JPH0314557B2 - - Google Patents

Info

Publication number
JPH0314557B2
JPH0314557B2 JP58034830A JP3483083A JPH0314557B2 JP H0314557 B2 JPH0314557 B2 JP H0314557B2 JP 58034830 A JP58034830 A JP 58034830A JP 3483083 A JP3483083 A JP 3483083A JP H0314557 B2 JPH0314557 B2 JP H0314557B2
Authority
JP
Japan
Prior art keywords
weight
mullite
cordierite
zircon
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58034830A
Other languages
Japanese (ja)
Other versions
JPS59159296A (en
Inventor
Eiji Myoshi
Hiroshi Oomichi
Yasuo Kakegai
Hiroshi Terunuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SUTATSUDOERUDEINGU KK
TOKYO GAISHI KK
Original Assignee
NIPPON SUTATSUDOERUDEINGU KK
TOKYO GAISHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SUTATSUDOERUDEINGU KK, TOKYO GAISHI KK filed Critical NIPPON SUTATSUDOERUDEINGU KK
Priority to JP3483083A priority Critical patent/JPS59159296A/en
Publication of JPS59159296A publication Critical patent/JPS59159296A/en
Publication of JPH0314557B2 publication Critical patent/JPH0314557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は鉄鋼材等の突き合わせ溶接等を行う場
合に使用する溶接用補助当材例へばエンドタブ即
ち溶接線の端面のバツクアツプ材に関する。 (従来の技術) 従来品は溶接溶剤原料に金属粉を混入して熱伝
導率を比較的大きくして、多孔性を有する耐火性
固形フラツクスを得るものであつて、通常用いら
れているフラツクス剤は二酸化ケイ素、酸化アル
ミニウム、酸化カルシウム、酸化マンガン、酸化
バリウム、酸化マグネシウム等の無機酸化物又は
これらの炭酸塩で、これらに金属粉を多量に混入
して水ガラス等を用いて固形物を得ていた。 更には、融点1800℃以上の高耐火性組成物を得
るためにSiO2−Al2O3系、SiO2−MgO系、Al2O3
−MgO系、SiO2−Al2O3−TiO2系、SiO2−MgO
−CaO系、SiO2−MgO−Cr2O3系、Al2O3
Cr2O3系、ZrO2−Al2O3系、ZrO2−SiO2系の組成
物が検討され、鉱物組織としてはムライト質、フ
オルステライト質、マグネシヤスピネル、クロム
スピネル等を形成せしめて耐火度を持たせ、溶接
時の高温暴露に耐えさせようとしていた。又、比
較的温度が低い約1000〜約1200℃間での温度変化
の激しい個所、例えば電熱陶板等の耐熱材として
コーデイライト質材が一般に使用されている。 (発明が解決しようとする課題) 而して、上記した従来技術にあつては、フラツ
クスと多量の金属粉を混合し水ガラス等を使用し
て固化したものであつて、材料の熱伝導率を大き
くして耐熱性と溶接性能の向上を図つているが、
この組成物ではフラツクスと金属が主要構成であ
るがために、溶接時の溶損、フラツクス混入、ス
パツターの多発、スラグの剥離性の低下等の欠点
があつた。 又、前記の如く耐火性を目的として組成物の融
点を上げるべく種々の酸化物系組成が公知である
が、これらの組成比から必然的に生成されるフオ
ルステライト、ステアタイト、ムライト、マグネ
シヤスピネル、クロムスピネル等は裏当材として
使用される場合、例えばフオルステライトの如き
はその熱膨張率は他の結晶中で最も大きく、又ス
テアタイトも比較的大きい熱膨張率をもつことか
ら急激な熱変化に対して弱く、従つてこれらの組
成物の焼結体は溶接時の急峻、過酷な熱衝撃に耐
え難く破壊、割れを生じ易いという欠点があつ
た。 更に他の組成例えばムライト系、スピネル系の
古くから知られている耐火物材料は溶接時の瞬間
的な熱衝撃を与えられた時、必ずしもスポーリン
グ特性が良いとは言えず、溶接割れを生じ易い欠
点があつた。又、コーデイライト系の耐火物は、
ごく低位の耐火材料として使用されているが、こ
れをそのまま溶接タブ材として使用することは耐
火度、耐熱衝撃性から見て溶損、割れ等の欠点が
生じる。 (課題を解決するための手段) 本発明は従来技術の欠点に鑑みなされたもの
で、コーデイライトとムライトと二成分系を基本
組成として、副成分にジルコン、二酸化マンガ
ン、酸化鉄を一定の比率で配合したものである。 (実施例) 第一の実施例 本実施例の特徴はコーデイライトとムライトと
の二成分系を基本組成として副成分にジルコン系
珪酸塩、二酸化マンガン、酸化鉄を添加し更に有
機高級脂肪酸又はその塩類を加えて焼結し、セラ
ミツク組織体に微細な気孔を均質に形成し、吸水
率を2〜15重量%にした点にある。 本発明に於ける溶接用補助当材の使用目的から
して溶接時の初期には瞬間的に約1800〜2000℃の
高温度に暴露され、又急峻な熱変化が負荷される
のでその特性として耐火、耐熱衝撃性に強い材料
が必要である。而して、これらの初期目的が達せ
られると同時に溶接時の余盛形状、ビード外観、
ブローホール、スラグ巻込み等の溶接性能が問題
となる。又、これに附随して溶接後の剥離性の良
いこと、剥離時に補助当材の機械的強度が大きく
て割れない等反覆使用が出来ることが望ましい。 一般にコーデイライト結晶は熱膨張係数が小さ
く約2.0〜3.0×10-6/℃であり、耐熱衝撃性の良
いセラミツクスとして公知である。 しかし、単一組成では耐熱衝撃値は350℃程度
である。ここでいう耐熱衝撃値とは約50×50×10
mmの角板の試験片を気中で所定の温度に30分間保
持した後、水中に急冷したときのヒビ割れの入る
温度差を示すものである。 又、コーデイライトセラミツクスそのものは一
般には1300〜1350℃前後で発泡、溶融する。そこ
でこれらの劣性を補完するため、ムライト結晶を
混合せしめることに依り耐火度を向上するもので
あるが、しかし通常一般公知のムライト焼結体の
耐熱衝撃値は左程大きな値ではなく約300℃程度
である。又、このムライト結晶の添加比率を高め
てゆくことで耐火度も向上し機械的強度も大きく
なるが、逆に組織体の熱膨張率が大きくなり耐熱
衝撃値が劣化する。これらのコーデイライト、ム
ライトの二基本組成では第1表から明らかなよう
に、およそコーデイライトが35〜40重量%、ムラ
イトが35〜40重量%程度が特性的にきわめて良好
な範囲であるが、ムライトが多すぎると逆に割れ
溶損を起すことからもムライト結晶を過剰に加え
た組成は不適である。 このこから本発明はこれらの絞られた範囲内の
より良い二成分系の基本組成にジルコン結晶を副
成分として添加することにより、ジルコンの熱伝
導率が比較的大きいこと、熱膨張率が約3〜4×
10-6/℃程度で小さいことから、耐スポーリング
特性に優れた点、及びスラグに対する耐食性を改
善することに着目し、セラミツク組織全体のジル
