m/sin程度の速さで繊維束を走行せ
しめつつ行なうのが好ましいが、高周波加熱等によって
乾燥することもできる。
Drying at 100-300°C, preferably 120-200°C
It is preferable to run the fiber bundle at a speed of about 5 to 200 m/min, preferably about 10 to 100 m/sin, while drying is maintained at a constant temperature, but drying can also be carried out by high frequency heating or the like.

ついで2、ガラス繊維束に熱可塑性樹脂を被着させる。2. The glass fiber bundle is then coated with a thermoplastic resin.

被着の方法に特に限定はないが、熱可塑性樹脂溶融物中
をガラス繊維束を走行させて該溶融物を繊維束表面に被
着し、過剰の樹脂をスクイズすることによって好適に被
着を行なうことができる。
Although there are no particular limitations on the method of adhesion, adhesion is suitably achieved by running a glass fiber bundle through a thermoplastic resin melt, adhering the melt to the surface of the fiber bundle, and squeezing out excess resin. can be done.

樹脂被着量は、樹脂の種類、上記方法で製造された本成
型材料の用途に応じて定められるが、ガラス繊維含有量
が20〜80wt%望ましくは30〜600%となるよ
う定めるのが適当である。
The amount of resin deposited is determined depending on the type of resin and the use of the molding material produced by the above method, but it is appropriate to set it so that the glass fiber content is 20 to 80 wt%, preferably 30 to 600%. It is.

〔作用〕[Effect]

本発明の作用に就いて充分明らかでないが、およそ次の
ように考えられる。ブッシングがら引出された多数のガ
ラス繊維に集束剤を附与して集束し、ガラス繊維束とす
ると、該繊維束内のガラス繊維同志は互いに平行に一体
的に強く密着せしめられる。
Although the function of the present invention is not fully clear, it is thought to be approximately as follows. When a large number of glass fibers drawn out from the bushing are added with a sizing agent and converged to form a glass fiber bundle, the glass fibers in the fiber bundle are brought into close contact with each other in parallel and integrally.

このガラス繊維束を回転する軸に沿って往復動する案内
部材に係合せしめて上記軸に巻取って円筒状回巻体とす
ると、ガラス繊維同志が互に密着した状態で巻取られる
When this glass fiber bundle is engaged with a guide member that reciprocates along a rotating shaft and wound around the shaft to form a cylindrical wound body, the glass fibers are wound in close contact with each other.

この状態で回巻体を従来技術のように乾燥すると、水分
の蒸発に伴なって集束剤が表面に移行するマイグレーシ
ョン現象が発生する。
If the wound body is dried in this state as in the prior art, a migration phenomenon occurs in which the sizing agent migrates to the surface as the moisture evaporates.

マイグレーションにより、マクロ的には回巻体の表面に
近い部分程集束剤の含有量が多くなる。
Due to migration, from a macroscopic perspective, the content of the sizing agent increases in a portion closer to the surface of the wound body.

又、水分は毛細管現象等により移動するが、回巻体中の
繊維の分布は均一でないため、水分の移動し易い通路と
、水分の移動し難い部分が、回巻体中に不規則に混在す
るため、この水分と共に移動する集束の分布がミクロ的
に不均一となる。
In addition, although moisture moves through capillary action, the distribution of fibers in the rolled body is not uniform, so passages where moisture can easily move and areas where moisture cannot move are mixed irregularly in the rolled body. Therefore, the distribution of the focus that moves with this moisture becomes microscopically non-uniform.

このような状態でガラス繊維束は弯曲した形状で円筒状
に回巻され、互に密着した状態で乾燥され、集束剤で互
に固着する。
In this state, the glass fiber bundles are wound into a cylindrical shape in a curved shape, dried in a close contact with each other, and fixed together with a sizing agent.

このため、回巻体から引出されたガラス″繊維束は長さ
方向に沿って集束剤の含有量にバラツキを有し、又弯曲
した形状のまま集束剤が乾燥固化しているため、撚れ、
弯曲が残存し、又引出しに際し局部的に大きい応力を受
け、又集束剤の多い部分は剥れ難いため、部分的な繊維
の切断が発生し、又弯曲した部分がガイド等で擦られる
ため、毛羽立ちを生ずるものと考えられる。
For this reason, the glass fiber bundle pulled out from the wound body has variations in the content of the sizing agent along the length direction, and the sizing agent dries and solidifies while remaining in a curved shape, so that it cannot be twisted. ,
Curves remain, and when the fibers are pulled out, they are subjected to large local stresses, and areas with a large amount of sizing agent are difficult to peel off, resulting in local fiber breakage, and curved areas are rubbed by guides, etc. It is thought that it causes fluff.

