JPH03146434A - Method for heat-treating high purity quartz-porous glass preform and heating furnace therefor - Google Patents

Method for heat-treating high purity quartz-porous glass preform and heating furnace therefor

Info

Publication number
JPH03146434A
JPH03146434A JP28533089A JP28533089A JPH03146434A JP H03146434 A JPH03146434 A JP H03146434A JP 28533089 A JP28533089 A JP 28533089A JP 28533089 A JP28533089 A JP 28533089A JP H03146434 A JPH03146434 A JP H03146434A
Authority
JP
Japan
Prior art keywords
core tube
furnace
furnace core
base material
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28533089A
Other languages
Japanese (ja)
Inventor
Masahide Saito
斎藤 真秀
Ichiro Tsuchiya
一郎 土屋
Hiroo Kanamori
弘雄 金森
Yuichi Oga
裕一 大賀
Shinji Ishikawa
真二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28533089A priority Critical patent/JPH03146434A/en
Publication of JPH03146434A publication Critical patent/JPH03146434A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent the contamination of a porous glass preform with impurities and to obtain the preform excellent in transparency, etc., by inserting the preform into a furnace core tube piercing furnace casing from the vertical lower part of the tube, heat-treating the preform and then discharging the preform from the lower part. CONSTITUTION:The furnace core tube 3 is allowed to pierce the hollow furnace casing 1 having a heating element 2, and an opening 10 directed vertically downward is provided at the part of the tube projecting downward from the casing 1. An inert gas is supplied into the tube 3 from an inlet 5 provided at the upper part of the tube 3, and a porous glass preform 7 is inserted into the tube 3 from the opening 10 and heat-treated. The heat-treated preform 7 is discharged from the tube 3 vertically downward. Consequently, the mixing of the ambient atmosphere into the heating atmosphere is prevented, the contamination with the dust in the atmosphere contg. Al2O3, Fe2O3, etc., is obviated, and the preform 7 is not devitrified.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバ用母村などの高純度石英ガラス母
材の加熱炉に関し、更に詳しくは、石英系多孔質ガラス
@粒子体を加熱処理(例えば脱水、ドーパント添加、焼
結など)して光ファイバなどの製造に使用する透明な高
純度石英ガラス母材とする加熱炉に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heating furnace for a high-purity quartz glass base material such as a matrix for optical fibers, and more specifically, for heating silica-based porous glass @particles. The present invention relates to a heating furnace that processes (for example, dehydration, dopant addition, sintering, etc.) to produce a transparent high-purity quartz glass base material used in the manufacture of optical fibers and the like.

[従来の技術〕 光フアイバ用ガラス母材を製造するiこめに使用する加
熱炉において、従来、例えば特公昭5B=42136及
び58−58299号公報並びに特開昭60−8604
9号公報に示されているように、炉芯管として石英ガラ
ス管を使用することが提案されている。
[Prior Art] Conventionally, for example, Japanese Patent Publication No. 5B=42136 and No. 58-58299 and Japanese Patent Application Laid-Open No. 60-8604 have been used in heating furnaces used for manufacturing glass preforms for optical fibers.
As shown in Japanese Patent No. 9, it has been proposed to use a quartz glass tube as a furnace core tube.

しかしながら、石英ガラス管には高温で変形し易いとい
う重大な問題点が存在する。実際、1500℃以上で加
熱炉を使用した場合、炉芯管の支持方法と炉芯管内外の
差圧とを厳密に調節しないと、石英ガラス管が変形し、
使用不可能となることがある。また、1150℃以上で
長時間使用すると、石英ガラス管において失透(結晶化
)が生じる。ガラス層と失透層とは、熱膨張係数が異な
るため、生じた歪によって炉芯管が破壊するという問題
点ら存在する。
However, a serious problem with quartz glass tubes is that they are easily deformed at high temperatures. In fact, when using a heating furnace at temperatures above 1500°C, the quartz glass tube will deform if the supporting method of the furnace core tube and the differential pressure inside and outside the furnace core tube are not strictly controlled.
It may become unusable. Further, when used for a long time at 1150° C. or higher, devitrification (crystallization) occurs in the quartz glass tube. Since the glass layer and the devitrification layer have different coefficients of thermal expansion, there is a problem that the furnace core tube may be destroyed by the resulting strain.

本発明者等は、この問題点を解決するため、炉芯管とし
てカーボン管が有効であることを既に見出している(例
えば、特開昭64−76927号公報および国際出願公
開WO38106145号(PCT/JP8B1001
51)参照)。
The present inventors have already discovered that a carbon tube is effective as a furnace core tube in order to solve this problem (for example, Japanese Patent Application Laid-Open No. 64-76927 and International Application Publication No. WO 38106145 (PCT/ JP8B1001
51)).

カーボン管は、2000℃以上においても安定であり耐
熱性に優れるばかりでなく、灰分を20ppm以下にで
き、高純度化が容易であり、また、光フアイバ用ガラス
母材の加熱処理に有用な反応性ガス(例えばcQ、、C
CQ、、SiF+、S F m、CCl2tFt等)と
反応しないという長所をもっている。カーボン管は加工
精度が良いので、組立式にすることにより低コスト化を
図ることができ、更に外面をSiCコーティングやカー
ボンコーティングすることにより気密性が向上するので
より高品質の光フアイバ用ガラス母材を得ることができ
る。
Carbon tubes are not only stable at temperatures above 2,000°C and have excellent heat resistance, but also have ash content of 20 ppm or less, are easy to purify, and are useful for heat treatment of glass base materials for optical fibers. sexual gases (e.g. cQ, , C
It has the advantage of not reacting with CQ, SiF+, S F m, CCl2tFt, etc.). Since carbon tubes have good processing accuracy, they can be assembled to reduce costs, and the outer surface can be coated with SiC or carbon to improve airtightness, making it a higher quality glass base for optical fibers. material can be obtained.

従来の加熱処理は、例えば第7図に示すように、ゾーン
ヒータを有する炉で加熱処理を行なう。中空の炉体1の
内側にカーボンヒータ2を有し、炉芯管3が炉体1を貫
通している。この加熱炉は、炉体パージ用窒素ガス人口
4、炉芯管内雰囲気ガス人口5およびガラス母材支持治
具6を有し、多孔質ガラス体7が加熱炉の中に挿入され
る。炉芯管3は、上部31、中央部32および下部33
から構成され、少なくとも中央部32はカーボンからで
きており、カーボンの表面にはSiCコーティングまた
はカーボンコーティングが施されていることがある。
In the conventional heat treatment, for example, as shown in FIG. 7, the heat treatment is performed in a furnace equipped with a zone heater. A carbon heater 2 is provided inside a hollow furnace body 1, and a furnace core tube 3 passes through the furnace body 1. This heating furnace has a nitrogen gas population 4 for purging the furnace body, an atmospheric gas population 5 in the furnace core tube, and a glass base material support jig 6, and a porous glass body 7 is inserted into the heating furnace. The furnace core tube 3 has an upper part 31, a middle part 32, and a lower part 33.
At least the central portion 32 is made of carbon, and the surface of the carbon may be coated with SiC or carbon.