コン結晶の添加率増大に伴う結晶とガラスマトリ
ツクス全体のバランスを検討した結果、ジルコン
15〜20重量%が耐熱衝撃値が850〜900℃と著しく
向上し機械的強度もコーデイライト、ムライトの
二成分系の気孔存在下の適正範囲の曲げ強度値、
450〜550Kgf/cm2に対して600〜650Kgf/cm2と向
上した。 又、タブの溶接面からの剥離性をより改善する
ためと、タブと接触するビード表面の光沢並びに
精澄性を向上することを目的にセラミツクタブと
ビード始終端部の接触境界に於いて溶接時の溶融
金属がタブ部にガラス相を通して拡散させ得れば
ビード始終端部がきれいに仕上り好ましい。そこ
で、本実施例では溶接時にタブ表面相に薄いガラ
ス相が形成される際にタブに二酸化マンガン、酸
化鉄を共存させることによりビード表面の溶融酸
化膜を取込む効果の大きいことに注目し、特に、 コーデイライト 35〜40重量% ムライト 35〜40重量% ジルコン 15〜20重量% に対して、 二酸化マンガンを2.5〜5重量% 酸化鉄を2.5〜5重量% を添加して、溶接ビードとタブの剥離性と溶接ビ
ード始終端剥離面の清澄性を検討した結果、タブ
の溶接面からの剥離性に優れ且つビード始終端部
表面は清澄で光沢を示し極めてきれいな溶接面を
示した。しかし、各添加が5重量%以上になると
ガラス相中への金属の拡散が多くなりタブの寿命
は短くなる。又、第1表で明らかなように余盛形
状、ビードの外観が極めて良くブローホール、ス
ラグの巻込も無く極めて優れた特性を示すことが
判明した。 更にタブの割れがなく確実にタブの寿命が良く
なり2〜3回の反覆使用が可能となつた。 更に、組織体に均質且つ微細な気孔性をもたせ
ることにより、急峻な温度変化があつた場合、表
面に開孔した気孔と内部に閉じ込められ独立した
気孔を共存させることに依り、一つは比表面積
(単位重量当りの総表面積)を大きくして急激な
熱応力の負荷に対して緩和すること、熱吸収緩和
作用を得ること、又、内部の独立した気孔と相伴
つて、ヒビ割れの伝播を防ぐことを目的に、組成
物に有機高級脂肪酸又はその塩類を添加して焼結
することによりセラミツク組織体に均質且つ微細
な気孔をもたせることが望まれる。一般に組織体
の気孔には、大気に連通した気孔と内部に閉じ込
められ独立した気孔に区分することが出来る。組
織体全体の気孔率を測定するには時間と労力を要
することから、多孔質組織体に於いては吸水率
(大気に連通した気孔の割合)を測ることで組織
全体の気孔の度合いを定性的ではあるが相関的に
評価することが通常行われている。 ここで云う吸水率とは、 {(W0−W)/W}×100=吸水率(重量%) W:セラミツク組織体の乾燥重量 W0:セラミツク組織体を水中で1時間煮沸した
後冷却、24時間放置後取出し飽水させた重量 を言う。 而して、前記した処の コーデイライトを35〜40重量% ムライトを35〜40重量% ジルコンを15〜20重量% 二酸化マンガンを2.5〜5重量% 酸化鉄を2.5〜5重量% のセラミツク組織体に、2〜15重量%の吸水率、
所謂大気に連通する気孔性を形成せしめ、必然的
に比表面積を大きくすることに依つて、熱衝撃値
を大きくし且つ溶接性能を著しく向上することが
出来た。但し、吸水率が15重量%以上に増加する
とタブの溶損、溶接性能を劣化せしめる。 尚、第1表乃至第3表中の◎印は「優良」、○
印は「良」、△印は「普通」、×印は「不良」の各
判定基準を示すものである。 第二の実施例、本実施例はコーデイライトとム
ライトとの二成分系を基本組成として副成分にジ
ルコン系珪酸塩を添加したセラミツク組成物であ
つて、ムライトをアルミナで一部置換した点に特
徴を有するものである。 コーデイライト、ムライト、ジルコン、二酸化
マンガン、酸化鉄の添加による組成に於いて、ジ
ルコンの添加効果については前述した通りである
が、ムライトの一部をαアルミナで置換して組織
体の機械的強度を高めるためαアルミナを10〜20
重量%添加すると、熱衝撃値の劣化もなく組織の
機械的強度は前述値と比較して約10%程度向上
し、二酸化マンガン2.5重量%、酸化鉄2.5重量%
の少量添加の効果と相伴つてタブの剥離抵抗力が
大きくなり、割れ、溶損がなくタブの寿命向上を
図ることが出来た。 而して、第2表より下記の組成が好ましいもの
であることが判明した。 コーデイライト 50重量% ムライト 20〜30重量% αアルミナ 10〜20重量% ジルコン 10重量%を配合し、 更にこれに 二酸化マンガン 2.5〜5重量% 酸化鉄 2.5〜5重量% を加え、且つ有機高級脂肪酸又はその塩類を添加
し、焼結してセラミツク組織体に、微細な気孔を
均質に形成し、吸水率を3重量%としたもの。 (発明の効果) 第一の発明に於いては、 特に、ジルコンの15〜20重量%添加により耐熱
衝撃性が著しく向上し、機械的強度が強くなりタ
ブの割れが生じない。又、二酸化マンガン、酸化
鉄の2.5〜5重量%の添加により、タブの溶接面
からの剥離性に優れ且つビード始終端部表面は清
澄で光沢がある。更に、タブの割れがなく2〜3
回の反覆使用が可能となりタブの寿命が延びた。
更に、吸水率を2〜15重量%としたので、急峻な
温度変化があつても熱応力の負荷を緩和し、又熱
吸収緩和作用を発揮し耐熱衝撃性を更に高め得、
更に内部の独立した気孔と相伴つてヒビ割れの伝
播を防止し、余盛形状、ビード外観がきわめて良
好となつた。 第二の発明に於いては、 特に、ムライトの一部をαアルミナ10〜20重量
%で置換すべく添加したので組織の機械的強度が
高くなり、特にタブの割れ、溶損がなくタブの寿
命の向上を図ることが出来た。
(Industrial Application Field) The present invention relates to an example of an auxiliary welding material used in butt welding of steel materials, etc., and relates to an end tab, that is, a back-up material for the end face of a weld line. (Prior art) Conventional products mix metal powder into the welding solvent raw material to make the thermal conductivity relatively high to obtain a porous, refractory solid flux. are inorganic oxides such as silicon dioxide, aluminum oxide, calcium oxide, manganese oxide, barium oxide, magnesium oxide, etc., or their carbonates, and these are mixed with a large amount of metal powder and a solid substance is obtained using water glass, etc. was. Furthermore, in order to obtain a highly refractory composition with a melting point of 1800°C or higher, SiO 2 -Al 2 O 3 system, SiO 2 -MgO system, Al 2 O 3 system is used.
−MgO system, SiO 2 −Al 2 O 3 −TiO 2 system, SiO 2 −MgO
−CaO system, SiO 2 −MgO−Cr 2 O 3 system, Al 2 O 3