これに対し、本発明の方法によるときは、ガラス繊維束
は水分の含有率が0.5〜13wL%の状態で引出され
、集束剤は乾燥固化していないので、引出されたガラス
繊維束は容易に変形して直線状となり、繊維の切断も生
ずることなく、乾燥工程に伴なう集束剤分布のバラツキ
も小さく、均一な繊維束が得られるものと考えられる。
On the other hand, when using the method of the present invention, the glass fiber bundle is drawn out with a moisture content of 0.5 to 13 wL%, and the sizing agent is not dried and solidified, so the drawn glass fiber bundle is It is believed that the fibers are easily deformed into a straight shape, the fibers are not cut, and the variation in the distribution of the sizing agent during the drying process is small, resulting in a uniform fiber bundle.

又ガラス繊維束の分割を、上述したような湿った、集束
剤が乾燥固化していない状態で行なうことにより、分割
に際しての毛羽立ちを防止し、生産性を阻害することな
く、長さが等しく、ループを有しない、細いガラス繊維
束を製造することができる。
Furthermore, by splitting the glass fiber bundles in a wet state where the sizing agent has not dried and solidified as described above, fuzzing during splitting can be prevented, and the lengths can be made to be equal without impeding productivity. It is possible to produce thin glass fiber bundles without loops.

〔実施例〕〔Example〕

ブッシングから引出した太さ13μのガラス繊維にPP
エマルジョンを4wt%、潤滑剤を0.5wt%、アミ
ノシランを0.6%1t%含む集束剤を固型分として0
.4wt%附与し附与、200本集束しガラス繊維束と
した。
PP is applied to the 13μ thick glass fiber pulled out from the bushing.
4wt% emulsion, 0.5wt% lubricant, 0.6% 1t% aminosilane sizing agent as solid content
.. 4 wt% was added and 200 fibers were bundled to form a glass fiber bundle.

このガラス繊維束を内径16.J、外径26cm、高さ
26c111の円筒状に回巻し、水分の含有量8ivt
%の状態で30m/l1linの速さで引出し、櫛歯状
ガイドに導きt 、 ooo当りの重量IQOgrのガ
ラス繊維束22個に分割した。ついで200℃に保たれ
たオープン中を通過させて乾燥し、PPをガラス繊維に
対し150wt%被着させ、1個に切断し、成型材料と
した。
This glass fiber bundle has an inner diameter of 16mm. J, rolled into a cylindrical shape with an outer diameter of 26 cm and a height of 26 cm, water content 8 ivt.
% at a speed of 30 m/l 1 lin, guided through a comb-shaped guide, and divided into 22 glass fiber bundles each having a weight of IQOgr per t,ooo. The glass fibers were then dried by passing through an open chamber kept at 200° C., and 150 wt % of PP was applied to the glass fibers, and the glass fibers were cut into one piece to obtain a molding material.

成型材料製造中に毛羽立ち、糸切れを生ずることがなか
った。又この成型材料を使用しASTM。
No fluffing or thread breakage occurred during the production of the molding material. Also using this molding material, ASTM.

D−256号の試験片を製造し、測定した衝撃強度は5
0にg −cm/cmであった。
A test piece of No. D-256 was manufactured and the measured impact strength was 5.
0 g-cm/cm.

〔比較例〕[Comparative example]

実施例と同一の回巻体を水分0.1wt%以下となる迄
乾燥し、引出したガラス繊維束にそのまま樹脂を附与し
、実施例と同一の実験を行なった。
The same experiment as in the example was carried out by drying the same rolled body as in the example until the water content was 0.1 wt% or less, applying resin to the drawn glass fiber bundle as it was.

毛羽立ちが屡々発生し、又得られた試験片の衝撃強度は
40 Kg −cn+/ca+であった。
Fuzzing frequently occurred, and the impact strength of the test piece obtained was 40 Kg -cn+/ca+.

〔発明の効果〕〔Effect of the invention〕

成型材料製造時の毛羽立ち、糸切れの発生がなく、均質
な成型材料が得られ、この成型材料を使用し、高強度の
FRTPが得られる。
A homogeneous molding material is obtained without fluffing or yarn breakage during the production of the molding material, and high-strength FRTP can be obtained using this molding material.