従来の加熱処理では、加熱炉は第7図に示すように構成
されているので、ガラス体を出し入れする時に、炉芯管
内に周辺大気(作業室の雰囲気)が侵入する。
In the conventional heat treatment, the heating furnace is constructed as shown in FIG. 7, so when the glass body is taken in and out, the surrounding atmosphere (atmosphere of the working chamber) enters the furnace core tube.

第8図は、炉芯管への周辺大気の混入量を測定する装置
の概略図である。この装置は炉芯管1O11パ一ジガス
人口102、ガス採取管103、酸素濃度測定装置10
4、ポンプ105およびゾーン炉106を有する。炉芯
管101の内径は150mmであり、ガス採取管の先端
は炉芯管の開口部より1m入った点に固定する。
FIG. 8 is a schematic diagram of an apparatus for measuring the amount of ambient air mixed into the furnace core tube. This device consists of a furnace core tube 1011, a purge gas population 102, a gas sampling tube 103, and an oxygen concentration measuring device 10.
4, has a pump 105 and a zone furnace 106. The inner diameter of the furnace core tube 101 is 150 mm, and the tip of the gas sampling tube is fixed at a point 1 m from the opening of the furnace core tube.

第8図に示した装置を使用して、加熱炉に周辺大気が混
入する程度を測定した。その結果を加熱炉内の酸素濃度
とパージする窒素量との関係として第9図のグラフに示
す。グラフから明らかなように、炉芯管中に周辺大気が
相当量混入しており、たとえパージ窒素ガスの流量を増
やしたとしても周辺大気混入を防止することは不可能で
あることが判る。
Using the apparatus shown in FIG. 8, the extent to which ambient air entered the heating furnace was measured. The results are shown in the graph of FIG. 9 as a relationship between the oxygen concentration in the heating furnace and the amount of nitrogen to be purged. As is clear from the graph, a considerable amount of ambient air is mixed into the furnace core tube, and it is understood that even if the flow rate of the purge nitrogen gas is increased, it is impossible to prevent ambient air from being mixed in.

このように加熱炉に大気が混入すると、以下のような問
題が生じる。
When air enters the heating furnace in this way, the following problems occur.

第1に、炉芯管内が大気中のダストにより汚染される。First, the inside of the furnace core tube is contaminated by dust in the atmosphere.

ダストは、5ide、A Q v Os、Fe1O3等
により構成されており、このうちAl2tOaは母材失
透の原因となり、Pet’sはロス増加の原因となる。
The dust is composed of 5ide, AQvOs, Fe1O3, etc., among which Al2tOa causes base material devitrification, and Pet's causes increased loss.

第2に、カーボン炉芯管内面の酸化が起こる。Second, oxidation of the inner surface of the carbon furnace tube occurs.

カーボン焼成体の酸化では、バインダとして使われてい
るタールおよびピッチがまず酸化することが知られてい
る。そのため、残された黒鉛粒子は脱落したり飛散して
炉内を舞う。この粒子が、焼結したガラス母材の表面に
付着するので、このような状態で加熱処理したガラス母
材から製造したファイバには、低強度部分が多く存在す
ることになる。更に、当然のことながら、カーボン炉芯
管の寿命が極端に短くなる。
It is known that when carbon fired bodies are oxidized, tar and pitch used as binders are first oxidized. Therefore, the remaining graphite particles fall off or scatter and fly around in the furnace. Since these particles adhere to the surface of the sintered glass base material, a fiber manufactured from a glass base material heat-treated in such a state will have many low-strength portions. Furthermore, as a matter of course, the life of the carbon furnace tube becomes extremely short.

このような炉芯管の酸化を防止する第1の方法として、
ガラス体の出し入れ温度をカーボンが酸化しない400
℃以下にすることが考えられる。
The first method to prevent oxidation of the furnace core tube is as follows:
Carbon does not oxidize the temperature at which the glass body is taken in and out 400
It is possible to reduce the temperature to below ℃.

しかし、この方法では炉の稼働率が大幅に低下し、更に
、カーボン炉芯管は多孔質であるため周辺大気に一度暴
露すると、炉芯管に周辺大気中の水分が相当量吸着する
ためにカーボンの酸化消耗を完全には防止することは不
可能である。
However, with this method, the operating rate of the furnace decreases significantly, and furthermore, since the carbon furnace core tube is porous, once exposed to the surrounding atmosphere, a considerable amount of moisture in the surrounding atmosphere will be adsorbed to the furnace core tube. It is impossible to completely prevent oxidative consumption of carbon.

第2の方法として、炉芯管の上部に前室を設け、多孔質
ガラス母材を前室に一度収容して不活性ガス置換した後
、多孔質ガラス母材を炉芯管内に移動させる方法が特開
昭64−76927号公報に開示されている。この特許
出願に記載されている加熱炉を第1O図に示す。
The second method is to provide a front chamber in the upper part of the furnace core tube, store the porous glass base material in the front chamber once, replace it with inert gas, and then move the porous glass base material into the furnace core tube. is disclosed in Japanese Patent Application Laid-Open No. 64-76927. The furnace described in this patent application is shown in FIG. 1O.

第1O図の加熱炉は、炉体lの内側にカーボンヒータ2
およびカーボン炉芯管3が設けられている。この加熱炉
は、炉体パージ用窒素ガス人口4、炉芯管内雰囲気ガス
人口5、ガラス母材支持治具6、前室11.前室ガス出
口14、前室パージガス人口15および間仕切り16を
有して成り、多孔質ガラス体7が加熱炉中に挿入される
The heating furnace shown in Fig. 1O has a carbon heater 2 inside the furnace body l.
and a carbon furnace core tube 3 are provided. This heating furnace has a nitrogen gas population 4 for purging the furnace body, an atmosphere gas population 5 in the furnace core tube, a glass base material support jig 6, and a front chamber 11. It has a front chamber gas outlet 14, a front chamber purge gas port 15, and a partition 16, and a porous glass body 7 is inserted into the heating furnace.

第10図の加熱炉へ多孔質ガラス体を挿入するには、次
の手順で操作する。
In order to insert the porous glass body into the heating furnace shown in FIG. 10, the following steps are performed.