Compositions of Cr 2 O 3 system, ZrO 2 -Al 2 O 3 system, and ZrO 2 -SiO 2 system were investigated, and mineral structures such as mullite, forsterite, magnesia spinel, and chromium spinel were formed. They were trying to make it fireproof and withstand high-temperature exposure during welding. Furthermore, cordierite material is generally used as a heat-resistant material in places where the temperature is relatively low, from about 1000° C. to about 1200° C., and where the temperature changes rapidly, such as in electrically heated ceramic plates. (Problems to be Solved by the Invention) In the above-mentioned conventional technology, flux and a large amount of metal powder are mixed and solidified using water glass, etc., and the thermal conductivity of the material is low. Although we are trying to improve heat resistance and welding performance by increasing the
Since this composition mainly consists of flux and metal, it had drawbacks such as melting loss during welding, flux contamination, frequent spatter, and reduced slag releasability. In addition, as mentioned above, various oxide compositions are known to raise the melting point of the composition for the purpose of fire resistance, but forsterite, steatite, mullite, and magnesia, which are inevitably produced from these composition ratios, When spinel, chromium spinel, etc. are used as a backing material, for example, forsterite has the largest coefficient of thermal expansion among other crystals, and steatite also has a relatively large coefficient of thermal expansion, so it can be used as a backing material. They are susceptible to thermal changes, and therefore, the sintered bodies of these compositions have the disadvantage of being difficult to withstand steep and severe thermal shocks during welding and are prone to breakage and cracking. Furthermore, long-known refractory materials of other compositions, such as mullite and spinel, do not necessarily have good spalling properties when subjected to instantaneous thermal shock during welding, resulting in weld cracking. There was a simple flaw. In addition, cordierite-based refractories are
Although it is used as a very low-grade refractory material, if it is used as a welding tab material as it is, it will have disadvantages such as melting loss and cracking in terms of fire resistance and thermal shock resistance. (Means for Solving the Problems) The present invention was made in view of the shortcomings of the prior art, and has a basic composition of a two-component system of cordierite and mullite, and a fixed ratio of zircon, manganese dioxide, and iron oxide as subsidiary components. It is a mixture of (Example) First Example The characteristics of this example are that the basic composition is a two-component system of cordierite and mullite, and that zirconium silicate, manganese dioxide, and iron oxide are added as subcomponents. By adding salts and sintering, fine pores are uniformly formed in the ceramic structure, and the water absorption rate is 2 to 15% by weight. Considering the purpose of use of the auxiliary material for welding in the present invention, it is momentarily exposed to a high temperature of approximately 1800 to 2000°C in the initial stage of welding, and is subjected to steep thermal changes, so its characteristics are Materials that are resistant to fire and thermal shock are required. At the same time as these initial objectives were achieved, the shape of the welding welding, the appearance of the bead,
