JPH03145004A - Membranous electrolyte - Google Patents

Membranous electrolyte

Info

Publication number
JPH03145004A
JPH03145004A JP1282020A JP28202089A JPH03145004A JP H03145004 A JPH03145004 A JP H03145004A JP 1282020 A JP1282020 A JP 1282020A JP 28202089 A JP28202089 A JP 28202089A JP H03145004 A JPH03145004 A JP H03145004A
Authority
JP
Japan
Prior art keywords
electrolyte
less
membrane
porous membrane
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1282020A
Other languages
Japanese (ja)
Inventor
Yoshiki Mizuno
祥樹 水野
Keiichi Koseki
恵一 古関
Kumiko Mukoda
向田 久美子
Takuji Ito
伊藤 卓爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP1282020A priority Critical patent/JPH03145004A/en
Publication of JPH03145004A publication Critical patent/JPH03145004A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent a leakage of solution and to improve the ion conductivity by composing a membranous electrolyte by filling an ion conductor in the hollows of a solid high polymer porous membrane with a specific penetration hole diameter. CONSTITUTION:The membranous electrolyte is composed by filling an ion conductor in the hollows of a solid high polymer porous membrane with the mean penetration hole diameter more than 0.1mum and 0.7mum and less. In this case, as the solid high polymer porous membrane with the mean penetration hole diameter more than 1mum and 0.7mum and less, polyethylene, polypropylene, polycarbonate, or the like is used. And as the ion conductor, a composite of an alkali salt or proton acid and polyester, or the like is used. Consequently, an electrolyte membrane with no solution leakage, with an excellent dynamic strength, a flexibility, and a low resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解質1mに係る。電解質薄膜は一次電池、二
次電池、エレクトロクロミックデバイス、センサーなど
、電気抵抗が低く、かつすぐれた機械的強度が要求され
る分野に広く利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to 1 m of electrolyte. Electrolyte thin films can be widely used in fields that require low electrical resistance and excellent mechanical strength, such as primary batteries, secondary batteries, electrochromic devices, and sensors.

〔従来の技術〕[Conventional technology]

固体高分子電解質膜としてはスルホン酸基をもつパーフ
ルオロカーボン系の膜(商品名Naflon@)に代表
されるイオン交換膜やポリエチレンオキサイド(以下P
EOと称する)とアルカリ金属塩との複合体に代表され
るイオン導電性材料などがあり、広く研究され、一部実
用化されている。これらの膜は固体であるために液洩れ
がなく、加工し易く、コンパクトであるという利点をも
っている。
Solid polymer electrolyte membranes include ion exchange membranes such as perfluorocarbon membranes with sulfonic acid groups (trade name: Naflon@) and polyethylene oxide membranes (hereinafter referred to as P).
There are ion-conductive materials represented by composites of EO (hereinafter referred to as EO) and alkali metal salts, which have been widely studied and some have been put into practical use. Since these membranes are solid, they have the advantage of not leaking, are easy to process, and are compact.

パーフルオロスルホン酸やパーフルオロカルボン酸など
のイオン交換膜は化学的、熱的性質にすぐれ、正極や負
極と一体化したコンパクトなセルを構成できるので食塩
電解に利用され、さらに燃料電池や水電解等への応用も
検討されている。PEOとアルカリ金属塩CLiChS
O1+ LiCI Oar LiAsF6など)との複
合体は出力密度やエネルギー密度の大きな二次電池や一
次電池、エレクトロクロミック素子やセンサーへの応用
が期待されている。
Ion exchange membranes made of perfluorosulfonic acid or perfluorocarboxylic acid have excellent chemical and thermal properties, and can be integrated with positive and negative electrodes to form a compact cell, so they are used in salt electrolysis, as well as in fuel cells and water electrolysis. Applications are also being considered. PEO and alkali metal salt CLiChS
Composites with O1+ LiCI Oar LiAsF6, etc.) are expected to be applied to secondary and primary batteries, electrochromic elements, and sensors with high output density and energy density.