!1回転・上下動可能なチャックに多孔質ガラス体7を
支持棒6を介して取り付ける。
! A porous glass body 7 is attached via a support rod 6 to a chuck that can move up and down once.

2、前室11の上蓋を開け、多孔質ガラス体7を前室1
1内に降下させる。
2. Open the top lid of the front chamber 11 and insert the porous glass body 7 into the front chamber 1.
Lower it to within 1.

3、上蓋を閉じ、前室内を不活性ガス(N、またはHe
など)で置換する。
3. Close the top lid and fill the front chamber with inert gas (N or He).
etc.).

4、前室11と加熱雰囲気を隔てる間仕切り16を開け
、多孔質ガラス体7を予め加熱処理温度に保たれた加熱
雰囲気へ導入する。
4. Open the partition 16 that separates the front chamber 11 from the heating atmosphere, and introduce the porous glass body 7 into the heating atmosphere maintained at the heat treatment temperature in advance.

5、間仕切り16を閉める。5. Close the partition 16.

また、この加熱炉から母材を取り出すには、次の手順で
操作する。
Further, in order to take out the base material from this heating furnace, the following procedure is performed.

l1間仕切り16を開ける。Open the l1 partition 16.

2、加熱処理が終わった母材7を加熱雰囲気から前室1
1へ引上げる。その際、加熱雰囲気の温度は、必ずしも
下げる必要はない。
2. After the heat treatment, the base material 7 is removed from the heating atmosphere into the front chamber 1.
Raise it to 1. At that time, the temperature of the heating atmosphere does not necessarily need to be lowered.

3、間仕切り■6を閉じる。3. Close partition ■6.

4、前室11の上蓋を開け、母材7を取り出す。4. Open the upper lid of the front chamber 11 and take out the base material 7.

[発明が解決しようとする課題] 上述の第1O図の加熱炉は、周辺大気巻き込みによるカ
ーボン製炉芯管の酸化消耗を防止するという機能に関し
ては良好な効果をもたらしたものの、以下のような新た
な問題が発生する。
[Problems to be Solved by the Invention] Although the heating furnace shown in Fig. 1O described above has a good effect in terms of the function of preventing oxidative wear and tear of the carbon furnace core tube due to entrainment of the surrounding air, it has the following problems. A new problem arises.

即ち、■前室を設ける必要があるので、装置の全高が長
くなり過ぎることである。第2図は、全長800 ++
un、種棒200mmの多孔質ガラス母材を加熱処理す
る場合の第1O図の加熱炉の例である。この場合、炉芯
管の先端からチャック下端の位置まで6760+m必要
であり、作業上必要なスペースを見込むと加熱炉の全高
は8000mm近くなる。
That is, (1) since it is necessary to provide a front chamber, the total height of the device becomes too long. Figure 2 shows the total length 800 ++
This is an example of the heating furnace shown in FIG. 1O when heat-treating a porous glass base material with a seed rod of 200 mm. In this case, a distance of 6760+ m is required from the tip of the furnace core tube to the lower end of the chuck, and the total height of the heating furnace is nearly 8000 mm, taking into account the space required for work.

更に、0間仕切りI6が複雑な構造になることである。Furthermore, the zero partition I6 has a complicated structure.

間仕切り16は多孔質ガラス母材支持具が貫通している
時としていない時の両方の場合に対応する必要がある。
The partition 16 needs to accommodate both cases when the porous glass base material support is penetrated and when it is not.

間仕切り16の操作方法について第12図、第13図お
よび第14図を参照して、以下に具体的に説明する。
A method of operating the partition 16 will be specifically described below with reference to FIGS. 12, 13, and 14.

第12図は前室11内で多孔質ガラス体を保持している
状態を、第13図は前室2内を不活性ガスにより置換後
、間仕切り16を開放して多孔質ガラス体を加熱雰囲気
内に挿入する状態を、第14図は加熱処理をしている状
態を示す。
Fig. 12 shows a state in which the porous glass body is held in the front chamber 11, and Fig. 13 shows the state in which the porous glass body is held in the front chamber 11, and Fig. 13 shows the state in which the inside of the front chamber 2 is replaced with inert gas, the partition 16 is opened, and the porous glass body is heated in the atmosphere. FIG. 14 shows the state in which the device is inserted into the interior and is subjected to heat treatment.

このようなの3つの操作を行う場合、3つの部材、即ち
、貫通部封止M72と2つの半割り蓋71を2本のスラ
イドロッド73を使用して操作する必要がある。
When performing these three operations, it is necessary to operate three members, namely, the penetration seal M72 and the two half lids 71 using the two slide rods 73.

従って、例えば次のような問題が生じる:(i)間仕切
16が合計3個の部材から構成されているために間仕切
りの開閉操作に時間を要すること; (ii)間仕切16の構造が複雑であり、特に半割り蓋
が完全に閉じた状態であることを確認するのが困難であ
り、不十分な封止状態で前室を大気開放する可能性が高
いこと: および (iii)間仕切16の構造が複雑なため、間仕切り部
分の容積が増加し、ガス置換に時間を要すること。
Therefore, for example, the following problems arise: (i) Since the partition 16 is composed of a total of three members, it takes time to open and close the partition; (ii) The structure of the partition 16 is complicated; In particular, it is difficult to confirm that the half-lid is completely closed, and there is a high possibility that the front chamber will be opened to the atmosphere in an insufficiently sealed state: and (iii) the structure of the partition 16. Due to the complexity of the system, the volume of the partition increases and it takes time to replace the gas.

[課題を解決するための手段] 上述の課題を解決するための手段として、本発明は、発
熱体を有する中空の炉体および炉体を貫通する炉芯管を
用いて高純度石英多孔質ガラス母材を炉芯管内で加熱処
理する方法であって、炉芯管の垂直下方向から多孔質ガ
ラス母材を炉芯管に挿入し、また、炉芯管の垂直下方向
にガラス母材を取り出すことを特徴とする加熱処理方法
を提供する。
[Means for Solving the Problems] As a means for solving the above-mentioned problems, the present invention provides high-purity quartz porous glass using a hollow furnace body having a heating element and a furnace core tube penetrating the furnace body. In this method, a porous glass base material is inserted into the furnace core tube from vertically below the furnace core tube, and the glass base material is inserted vertically downward into the furnace core tube. Provided is a heat treatment method characterized by taking out the heat treatment.