又生産性を阻害することなく長さが等しく、ループのな
い細いガラス繊維束をうろことができる。
In addition, thin glass fiber bundles with equal length and no loops can be rolled without hindering productivity.

Claims (2)

【特許請求の範囲】[Claims] (1)ブッシングから引出された多数のガラス繊維に集
束剤を附与集束してガラス繊維束とする工程、ガラス繊
維束を回転する軸に沿って往復動する案内部材に係合せ
しめて上記軸に巻取って円筒状回巻体とする工程、上記
回巻体の水分含有量が0.5〜13wt%の状態におい
て回巻体からガラス繊維束を引出す工程、引出されたガ
ラス繊維束を複数の繊維束に分割する工程、分割された
繊維束を走行状態において乾燥し、ついで熱可塑性樹脂
被着させる工程とを含む成型材料の製造方法。
(1) A step of applying a sizing agent to a large number of glass fibers pulled out from a bushing and converging them into a glass fiber bundle, in which the glass fiber bundle is engaged with a guide member that reciprocates along a rotating shaft and attached to the shaft. A process of winding the glass fiber bundle into a cylindrical body, a step of drawing out the glass fiber bundle from the body in a state where the moisture content of the body is 0.5 to 13 wt%, and a step of pulling out the glass fiber bundle into a plurality of layers. A method for producing a molding material, comprising the steps of dividing into fiber bundles, drying the divided fiber bundles in a running state, and then coating them with a thermoplastic resin.
(2)分割されたガラス繊維束の乾燥状態における重量
は10〜500gr/1,000mである請求項1記載
の成型材料の製造方法。
(2) The method for producing a molding material according to claim 1, wherein the weight of the divided glass fiber bundle in a dry state is 10 to 500 gr/1,000 m.
JP1281781A 1989-10-31 1989-10-31 Production of molding material Granted JPH03146442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281781A JPH03146442A (en) 1989-10-31 1989-10-31 Production of molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281781A JPH03146442A (en) 1989-10-31 1989-10-31 Production of molding material

Publications (2)

Publication Number Publication Date
JPH03146442A true JPH03146442A (en) 1991-06-21
JPH0530783B2 JPH0530783B2 (en) 1993-05-10

Family

ID=17643887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281781A Granted JPH03146442A (en) 1989-10-31 1989-10-31 Production of molding material

Country Status (1)

Country Link
JP (1) JPH03146442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786967A2 (en) * 2004-09-11 2007-05-23 Johns Manville Methods and systems for making fiber reinforced products and resultant products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786967A2 (en) * 2004-09-11 2007-05-23 Johns Manville Methods and systems for making fiber reinforced products and resultant products
EP1786967A4 (en) * 2004-09-11 2009-05-13 Johns Manville Methods and systems for making fiber reinforced products and resultant products

Also Published As

Publication number Publication date
JPH0530783B2 (en) 1993-05-10

Similar Documents

Publication Publication Date Title
JP3777145B2 (en) Glass fiber reinforced thermoplastic resin pellet and method for producing the same
US5047104A (en) Profiles of composite fibrous materials
JPH10202655A (en) Line processing of continuous glass fiber by thermosetting solution type epoxy
JP2524945B2 (en) Method for producing continuous glass fiber reinforced thermoplastic resin pellets
JPH03146442A (en) Production of molding material
CN111645228A (en) Preparation method of twisted continuous natural fiber prepreg
JPH06114832A (en) Fibber-reinforced thermoplastic resin structure and manufacture thereof
EP1287059A2 (en) Pellet comprising natural fibers and thermoplastic polymer
CN110877428A (en) Device and method for preparing high-performance pre-impregnated yarn
JPH03146443A (en) Production of molding material
JPH03146441A (en) Production of molding material
JPH0529688B2 (en)
JPH03146444A (en) Production of molding material
JP3386158B2 (en) Molding materials and filament wound moldings
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP3210694B2 (en) Method for producing fiber-reinforced composite material
JPH06254852A (en) Manufacture of filament reinforced synthetic resin strand
JPH0311261Y2 (en)
JPH0559129B2 (en)
JPH06254850A (en) Manufacture of filament reinforced synthetic resin strand
JPS63282057A (en) Manufacture of roving of glass fiber
JPH06116851A (en) Fiber-reinforced thermoplastic resin structure and its production
JPH0550520A (en) Fiber reinforced thermoplastic resin structure and manufacture thereof
JPS59137582A (en) Coating of fiber cables
JPS59111938A (en) Preparation of direct wound glass fiber roving