(発明が解決しようとするff1lJ)固体高分子電解
質膜を用いる系では電気エネルギー効率が膜の電気抵抗
によるオーム損のために低下するという問題がある。P
EOとアルカリ金属塩との複合体のようなイオン導電体
を用いた固体高分子電解質膜は固体であるという利点が
あるが、鉱酸、アルカリ、塩などの水溶液系に比して常
温では比導電率が2〜3桁低く、膜のオーム損の制約か
ら用途が限定される。例えば、50nの膜厚で常温にお
ける比導電率が10”’S −cm−’であるような電
解質膜の実効抵抗は5000ohm・Cl11となる。
(ff1lJ to be Solved by the Invention) A system using a solid polymer electrolyte membrane has a problem in that the electrical energy efficiency decreases due to ohmic loss caused by the electrical resistance of the membrane. P
A solid polymer electrolyte membrane using an ionic conductor such as a composite of EO and an alkali metal salt has the advantage of being solid, but it is relatively weak at room temperature compared to aqueous solutions such as mineral acids, alkalis, and salts. The conductivity is two to three orders of magnitude lower, and its applications are limited due to the ohmic loss of the film. For example, the effective resistance of an electrolyte membrane with a film thickness of 50 nm and a specific conductivity of 10'''S-cm-' at room temperature is 5000 ohm·Cl11.

電気抵抗を下げるためには薄膜化が一つの解決策である
が、主として力学的強度の制約から限界がある。
One solution to lowering electrical resistance is to make the film thinner, but there are limitations mainly due to constraints on mechanical strength.

このような事情に鑑みて、本発明者らは、固体高分子多
孔質薄膜の孔中にイオン導電体を充填して電解質薄膜を
構成することによって上記問題点を解決することを検討
し、成功をおさめているが、電解質薄膜の実用化、応用
の拡大を図るためにはイオン導電率をより高めることが
望まれる。
In view of these circumstances, the present inventors have considered solving the above problems by filling the pores of a solid polymer porous thin film with an ionic conductor to form an electrolyte thin film, and have found success. However, in order to put the electrolyte thin film into practical use and expand its applications, it is desirable to further increase the ionic conductivity.

(!1題を解決するための手段〕 本発明者らは、上記課題を追求する過程で、固体高分子
多孔性薄膜の空孔径をより大きくしてもその空孔中にイ
オン導電体を充填し、また漏液防・止することができる
こと、そしてそれによって薄膜のイオン導電性を改善で
きることを見い出し、本発明を完成した。
(Means for Solving Problem 1) In the process of pursuing the above problem, the present inventors discovered that even if the pore diameter of a solid polymer porous thin film was made larger, the pores were filled with an ionic conductor. They also discovered that it is possible to prevent and prevent liquid leakage, and thereby improve the ionic conductivity of the thin film, and have completed the present invention.

こうして、本発明によれば、平均貫通孔径が0、1−1
0.74以下の固体高分子多孔性膜の空孔中にイオン導
電体を充填して成る電解質薄膜が提供される。
Thus, according to the present invention, the average through hole diameter is 0, 1-1
An electrolyte thin film is provided in which the pores of a solid polymer porous membrane having a diameter of 0.74 or less are filled with an ionic conductor.

平均貫通孔径が0.1 umB 0.7−以下の固体高
分子多孔膜は、例えば、ポリエチレン、ポリプロピレン
、ポリカーボネート、ポリイミド、ポリエステル、テト
ラフルオロポリエチレン等を用いることができる。
For example, polyethylene, polypropylene, polycarbonate, polyimide, polyester, tetrafluoropolyethylene, etc. can be used as the solid polymer porous membrane having an average through-pore diameter of 0.1 umB 0.7- or less.

平均貫通孔径が0.1川を越えることによって、このよ
うな空孔中に不動化されたイオン導電体を介するイオン
導電性が小径の場合と比べて大きく改善される。しかし
ながら、平均貫通孔径が0.7印を越えると、その孔中
にイオン導電体を充填し、漏出防止を図ることが困難に
なる。
When the average through-hole diameter exceeds 0.1, the ionic conductivity through the ionic conductor immobilized in such a hole is greatly improved compared to the case where the through-hole has a small diameter. However, when the average through-hole diameter exceeds the 0.7 mark, it becomes difficult to fill the holes with the ionic conductor and prevent leakage.

この様な本発明で用いる高分子多孔体の平均貫通孔径の
測定には水銀ポロシメーター法、電顕法、粒子透過法、
ガス吸着法等の方法を用いることができる。
The average through-pore diameter of the porous polymer used in the present invention can be measured using mercury porosimeter method, electron microscopy method, particle permeation method,
A method such as a gas adsorption method can be used.

また、固体高分子多孔性薄膜の空孔率は0.1〜90%
の範囲内が好ましい。0.1%以下では充填できるイオ
ン導電体の量が少なすぎて、薄膜のイオン導電率が充分
でない。一方、90%を越えると、実用的な薄膜強度を
維持することが困難となる。
In addition, the porosity of the solid polymer porous thin film is 0.1 to 90%.
It is preferably within the range of . If it is less than 0.1%, the amount of ionic conductor that can be filled is too small and the ionic conductivity of the thin film is not sufficient. On the other hand, if it exceeds 90%, it becomes difficult to maintain a practical thin film strength.