更に、上記加熱処理方法のより好ましい態様として、本
発明は、少なくとも炉芯管開放時、不活性ガスを炉芯管
の上方に供給することにより、炉芯管内に周辺大気が侵
入することを防止し、周辺大気の代わりに不活性ガスを
優先的に炉芯管に流入させることを含む上記加熱処理方
法を提供する。
Furthermore, as a more preferable embodiment of the heat treatment method, the present invention prevents ambient air from entering the furnace core tube by supplying an inert gas above the furnace core tube at least when the furnace core tube is opened. The heat treatment method includes preferentially allowing an inert gas to flow into the furnace core tube instead of the surrounding atmosphere.

また、本発明は、発熱体を有する中空の炉体および炉体
を貫通する炉芯管を有し、高純度石英多孔質ガラス母材
を炉芯管内で加熱処理して高純度石英母材を製造するた
めの加熱炉であって、炉体より下方に突出している炉芯
管部分が垂直下方向に開口し、かつ、キャップ部材によ
り閉止できるようになっている開口部を有して成り、加
熱処理するガラス母材を開口部を介して炉芯管に挿入し
、また、炉芯管から取り出すことができるようになって
いる加熱炉を提供する。本発明の上記加熱炉は、上述の
本発明の加熱処理方法に最も好都合に通用できる。
Further, the present invention has a hollow furnace body having a heating element and a furnace core tube passing through the furnace body, and heat-treats a high-purity quartz porous glass base material in the furnace core tube to produce a high-purity quartz base material. A heating furnace for manufacturing, the furnace core tube portion protruding downward from the furnace body opens vertically downward and has an opening that can be closed with a cap member, To provide a heating furnace in which a glass preform to be heat treated can be inserted into a furnace core tube through an opening and taken out from the furnace core tube. The heating furnace of the present invention can most conveniently be used in the heat treatment method of the present invention described above.

本明細書において使用する「加熱処理」なる語は、脱水
、ドーパント添加、焼結処理などを包含する、炉芯管を
加熱する操作を全て包含するものとして使用する。
As used herein, the term "heat treatment" is used to include all operations that heat the furnace core tube, including dehydration, dopant addition, sintering, and the like.

[作用] 本発明の加熱処理方法および加熱炉について第1〜6図
を参照して詳細に説明する。
[Function] The heat treatment method and heating furnace of the present invention will be explained in detail with reference to FIGS. 1 to 6.

第1図および第2図は、本発明の加熱炉を使用して加熱
処理する方法を模式的に示す。第3〜6図は、本発明の
基礎となる検討のための模式図である。
1 and 2 schematically show a method of heat treatment using the heating furnace of the present invention. FIGS. 3 to 6 are schematic diagrams for consideration as the basis of the present invention.

最初に、従来の炉芯管に関して周辺大気の混入状態を考
察するために炉芯管大気開放部におけるガス流の可視化
実験を行った。
First, an experiment was conducted to visualize the gas flow in the atmosphere-opening part of the furnace core tube in order to examine the mixing state of the surrounding atmosphere with respect to the conventional furnace core tube.

その結果を第3図(a)に模式的に示す。矢印で示すよ
うに、炉芯管中央部では強い下降流が、また、炉芯管内
壁面近傍では上昇流が生じていることが判った。また、
開口部における(炉芯管の中心を通る断面の半径(r)
方向の)速度(v)分布を第3図(b)に模式的に示す
。第3図(b)において斜線で示す部分が周辺大気が炉
芯管内に混入する部分である。尚、実験時のヒーター温
度は8oo℃、周辺大気の温度は25℃、また、炉芯管
上部外表面温度は200℃であった。
The results are schematically shown in FIG. 3(a). As shown by the arrows, it was found that a strong downward flow occurred at the center of the furnace core tube, and an upward flow occurred near the inner wall surface of the furnace core tube. Also,
At the opening (radius of the cross section passing through the center of the furnace core tube (r)
The velocity (v) distribution in this direction is schematically shown in FIG. 3(b). In FIG. 3(b), the shaded area is the area where the surrounding atmosphere enters the furnace core tube. The heater temperature during the experiment was 80°C, the temperature of the surrounding atmosphere was 25°C, and the outer surface temperature of the upper part of the furnace core tube was 200°C.

このような現象は、低温の周辺大気と高温の炉芯管との
温度差により生じる自然対流の効果によるものである。
This phenomenon is due to the effect of natural convection caused by the temperature difference between the low temperature surrounding atmosphere and the high temperature furnace core tube.

次に、自然対流現象について簡単な例により考察をして
みる。第4図に示すように水を入れたビーカーの底面中
朱部を加熱すると、ビーカーの底部中央付近の水は暖め
られ軽くなって浮力により上昇する。水面で冷却された
後、図中の矢印を付した線で示すようにビーカー壁面付
近に沿って降下して底面へ達する。逆に、ビーカーの側
面下方部を加熱する場合は第5図に示すように、上述の
場合と逆の現象となる。
Next, let's consider the natural convection phenomenon using a simple example. As shown in FIG. 4, when the red part of the bottom of a beaker containing water is heated, the water near the center of the bottom of the beaker is warmed, becomes lighter, and rises due to buoyancy. After being cooled on the water surface, it descends along the vicinity of the beaker wall and reaches the bottom, as shown by the arrowed line in the figure. On the other hand, when heating the lower side of the beaker, the opposite phenomenon occurs as shown in FIG. 5.

自然対流現象は、このように温度差により流体内で密度
差が生じて何等かの流動現象が発生する現象であると言
える。
The natural convection phenomenon can be said to be a phenomenon in which a density difference occurs in a fluid due to a temperature difference, and some kind of flow phenomenon occurs.

以上のような考察に基づいて、加熱炉の炉芯管において
生ヒる現象を以下のように考えることができる。
Based on the above considerations, the phenomenon of burning in the core tube of a heating furnace can be considered as follows.

炉芯管内のガスは高温部つまり炉芯管内壁面で加熱され
て壁面に沿って高温で密度の小さい上昇流が発生する。
The gas in the furnace core tube is heated at the high temperature portion, that is, the inner wall surface of the furnace core tube, and a high temperature, low density upward flow is generated along the wall surface.

この上昇流によって炉芯管内のガスは炉芯管外に放出さ
れるため、放出分を補填するために上昇流に比べて相対
的に低温で密度が大きく、炉芯管内ガスの上方に存在す
る周辺大気が炉芯管中央部を降下する。この下降流が周
辺大気混入の原因であり、外気に含まれるダストを炉芯
管内部へ同伴し、また、炉芯管がカーボン材質でできて
いるなら、周辺大気に含まれている酸素によりカーボン
が酸化されて消耗することになる。
Due to this upward flow, the gas inside the furnace core tube is released outside the furnace core tube, so in order to compensate for the released gas, it is relatively lower temperature and denser than the upward flow, and exists above the gas inside the furnace core tube. The surrounding atmosphere descends through the center of the furnace tube. This downward flow is the cause of mixing with the surrounding air, entraining the dust contained in the outside air into the furnace core tube, and if the furnace core tube is made of carbon material, the oxygen contained in the surrounding atmosphere causes carbon will be oxidized and consumed.