Welding performance issues such as blowholes and slag entrainment. In addition, it is desirable that the material has good peelability after welding, and that the mechanical strength of the auxiliary material is high enough to prevent cracking during peeling, so that it can be used repeatedly. In general, cordierite crystals have a small thermal expansion coefficient of about 2.0 to 3.0×10 -6 /°C, and are known as ceramics with good thermal shock resistance. However, with a single composition, the thermal shock resistance value is about 350°C. The thermal shock resistance value here is approximately 50×50×10
This shows the temperature difference at which cracks appear when a test piece of a square plate of mm is held at a predetermined temperature in air for 30 minutes and then rapidly cooled in water. Furthermore, cordierite ceramics itself generally foams and melts at around 1300 to 1350°C. Therefore, in order to compensate for these inferiorities, the fire resistance is improved by mixing mullite crystals. However, the thermal shock resistance value of the generally known mullite sintered body is not as large as that shown above, but is about 300℃. That's about it. Furthermore, by increasing the addition ratio of mullite crystals, the fire resistance and mechanical strength are increased, but on the contrary, the coefficient of thermal expansion of the structure increases and the thermal shock resistance value deteriorates. Regarding the two basic compositions of cordierite and mullite, as is clear from Table 1, approximately 35 to 40% by weight of cordierite and 35 to 40% by weight of mullite are extremely favorable ranges in terms of characteristics. If there is too much mullite, cracking and melting damage will occur, so a composition containing an excessive amount of mullite crystals is not suitable. From this point of view, the present invention adds zircon crystals as an accessory component to the basic composition of a better two-component system within these narrowed ranges. 3~4x
10 -6 /℃, so we focused on improving spalling resistance and corrosion resistance against slag. As a result of considering the balance of
15 to 20% by weight, the thermal shock resistance value is significantly improved to 850 to 900℃, and the mechanical strength is also in the appropriate range of bending strength in the presence of pores in the two-component system of cordierite and mullite.
It improved to 600-650Kgf/ cm2 compared to 450-550Kgf/ cm2 . In addition, in order to further improve the peelability of the tab from the welded surface, and to improve the gloss and refinement of the bead surface in contact with the tab, welding was performed at the contact boundary between the ceramic tab and the bead start and end. It is preferable that the molten metal at the time be diffused through the glass phase into the tab portion, since the start and end of the bead will be finished neatly. Therefore, in this example, we focused on the fact that when a thin glass phase is formed on the tab surface phase during welding, the coexistence of manganese dioxide and iron oxide on the tab has a great effect of capturing the molten oxide film on the bead surface. In particular, 2.5-5% by weight of manganese dioxide and 2.5-5% by weight of iron oxide are added to 35-40% by weight of cordierite, 35-40% by weight of mullite, and 15-20% by weight