薄膜の厚さは1〜100角の範囲内が好ましく用いられ
る。膜材料や製法によっても左右されるが一般に1−未
満では実用強度や取扱い作業性の面で不利となり、一方
100m1では実効抵抗が大きくなる。
The thickness of the thin film is preferably within the range of 1 to 100 squares. Although it depends on the membrane material and manufacturing method, in general, if it is less than 1, it will be disadvantageous in terms of practical strength and handling workability, while if it is 100 m1, the effective resistance will be large.

本発明で用いるイオン導電体としてはアルカリ金属塩ま
たはプロトン酸と、ポリエーテルとの複合体、あるいは
これらの高分子をセグメントとして含有する網目状、又
は架橋状高分子との複合体を用いることができる。ポリ
エーテル、例えばポリエチレンオキサイドまたはポリプ
ロピレンオキサイドあるいはそれらの共重合体は分子量
および重合度の異なる液状および粉末状の試薬が市販さ
−れており、簡便に用いることができる。すなわち、ポ
リエチレングリコール、ポリエチレングリコール・モノ
エーテル、ポリエチレングリコール・デイエーテル、ポ
リプロピレングリコール、ポリプロピレングリコール・
モノエーテル、ポリプロピレングリコール・デイエーテ
ル等のポリエーテル類、またはこれらのポリエーテル類
の共重合体であるポリ(オキシエチレン・オキシプロピ
レン)グリコール、ポリ(オキシエチレン・オキシプロ
ピレン)グリコール・モノエーテル、またはポリ(オキ
シエチレン・オキシプロピレン)グリコール・デイエー
テル、これらのポリオキシアルキレン類と、エチレンシ
アミンとの縮合物、りん酸エステルや飽和脂肪酸または
芳香族エステル等を用いることができる。
As the ionic conductor used in the present invention, a complex of an alkali metal salt or a protonic acid and a polyether, or a complex of a network or crosslinked polymer containing these polymers as segments can be used. can. Polyethers such as polyethylene oxide, polypropylene oxide, or copolymers thereof are commercially available as liquid and powder reagents with different molecular weights and degrees of polymerization, and can be easily used. Namely, polyethylene glycol, polyethylene glycol monoether, polyethylene glycol diether, polypropylene glycol, polypropylene glycol
Polyethers such as monoether, polypropylene glycol diether, or copolymers of these polyethers such as poly(oxyethylene/oxypropylene) glycol, poly(oxyethylene/oxypropylene) glycol monoether, or Poly(oxyethylene/oxypropylene) glycol diether, condensates of these polyoxyalkylenes and ethylenecyamine, phosphoric acid esters, saturated fatty acids, aromatic esters, etc. can be used.

これらの高分子化合物と複合体を形成するものとしては
アルカリ金属またはアルカリ土類金属塩またはプロトン
酸を用いることができる。陰イオンとしてはハロゲンイ
オン、過塩素酸イオン、チオシアン酸イオン、トリフッ
化メタンスルホン酸イオン、ホウフッ化イオン等がある
。フッ化すチウム(LiF) 、ヨウ化ナトリウム(N
al) 、ヨウ化リチウム゛(LH) 、過塩素酸リチ
ウム(LiCi、 04) 、チオシアン酸ナトリウム
(NaSCN) 、トリフッ化メタンスルホン酸リチウ
ム(LiCFiSOz)、ホウフッ化リチウム(LiB
F4) 、ヘキサフッ化りん酸リチウム(LiPFi)
 、りん酸(l(、PO嶋)、硫酸()I!5O4) 
、)リッツ化メタンスルホン酸、テトラフッ化エチレン
スルホン酸(CzFm(SOJ:h ) 、ヘキサフッ
化ブタンスルホン酸(C4h(SOり4) 、などを具
体例として挙げることができる。
An alkali metal or alkaline earth metal salt or a protonic acid can be used to form a complex with these polymer compounds. Examples of anions include halogen ions, perchlorate ions, thiocyanate ions, trifluoromethanesulfonate ions, and borofluoride ions. Sodium fluoride (LiF), sodium iodide (N
al), lithium iodide (LH), lithium perchlorate (LiCi, 04), sodium thiocyanate (NaSCN), lithium trifluoromethanesulfonate (LiCFiSOz), lithium borofluoride (LiB)
F4), lithium hexafluorophosphate (LiPFi)
, phosphoric acid (l(, POshima), sulfuric acid ()I!5O4)
, ) litzated methanesulfonic acid, tetrafluorinated ethylene sulfonic acid (CzFm(SOJ:h)), hexafluorinated butanesulfonic acid (C4h(SOri4)), and the like.