以上の考察より、上述の自然対流による大気混入を発生
させないようにするには、炉芯管内壁により加熱された
高温で密度の小さいガスが低温で密度の大きい周辺の大
気より常に上方に存在するような構造の炉芯管にすれば
よいと考えられる。
Based on the above considerations, in order to prevent the air from being mixed in due to the natural convection mentioned above, the high temperature, low density gas heated by the inner wall of the furnace core tube must always exist above the surrounding low temperature, high density atmosphere. It is thought that a furnace core tube with a structure like this would be sufficient.

即ち、第3図に示すような従来の構造の加熱炉では、炉
芯管の開口部が上方に向いて開いているために密度の高
い周辺大気は外部より侵入することになる。即ち、密度
の高い周辺大気は、密度の小さい炉芯管内ガスと比べる
と、重力の作用により相対的に下降しやすい。従って、
炉芯管の開口部が上方に向かって開いている限り、周辺
大気が炉芯管内に混入し易い。
That is, in a heating furnace having a conventional structure as shown in FIG. 3, the opening of the furnace core tube is open upward, allowing the high-density surrounding atmosphere to enter from the outside. That is, the surrounding atmosphere, which has a high density, tends to descend more easily due to the action of gravity than the gas in the reactor core tube, which has a lower density. Therefore,
As long as the opening of the furnace core tube is open upward, ambient air tends to enter the furnace core tube.

しかしながら、第6図(a)に示すように、炉芯管の開
口部が炉芯管の下方部分に設けられ、炉芯管の開口部が
下方に向かって開いている場合、炉芯管内の密度の小さ
いガスは外部に出にくく、また、周辺大気は炉芯管内に
入りにくい。従って、炉芯管内壁にて加熱されたガスは
上昇し、炉芯管上部で合流した後に下降するが、この下
降流が炉芯管内壁面近傍で上昇したガス分を浦填する。
However, as shown in FIG. 6(a), when the opening of the furnace core tube is provided in the lower part of the furnace core tube and the opening of the furnace core tube opens downward, the inside of the furnace core tube Gases with low density are difficult to escape to the outside, and surrounding air is difficult to enter the furnace core tube. Therefore, the gas heated on the inner wall of the furnace core tube rises, merges at the upper part of the furnace tube, and then descends, and this downward flow replenishes the gas that has risen near the inner wall surface of the furnace core tube.

更に、炉芯管の開口部近傍においては、炉芯管内で加熱
された高温の密度の低いガスが低温で密度の大きい周辺
大気の上に存在するため密度差によるガスの交換も殆ど
行なわれないので外部からの大気の侵入を最小限に抑制
できる。従って、第6図(a)の場合の開口部における
(炉芯管を中心を通る断面の半径(「)方向の)速度(
v)分布は第6図(b)のように模式的に示すことがで
きる。
Furthermore, near the opening of the furnace core tube, the high-temperature, low-density gas heated in the furnace core tube exists above the low-temperature, high-density surrounding atmosphere, so there is almost no exchange of gas due to density differences. Therefore, the intrusion of air from outside can be minimized. Therefore, the velocity (in the radial (') direction of the cross section passing through the center of the furnace core tube) at the opening in the case of Fig. 6 (a)
v) The distribution can be schematically shown as in FIG. 6(b).

本発明の加熱処理方法および加熱炉は上述のような考察
に基づくものである。
The heat treatment method and heating furnace of the present invention are based on the above considerations.

即ち、本発明では、第1図および第2図に示すように、
炉芯管3に対するガラス母材7の出し入れは、炉体lか
ら突出した炉芯管部分の垂直下向きの開口部lOを介し
て行う。第1図および第2図に示す炉芯管の態様は第6
図の態様を実用的な態様に修正したものである。
That is, in the present invention, as shown in FIGS. 1 and 2,
The glass preform 7 is taken in and out of the furnace core tube 3 through a vertically downward opening 10 of the furnace core tube portion that protrudes from the furnace body 1. The aspect of the furnace core tube shown in FIGS. 1 and 2 is
The embodiment shown in the figure has been modified into a practical embodiment.

従って、炉芯管を開放してガラス母材を出し入れするに
際し、炉芯管内壁の温度が高いことによる対流が炉芯管
内において生じても、上述の理由により炉芯管内に周辺
大気が炉芯管に混入することは最小限に抑制される。
Therefore, when the furnace core tube is opened and the glass base material is put in and taken out, even if convection occurs in the furnace core tube due to the high temperature of the inner wall of the furnace core tube, the surrounding atmosphere will flow inside the furnace core tube due to the above-mentioned reason. Contamination of the pipes is minimized.

より好ましい態様では、炉芯管を開放する際に、不活性
ガス、例えば窒素を炉芯管上方から内部に供給すること
により周辺大気の炉芯管内への混入が更に抑制される。
In a more preferred embodiment, when the furnace core tube is opened, an inert gas, such as nitrogen, is supplied into the furnace core tube from above, thereby further suppressing the intrusion of the surrounding atmosphere into the furnace core tube.

第1図は、加熱処理前または後の本発明の加熱炉の模式
断面図であり、キャップ部材9は炉芯管3から外されて
おり、炉芯管の開口部10が下方に開いている。
FIG. 1 is a schematic sectional view of the heating furnace of the present invention before or after heat treatment, in which the cap member 9 is removed from the furnace core tube 3 and the opening 10 of the furnace core tube is open downward. .

第2図は、加熱処理中の本発明の加熱炉の模式断面図で
あり、キャップ部材9は炉芯管3に取り付けられている
FIG. 2 is a schematic sectional view of the heating furnace of the present invention during heat treatment, and the cap member 9 is attached to the furnace core tube 3.

次に、本発明による加熱炉の性能評価のために、以下の
ような実験を行った。実験では、第1図に示す加熱炉を
使用し、キャップ部材9を開放した状態で炉芯管3内部
の酸素濃度を測定することにより性能評価した。
Next, the following experiment was conducted to evaluate the performance of the heating furnace according to the present invention. In the experiment, the heating furnace shown in FIG. 1 was used, and the performance was evaluated by measuring the oxygen concentration inside the furnace core tube 3 with the cap member 9 open.

カーボンヒータ2の表面温度が850”C1炉内雰囲気
ガス(5から導入)の流量がIOR/分(N。
The surface temperature of the carbon heater 2 is 850"C1. The flow rate of the furnace atmosphere gas (introduced from 5) is IOR/min (N.