of zircon to form weld beads and tabs. As a result of examining the peelability of the tab and the clarity of the peeling surface at the start and end of the weld bead, it was found that the tab had excellent peelability from the welded surface, and the surface at the start and end of the bead was clear and shiny, showing an extremely clean welded surface. However, if each addition exceeds 5% by weight, metal diffusion into the glass phase increases and the life of the tab becomes short. Furthermore, as is clear from Table 1, the shape of the overlay and the appearance of the bead were very good, and there were no blowholes or slag entrainment, and it was found to exhibit very excellent properties. Furthermore, there was no cracking of the tab, which ensured a longer service life of the tab, and it became possible to use it 2 to 3 times. Furthermore, by providing homogeneous and fine porosity to the tissue, when there is a sudden temperature change, the pores open on the surface and the independent pores trapped inside coexist. The surface area (total surface area per unit weight) is increased to alleviate sudden thermal stress loads, and the heat absorption and relaxation effect is achieved.Also, along with independent internal pores, crack propagation is suppressed. In order to prevent this, it is desirable to have homogeneous and fine pores in the ceramic structure by adding an organic higher fatty acid or its salt to the composition and sintering it. In general, the pores of a tissue can be divided into pores that communicate with the atmosphere and pores that are confined and independent within the tissue. Since it takes time and effort to measure the porosity of the entire tissue, the degree of porosity of the entire tissue can be qualitatively determined by measuring the water absorption rate (percentage of pores that communicate with the atmosphere) in porous tissues. Generally, evaluations are made in a correlational manner. The water absorption rate referred to here is: {(W 0 - W)/W} x 100 = Water absorption rate (weight %) W: Dry weight of the ceramic tissue W 0 : Boiling the ceramic tissue in water for 1 hour and then cooling it. , refers to the weight when taken out and saturated with water after being left for 24 hours. The above-mentioned ceramic structure contains 35 to 40% by weight of cordierite, 35 to 40% by weight of mullite, 15 to 20% by weight of zircon, 2.5 to 5% by weight of manganese dioxide, and 2.5 to 5% by weight of iron oxide. , water absorption rate of 2 to 15% by weight,
By forming so-called porosity that communicates with the atmosphere and inevitably increasing the specific surface area, it was possible to increase the thermal shock value and significantly improve the welding performance. However, if the water absorption rate increases to more than 15% by weight, the tab will melt and the welding performance will deteriorate. In addition, in Tables 1 to 3, ◎ indicates "excellent" and ○
The mark indicates "good", the mark △ indicates "normal", and the mark x indicates "defective". The second example, the present example, is a ceramic composition in which the basic composition is a two-component system of cordierite and mullite, and a zircon-based silicate is added as a subcomponent, and the mullite is partially replaced with alumina. It has characteristics. The effect of adding zircon in the composition by adding cordierite, mullite, zircon, manganese dioxide, and iron oxide is as described above, but by replacing a part of mullite with α-alumina, the mechanical strength of the structure is improved. 10 to 20 alpha alumina to increase