特に好ましいイオン導電体は、エチレンオキシドとプロ
ピレンオキシドのそれぞれ単独又は複合した高分子とア
ルカリ金属もしくはアルカリ土類金属塩又はプロトン酸
との複合体である。複合体として、エチレンオキシド、
プロピレンオキシドが例えば化学式CH1+0CzHa
−+r−f−OC3H8→、 0Ctlsでm−0〜1
0.n−”1〜8のポリエーテルであり、特にイオン導
電体を構成する溶媒としてすぐれている。また、分子量
が小さいほど流動性に優れるのでイオン導電率の向上を
図ることができるが、分子量が小さすぎると孔中に不動
化するのが困難になるので150〜500の範囲の分子
量が好ましい。
Particularly preferred ionic conductors are complexes of polymers of ethylene oxide and propylene oxide, each alone or in combination, and an alkali metal or alkaline earth metal salt or a protonic acid. As a complex, ethylene oxide,
For example, propylene oxide has the chemical formula CH1+0CzHa
-+r-f-OC3H8→, m-0~1 at 0Ctls
0. It is a polyether with a molecular weight of 1 to 8, and is particularly excellent as a solvent for forming ionic conductors.In addition, the smaller the molecular weight, the better the fluidity, so it is possible to improve the ionic conductivity. A molecular weight in the range of 150 to 500 is preferred because if it is too small, it will be difficult to immobilize it in the pores.

本発明の電解質薄膜の製造法としては、■溶液状のイオ
ン導電体、溶媒に溶解させたイオン導電体、または溶媒
中にゾル状またはゲル状に微分散させたイオン導電体を
固体高分子多孔性薄膜に含浸させるか、塗布またはスプ
レーした後溶剤を除去する、■多孔性薄膜の製造工程で
イオン導電体の溶液または、そのゾルまたはゲル状の分
子1.溶液を混合した後!!膜する、■イオン導電体の
単量体や可溶性プレカーサーを固体高分子多孔性薄膜に
含浸させるか、塗布またはスプレーした後、空孔内で反
応させる、等の方法を用いることができる。
The method for producing the electrolyte thin film of the present invention is as follows: (i) An ionic conductor in solution form, an ionic conductor dissolved in a solvent, or an ionic conductor finely dispersed in a solvent in the form of a sol or gel is prepared using a porous solid polymer. 1. In the manufacturing process of porous thin films, solutions of ionic conductors or their sol or gel molecules are impregnated into porous thin films, or the solvent is removed after coating or spraying. After mixing the solution! ! (2) Impregnating, coating or spraying a solid polymer porous thin film with an ionic conductor monomer or soluble precursor, and then reacting within the pores.

含浸、塗布またはスプレー法は本発明の固体高分子多孔
体が0.1〜0.7 tnaの平均貫通孔径をもち、接
触角が90°以下の溶液に対して毛管凝縮作用により孔
中にとり込む性質を応用するものである。
In the impregnation, coating, or spraying method, the solid polymer porous material of the present invention has an average through-pore diameter of 0.1 to 0.7 tna, and a solution having a contact angle of 90° or less is taken into the pores by capillary condensation action. It is an application of properties.

従って、固体高分子に対する溶液の接触角が90゜以下
、好ましくは60’以下の系に対しては表面改質の処理
なしに広く適用できる。溶媒に溶解させたイオン導電体
の表面張力をT、固体高分子に対する接触角をθ、およ
び空孔を半径Rの円筒形の毛細管と仮定すると、イオン
導電体の溶液を毛細管内に凝縮させ、保持す・る力ΔP
は と近似できる。従って、イオン導電体を空孔中に充填す
るためには接触角が90”以下であると同時に多孔膜が
本発明に示されるごとく小さい孔径を有することが重要
である。例えば孔径を1jMから0.1−に下げること
によりΔPは1桁増大する。
Therefore, it can be widely applied to systems in which the contact angle of the solution to the solid polymer is 90° or less, preferably 60' or less, without surface modification treatment. Assuming that the surface tension of the ionic conductor dissolved in the solvent is T, the contact angle with respect to the solid polymer is θ, and the hole is a cylindrical capillary with a radius R, a solution of the ionic conductor is condensed in the capillary, Holding force ΔP
It can be approximated by a pigeon. Therefore, in order to fill the pores with an ionic conductor, it is important that the contact angle is 90" or less and that the porous membrane has a small pore diameter as shown in the present invention. For example, the pore diameter can be changed from 1 jM to 0. By lowering the value to .1-, ΔP increases by one order of magnitude.