ガス使用時)の場合、炉芯管3内の酸素濃度は1100
pp以下であった。この1100ppという値は、炉芯
管3の材質がカーボンの場合、1時間当たり0.05g
のカーボンをCOtに変化させるレベルであり、実用上
充分許容できる値である。
When using gas), the oxygen concentration in the furnace core tube 3 is 1100
It was less than pp. This value of 1100pp is 0.05g per hour when the material of the furnace core tube 3 is carbon.
This is a level that converts carbon into COt, which is a practically acceptable value.

多孔質ガラス母材を加熱炉に挿入する場合、例えば以下
のような手順で操作する。
When inserting a porous glass base material into a heating furnace, the following steps are performed, for example.

第2図において多孔質ガラス母材7が配置されていない
状態から説明する。
The description will be made starting from the state in which the porous glass base material 7 is not placed in FIG. 2.

■カーボンヒータ2の温度を850℃以下に設定し、炉
芯管雰囲気ガス人口5よりパージ用雰囲気ガス(例えば
N、ガス)を供給する。
(2) Set the temperature of the carbon heater 2 to 850° C. or lower, and supply a purge atmosphere gas (for example, N gas) from the furnace core tube atmosphere gas port 5.

■キャラプ部材9を開放する。この間、パージガスは■
と同様に供給されており、その流量は1091分である
■Open the carap member 9. During this time, the purge gas is
The flow rate is 1091 minutes.

■キャップ部材9を第1図に示すように引き下げ、多孔
質ガラス母材7を支持棒(回転および上下動可能)6に
固定する。パージガスは■と同様に供給されている。
(2) Pull down the cap member 9 as shown in FIG. 1 to fix the porous glass base material 7 to the support rod 6 (which can rotate and move up and down). Purge gas is supplied in the same way as in (■).

■多孔質ガラス母材7をキャップ部材9と共に例えばキ
ャップ部材昇降装置8を使用して上昇させ、炉芯管3内
に挿入する。パージガスは■と同様に供給されている。
(2) The porous glass base material 7 is raised together with the cap member 9 using, for example, the cap member lifting device 8 and inserted into the furnace core tube 3. Purge gas is supplied in the same way as in (■).

■キャブ1部vI9を閉じた後、不活性ガス排出ボート
91から不活性ガスを排気する。(第2図の状a) ■多孔質ガラス母材7の処理を開始する。
■ After closing the cab 1 part vI9, exhaust the inert gas from the inert gas exhaust boat 91. (State a in Fig. 2) ② Start processing of the porous glass base material 7.

母材を加熱炉の炉芯管から取り出す手順の上述の手順を
逆にすればよい。(手順■では母材を支持棒から取り外
す。) [実施例] 以下に本発明の実施例を示す。
The above-mentioned procedure for taking out the base material from the furnace core tube of the heating furnace may be reversed. (In step (3), the base material is removed from the support rod.) [Example] Examples of the present invention are shown below.

X敷鯉上 第11図に示す炉芯管の上方に前室を有する従来の加熱
炉を使用して多孔質ガラス母材(全長800a++o、
種棒長200 am)を加熱処理する加熱炉を設計した
ところ、設計上必要なスペースや作業上必要なスペース
を含めた装置の全高は約8000xxとなった。
Using a conventional heating furnace having a front chamber above the furnace core tube shown in Fig. 11, a porous glass base material (total length 800a++o,
When we designed a heating furnace for heat-treating seed rods (200 am in length), the total height of the equipment, including the space required for design and work, was approximately 8000xx.

これに対し、同じ多孔質ガラス母材を処理する第里図に
示す本発明の加熱炉を設計する場合、装置高さはチャッ
ク下端からキャップ部材昇降装置の下端までで4560
s−であった。設計上必要なスペースや作業上必要なス
ペースを含めて実際に設計した装置の全高は5800+
nnとなり、上述の同じ大きさの母材を処理する第11
図に示す装置より約2.2m低い加熱炉で十分であるこ
とが判った。
On the other hand, when designing the heating furnace of the present invention shown in Fig. 1 for processing the same porous glass base material, the height of the device is 4560 mm from the lower end of the chuck to the lower end of the cap member lifting device.
It was s-. The total height of the actually designed equipment including the space required for design and work is 5800+
nn, and the 11th to process the base material of the same size as mentioned above.
It has been found that a heating furnace approximately 2.2 m lower than the apparatus shown in the figure is sufficient.

実施例2 第1図の直径200uの加熱炉(炉芯管部分は、厚さ8
mmの熱分解カーボンを表面に30μ肩コートした高純
度カーボン製)を使用して多孔質ガラス母材を加熱処理
した。処理条件を以下に示す:脱水時温度      
1100℃ 透明化温度      1650℃ 本実施例において多孔質ガラス母材を炉芯管内に挿入す
る際の条件を以下に示す: カーボンヒータ温度     850℃カーボンヒータ
均熱部長さ  500xxカーボンヒータ均熱部長さ に於ける温度分布      850±lO℃パージガ
ス種          N。
Example 2 A heating furnace with a diameter of 200 u in Fig. 1 (the furnace core tube part has a thickness of 8
A porous glass base material was heat-treated using a high-purity carbon material whose surface was coated with 30 μm of pyrolytic carbon. The processing conditions are shown below: Temperature during dehydration
1100℃ Clearing temperature 1650℃ In this example, the conditions when inserting the porous glass base material into the furnace core tube are shown below: Carbon heater temperature 850℃ Carbon heater soaking section length 500xx Carbon heater soaking section length Temperature distribution at 850±1O℃ Purge gas type N.

パージガス流量       10.!l/l/分管芯
管内径        200xm尚、上記条件で同時
にキャップ部材9の開放時のO!濃度も測定した。キャ
ップを開放している時間は、多孔質ガス母材をセットす
る3分間であり、この時のO1濃度の最大値は12Bp
p−であった。
Purge gas flow rate 10. ! l/l/tube core tube inner diameter 200xm Furthermore, under the above conditions, O when the cap member 9 is opened at the same time! Concentration was also measured. The time the cap is open is 3 minutes to set the porous gas base material, and the maximum O1 concentration at this time is 12Bp.
It was p-.

また、ヒータ外部に露出した炉芯管部分も加熱し、上記
の均熱部長さを11000iとした場合、同様にO2濃
度測定を実施したところ、最大値は60ppmであった
Further, when the furnace core tube portion exposed outside the heater was also heated and the length of the soaking section was set to 11,000 i, the O2 concentration was measured in the same manner, and the maximum value was 60 ppm.