When added by weight%, the mechanical strength of the structure improved by about 10% compared to the above value without deterioration of thermal shock value, 2.5% by weight of manganese dioxide and 2.5% by weight of iron oxide.
Coupled with the effect of adding a small amount of , the peeling resistance of the tab increased, and the life of the tab could be extended without cracking or melting damage. Accordingly, it was found from Table 2 that the following composition was preferable. It contains 50% by weight of cordierite, 20-30% by weight of mullite, 10-20% by weight of α-alumina, and 10% by weight of zircon, and further adds 2.5-5% by weight of manganese dioxide, 2.5-5% by weight of iron oxide, and organic higher fatty acids. Or its salts are added and sintered to homogeneously form fine pores in a ceramic structure with a water absorption rate of 3% by weight. (Effects of the Invention) In the first invention, in particular, by adding 15 to 20% by weight of zircon, the thermal shock resistance is significantly improved, the mechanical strength is increased, and the tab does not crack. Furthermore, by adding 2.5 to 5% by weight of manganese dioxide and iron oxide, the tab has excellent peelability from the welded surface, and the bead start and end surfaces are clear and shiny. Furthermore, there are no cracks in the tabs 2-3
The life of the tab has been extended as it can be used multiple times.
Furthermore, since the water absorption rate is 2 to 15% by weight, it can alleviate the load of thermal stress even when there is a sudden temperature change, and can further improve thermal shock resistance by exhibiting a heat absorption and relaxation effect.
Furthermore, the independent internal pores prevented the propagation of cracks, resulting in extremely good overfill shape and bead appearance. In the second invention, in particular, since a part of mullite is added to replace 10 to 20% by weight of α-alumina, the mechanical strength of the structure is increased, and in particular, the tab is free from cracking and melting. We were able to improve the lifespan.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 コーデイライトとムライトとの二成分系を基
本組成として、副成分系にジルコン、二酸化マン
ガン、酸化鉄を添加したセラミツク組成物であつ
て、 コーデイライト 35〜40重量% ムライト 35〜40重量% ジルコン 15〜20重量% 二酸化マンガン 2.5〜5重量% 酸化鉄 2.5〜5重量% を配合し且つ有機高級脂肪酸又はその塩類を添加
し、焼結してセラミツク組織体に、微細な気孔を
均質に形成し、吸水率を2〜15重量%に成した溶
接用補助当材。 2 コーデイライトとムライトとの二成分系を基
本組成として、副成分系にジルコンを加えたセラ
ミツク組成物に対して、前記ムライトの一部をα
アルミナで置換したものであつて、 コーデイライト 50重量% ムライト 20〜30重量% αアルミナ 10〜20重量% ジルコン 10重量% を配合し、更にこれに、 二酸化マンガン 2.5〜5重量% 酸化鉄 2.5〜5重量% を加え、且つ有機高級脂肪酸又はその塩類を添加
し、焼結してセラミツク組織体に、微細な気孔を
均質に形成し、吸水率を3重量%に成した溶接用
補助当材。
[Scope of Claims] 1. A ceramic composition having a two-component system of cordierite and mullite as its basic composition, with the addition of zircon, manganese dioxide, and iron oxide as sub-components, comprising: 35 to 40% by weight of cordierite and mullite. 35-40% by weight, zircon 15-20% by weight, manganese dioxide 2.5-5% by weight, iron oxide 2.5-5% by weight, and organic higher fatty acids or their salts are added and sintered to form a ceramic structure with fine particles. A welding auxiliary material with uniform pores and a water absorption rate of 2 to 15% by weight. 2 For a ceramic composition that has a two-component system of cordierite and mullite as its basic composition and zircon as a sub-component system, a part of the mullite is