母材の加熱処理後、このガラス母材をコア材として線引
速度150x/分で線引することにより、外径125μ
厘の寸法形状である光ファイバを作ったところ、伝送ロ
スは、光波長1.55μ−において0.18dB/km
と低ロスであった。
After heat treatment of the base material, this glass base material is used as a core material and drawn at a drawing speed of 150x/min to obtain an outer diameter of 125μ.
When an optical fiber with dimensions and shape of Rin was made, the transmission loss was 0.18 dB/km at an optical wavelength of 1.55 μ-.
The loss was low.

X敷鯉i 実施例2と同様の方法で多孔質ガラス体の焼結処理を9
0回繰り返した。この間のカーボン炉芯管の減量は14
9であった(加熱部で35μmの酸化消耗に相当)。こ
の消耗量は、カーボン炉芯管を2年程度使用できる量に
相当する。
X Shikigoi i The porous glass body was sintered in the same manner as in Example 2.
Repeated 0 times. The weight loss of the carbon furnace core tube during this period was 14
9 (corresponding to oxidative wear of 35 μm in the heating section). This amount of consumption corresponds to the amount that allows the carbon furnace core tube to be used for about two years.

比較例1 第1O図の加熱炉(炉芯管部分は、厚さ8R1&の熱分
解カーボンを表面に30μlコートした高純度カーボン
製、)を使用した。多孔質ガラス体を前室に入れ、前室
の上蓋を閉じ、前室内に窒素ガスを10Q/分で10分
間流し、前室内を窒素ガスにより置換した。その後、間
仕切りを開け、多孔質ガラス母材を前室から炉芯管内へ
移動させ、間仕切りを閉めた後加熱処理を行ない、透明
な光フアイバ用ガラス母材を製造した。
Comparative Example 1 A heating furnace shown in Fig. 1O (the furnace core tube part is made of high-purity carbon whose surface is coated with 30 μl of pyrolytic carbon with a thickness of 8R1) was used. The porous glass body was placed in the front chamber, the upper lid of the front chamber was closed, and nitrogen gas was flowed into the front chamber at 10 Q/min for 10 minutes to replace the inside of the front chamber with nitrogen gas. Thereafter, the partition was opened, the porous glass preform was moved from the front chamber into the furnace core tube, and after the partition was closed, heat treatment was performed to produce a transparent glass preform for optical fiber.

加熱処理条件は、実施例2と同様であった。The heat treatment conditions were the same as in Example 2.

母材の取り出し時には先ず間仕切りを開け、ガラス母材
を前室に移動させた後に間仕切りを閉め、その後、上蓋
を開はガラス母材を取り出した。
When taking out the base material, the partition was first opened, the glass base material was moved to the front chamber, the partition was closed, and then the top cover was opened and the glass base material was taken out.

実施例2と同様にして、得られたガラス母材をコア材と
して光ファイバを作ったところ、伝送口・スは、光波長
1.55μlに於いて0.18dB/knと低かった。
When an optical fiber was made using the obtained glass base material as a core material in the same manner as in Example 2, the transmission port was as low as 0.18 dB/kn at an optical wavelength of 1.55 μl.

比較例2 比較例1と同様の方法で、多孔質ガラス体の加熱処理を
40回繰り返した。この間のカーボン炉芯管の減量は2
0g(表面より50μ屑の酸化消耗に相当)であった。
Comparative Example 2 In the same manner as in Comparative Example 1, the heat treatment of the porous glass body was repeated 40 times. During this period, the weight loss of the carbon furnace tube was 2.
0g (corresponding to oxidative consumption of 50μ debris from the surface).

この消耗量は、カーボン炉芯管を!、5年程度使用でき
る量に相当する。
For this amount of consumption, use a carbon furnace core tube! , equivalent to the amount that can be used for about 5 years.

[発明の効果] 加熱雰囲気への周辺大気(作業室の雰囲気)の混入がな
くなり、炉芯管内の不純物による汚染がなくなる。その
ため、母材の失透を防止できると共に、製造される母材
の透明度が向上する。
[Effects of the Invention] Contamination of the surrounding atmosphere (atmosphere of the working room) into the heating atmosphere is eliminated, and contamination by impurities in the furnace core tube is eliminated. Therefore, devitrification of the base material can be prevented, and the transparency of the manufactured base material is improved.

炉芯管がカーボンからできている場合、カーボンの酸化
消耗が抑えられて寿命が伸びる。また、同様の目的の前
室付き加熱炉と比校した場合、同等かそれ以上の効果が
あり、本発明の加熱炉の構造はより単純であり、装置全
高も低いという別の利点がある。
If the furnace core tube is made of carbon, the oxidation consumption of carbon is suppressed and the life of the furnace is extended. Furthermore, when compared with a heating furnace with a front chamber for the same purpose, the heating furnace of the present invention has the same or better effect, and has the additional advantage that the structure of the heating furnace of the present invention is simpler and the overall height of the apparatus is lower.