It is substituted with alumina and contains 50% by weight of cordierite, 20-30% by weight of mullite, 10-20% by weight of α-alumina, and 10% by weight of zircon, and further contains 2.5-5% by weight of manganese dioxide and 2.5-5% by weight of iron oxide. An auxiliary material for welding in which 5% by weight of organic higher fatty acids or salts thereof are added and sintered to homogeneously form fine pores in a ceramic structure, resulting in a water absorption rate of 3% by weight.
JP3483083A 1983-03-03 1983-03-03 Auxiliary strapping plate for welding Granted JPS59159296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3483083A JPS59159296A (en) 1983-03-03 1983-03-03 Auxiliary strapping plate for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3483083A JPS59159296A (en) 1983-03-03 1983-03-03 Auxiliary strapping plate for welding

Publications (2)

Publication Number Publication Date
JPS59159296A JPS59159296A (en) 1984-09-08
JPH0314557B2 true JPH0314557B2 (en) 1991-02-27

Family

ID=12425111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3483083A Granted JPS59159296A (en) 1983-03-03 1983-03-03 Auxiliary strapping plate for welding

Country Status (1)

Country Link
JP (1) JPS59159296A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6096372A (en) * 1983-10-27 1985-05-29 Kumano Hiroyasu Ferrule for arc stud welding
JPS6099486A (en) * 1983-11-02 1985-06-03 Kumano Hiroyasu Ferrule for stud welding
DE102013204276A1 (en) * 2013-03-12 2014-09-18 Hug Engineering Ag Process for producing a shaped article and shaped article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558398A (en) * 1978-06-07 1980-01-21 Minnesota Mining & Mfg Heattresisting backing member for welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558398A (en) * 1978-06-07 1980-01-21 Minnesota Mining & Mfg Heattresisting backing member for welding

Also Published As

Publication number Publication date
JPS59159296A (en) 1984-09-08

Similar Documents

Publication Publication Date Title
JPH0345030B2 (en)
JP6400085B2 (en) Batch for producing an amorphous refractory ceramic product, method for producing a fired refractory ceramic product, use of a fired refractory ceramic product and an amorphous refractory ceramic product
JPH0240018B2 (en)
JP2002137088A (en) Ceramic backing material for one-side carbon dioxide gas arc welding
JP3489588B2 (en) High alumina cast refractories
JPH0314557B2 (en)
US1479107A (en) Refractory composition
EA016194B1 (en) Baked refractory product
US4107255A (en) Manufacture of improved fused cast refractory
JP2874831B2 (en) Refractory for pouring
JPS6348830B2 (en)
JP2907794B2 (en) Ceramic backing material for carbon dioxide arc welding
JP2002080272A (en) Magnesia-spinel-carbonaceous brick
JPH08157267A (en) Castable refractory for flow-in execution
JPS637877B2 (en)
JPS6213295A (en) Strapping material for welding
JP2704249B2 (en) Basic amorphous refractories for induction furnaces
JP3026640B2 (en) Zirconia material added basic pouring material
JPH0350151A (en) Refractory material
JPH03205375A (en) Castable refractory
JPS5855379A (en) Refractory castable for ladle lining
JP2003002754A (en) Heat insulating castable refractory
JP2795805B2 (en) Ladle brick
JPS60158997A (en) Backing strip for welding
JPS60148649A (en) Nozzle for casting molten steel