更に、ガラス体の出し入れ時に、炉体を降温さ仕る必要
がないので、炉の稼動率が高くなる。
Furthermore, since there is no need to lower the temperature of the furnace body when loading and unloading the glass body, the operating rate of the furnace is increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の加熱炉の概略断面図、第
3図(a)および(b)は炉芯管上部の気体の流れの状
態を示す図、第4図および第5図は自然対流の模式図、
第6図(a)および(b)は、本発明の原理を示す図、
第7図は従来の高純度石英母材製造用焼結炉の概略断面
図、第8図は炉芯管内部の酸素濃度を測定する装置の概
略構成図、第9図は、炉芯管内の酸素濃度とパージガス
流量との関係を示すグラフ、第1O図は従来のもう1つ
の高純度石英母材製造用加熱炉の概略構成図、第11図
は第10図の加熱炉の高さを説明する図、第12図、第
13図および第14図は、第1O図の加熱炉の間仕切り
の操作方法を示す説明図である。 I・・・炉体、2・・・カーボンヒータ、3・・・炉芯
管、4・・・炉体パージ用ガス入口、5・・・炉芯管内
雰囲気ガス人口、 6・・・ガラス母材支持治具、 7・・・多孔質ガラス母材、 訃・・キャップ部材昇降装置、9・・・キャップ部材、
lO・・・開口部、11・・・前室、 14・・・前室ガス出口、 15・・・前室パージガス入口、16・・・間仕切り、
1.32.33・・・炉芯管構成部材、■・・・半割り
蓋、72・・・貫通部封止蓋、3・・・スライドロッド
、 1・・・不活性ガス排出ボート、 02・・・炉体パージ用ガス人口、 03・・・ガス採取管、 04・・・酸′1g111度測定装置、06・・・炉体
。 101・・・炉芯管、 105・・・ポンプ、
Figures 1 and 2 are schematic cross-sectional views of the heating furnace of the present invention, Figures 3 (a) and (b) are diagrams showing the state of gas flow in the upper part of the furnace core tube, and Figures 4 and 5. is a schematic diagram of natural convection,
FIGS. 6(a) and (b) are diagrams showing the principle of the present invention,
Figure 7 is a schematic cross-sectional view of a conventional sintering furnace for producing high-purity quartz base material, Figure 8 is a schematic configuration diagram of a device for measuring the oxygen concentration inside the furnace core tube, and Figure 9 is a schematic cross-sectional view of a conventional sintering furnace for producing high-purity quartz base material. A graph showing the relationship between oxygen concentration and purge gas flow rate, Figure 1O is a schematic diagram of another conventional heating furnace for producing high-purity quartz base material, and Figure 11 explains the height of the heating furnace in Figure 10. 12, 13, and 14 are explanatory diagrams showing a method of operating the partition of the heating furnace shown in FIG. 1O. I...Furnace body, 2...Carbon heater, 3...Furnace core tube, 4...Furnace body purge gas inlet, 5...Atmospheric gas population in the furnace core tube, 6...Glass motherboard Material support jig, 7... Porous glass base material, Cap member lifting device, 9... Cap member,
lO...opening, 11...front chamber, 14...front chamber gas outlet, 15...front chamber purge gas inlet, 16...partition,
1.32.33... Furnace core tube component, ■... Half lid, 72... Penetration sealing lid, 3... Slide rod, 1... Inert gas discharge boat, 02 ...Gas population for purging the furnace body, 03...Gas sampling pipe, 04...Acid '1g111 degree measuring device, 06...Furnace body. 101... Furnace core tube, 105... Pump,

Claims (1)

【特許請求の範囲】 1、発熱体を有する中空の炉体および炉体を貫通する炉
芯管を用いて高純度石英多孔質ガラス母材を炉芯管内で
加熱処理する方法であって、炉芯管の垂直下方向から多
孔質ガラス母材を炉芯管に挿入し、また、炉芯管の垂直
下方向にガラス母材を炉芯管から取り出すこと含んで成
る加熱処理方法。 2、炉芯管の上方に不活性ガスを供給することを更に含
んで成る請求項1記載の加熱処理方法。 3、発熱体を有する中空の炉体および炉体を貫通する炉
芯管を有し、高純度石英多孔質ガラス母材を炉芯管内で
加熱処理して高純度石英母材を製造するための加熱炉で
あって、炉体より下方に突出している炉芯管部分が垂直
下方向に開口し、かつ、キャップ部材により閉止できる
ようになっている開口部を有して成り、加熱処理するガ
ラス母材を開口部を介して炉芯管に挿入し、また、炉芯
管から取り出すことができるようになっている加熱炉。 4、請求項3記載の加熱炉を用いる請求項1または2記
載の加熱処理方法。
[Scope of Claims] 1. A method for heat-treating a high-purity quartz porous glass base material in a furnace core tube using a hollow furnace body having a heating element and a furnace core tube passing through the furnace body, the method comprising: A heat treatment method comprising inserting a porous glass preform into a furnace core tube from vertically below the core tube, and removing the glass base material from the furnace core tube vertically below the furnace core tube. 2. The heat treatment method according to claim 1, further comprising supplying an inert gas above the furnace core tube. 3. A hollow furnace body having a heating element and a furnace core tube passing through the furnace body, for producing a high purity quartz base material by heat-treating a high purity quartz porous glass base material in the furnace core tube. A heating furnace, the furnace core tube part of which protrudes downward from the furnace body, opens vertically downward and has an opening that can be closed with a cap member, and the glass to be heat treated. A heating furnace in which a base material can be inserted into a furnace core tube through an opening and taken out from the furnace core tube. 4. The heat treatment method according to claim 1 or 2, using the heating furnace according to claim 3.
JP28533089A 1989-11-01 1989-11-01 Method for heat-treating high purity quartz-porous glass preform and heating furnace therefor Pending JPH03146434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28533089A JPH03146434A (en) 1989-11-01 1989-11-01 Method for heat-treating high purity quartz-porous glass preform and heating furnace therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28533089A JPH03146434A (en) 1989-11-01 1989-11-01 Method for heat-treating high purity quartz-porous glass preform and heating furnace therefor

Publications (1)

Publication Number Publication Date
JPH03146434A true JPH03146434A (en) 1991-06-21

Family

ID=17690153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28533089A Pending JPH03146434A (en) 1989-11-01 1989-11-01 Method for heat-treating high purity quartz-porous glass preform and heating furnace therefor

Country Status (1)

Country Link
JP (1) JPH03146434A (en)

Similar Documents

Publication Publication Date Title
US4040807A (en) Drawing dielectric optical waveguides
KR950014101B1 (en) Heating furnace for glass materials for optical fiber and method of manufacturing same
KR100261872B1 (en) Heat treatment facility for synthetic vitreous silica bodies
US5977000A (en) High purity opaque silica glass
US5259856A (en) Method of producing glass preform in furnace for heating glass
JP3175247B2 (en) Heat clearing method for porous preform for optical fiber
US5114338A (en) Furnace for heating highly pure quartz preform for optical fiber
JP4075161B2 (en) Method for producing glass by vacuum degassing
KR930005016B1 (en) Fused quartz member for use in semiconductor manufacture
KR100303103B1 (en) Manufacturing method of high quality optical fiber
US5032079A (en) Furnace for producing high purity quartz glass preform
JPH03146434A (en) Method for heat-treating high purity quartz-porous glass preform and heating furnace therefor
WO1988006145A1 (en) Heating furnace for glass materials for optical fiber and method of manufacturing same
JP2808857B2 (en) Heating furnace and manufacturing method of glass preform for optical fiber
JPH02204339A (en) Heating furnace for producing high-purity quartz base material
US4101305A (en) Drawing dielectric optical waveguides
JPS62176936A (en) Method and device for producing optical fiber preform
JPS59137334A (en) Manufacturing apparatus of base material for optical fiber
JP2520924B2 (en) Single crystal pulling device
JPH0646982Y2 (en) Heating furnace for producing high-purity quartz base material
JP2002104830A (en) Method of manufacturing glass preform
CN214937032U (en) Low helium perform outsourcing sintering device
US2960397A (en) Separation of calcium metal from contaminants
JPH11255533A (en) Baking apparatus for optical fiber preform and sintering
AU650761B2 (en) Process for production of glass article