溶媒として用いる有機化合物の表面張力は水やアルカリ
金属塩などに比して小さく、例えば空気中、20°Cで
アセトニトリル20dyne/cm、塩化メチレン28
dyne/c1n、ベンゼン29dyne/cmであり
、エチレングリコール、デイエチレングリコール、およ
びトリエチ”レンゲリコールは44〜46dyne/c
mである。
The surface tension of organic compounds used as solvents is lower than that of water or alkali metal salts. For example, in air at 20°C, acetonitrile at 20 dyne/cm, methylene chloride at 28
dyne/c1n, benzene 29 dyne/cm, and ethylene glycol, diethylene glycol, and triethylene glycol 44 to 46 dyne/c.
It is m.

アルカリ金属もしくはアルカリ土類金属塩またはプロト
ン酸の添加により表面張力は一般に増加する傾向にある
が、上記ΔPを大きくする効果は相対的に小さい。毛管
凝縮作用によりイオン導電体の溶液を高分子多孔体中に
含浸、塗布またはスプレー法により充填するためには接
触角の制御も重要である。接触角を90°以下にするに
は溶媒の選択、または高分子多孔体の表面処理によって
遠戚できる0例えば、有機溶媒のポリオレフィンに対す
る接触角はベンゼン5°以下、ヨウ化メチレン52°、
ホルムアミド77°、グリセリン79゛ である。
Although the surface tension generally tends to increase by adding an alkali metal or alkaline earth metal salt or a protic acid, the effect of increasing ΔP is relatively small. Control of the contact angle is also important in order to fill a porous polymer with a solution of an ionic conductor by impregnation, coating, or spraying by capillary condensation. A contact angle of 90° or less can be achieved by selecting a solvent or by treating the surface of the porous polymer.
Formamide: 77°, glycerin: 79°.

さらに、高分子多孔膜の表面処理の例としてポリオレフ
ィン多孔膜を用いる場合には、アルコールやアクリル酸
にて浸漬処理、またはプラズマ処理したり、親水性有機
炭化水素の単量体をグラフト重合(特開昭61−106
640号公報)させることにより、使用する溶液に対す
るぬれ特性を制御することができる。
Furthermore, when using a polyolefin porous membrane as an example of surface treatment of a porous polymer membrane, it may be subjected to immersion treatment with alcohol or acrylic acid, or plasma treatment, or graft polymerization (especially Kaisho 61-106
640), it is possible to control the wetting characteristics of the solution used.

本発明の電解質3膜の製法のうちでは、特に含浸、塗布
又はスプレー法は簡単でかつ均質な薄膜を得ることがで
きるので好ましい。以下に、イオン導電体としてアルカ
リ金属塩とポリエチレングリコールを用いた例を用いて
説明する。
Among the methods for producing the three-electrolyte membrane of the present invention, impregnation, coating, and spraying methods are particularly preferred because they are simple and can yield a homogeneous thin film. An example in which an alkali metal salt and polyethylene glycol are used as the ionic conductor will be explained below.

アルカリ金属塩とポリエチレングリコールは均質な溶液
を調製した後含浸、塗布またはスプレーすることにより
高分子膜の孔中へ充填することができる。アルカリ金属
塩とポリエチレングリコールは二6トロメタン、メタノ
ール、水、アセトニトリル、アセトン、クロロホルムメ
チルエチルケトン等の溶媒に溶解させた後混合するか、
あるいは溶液状の低分子量ポリエチレングリコール中に
直接アルカリ金属塩を溶解させて均質な溶液とする。
The alkali metal salt and polyethylene glycol can be filled into the pores of the polymer membrane by preparing a homogeneous solution and then impregnating, coating or spraying the solution. The alkali metal salt and polyethylene glycol are dissolved in a solvent such as dichloromethane, methanol, water, acetonitrile, acetone, chloroform methyl ethyl ketone, etc., and then mixed, or
Alternatively, the alkali metal salt is directly dissolved in a solution of low molecular weight polyethylene glycol to form a homogeneous solution.

含浸法は当該溶液中に高分子多孔膜を浸漬し、超音波キ
ャビテーションや減圧脱気により多孔膜中の残存空気と
溶液を置換し、過剰の溶液を取り除いた後、必要に応じ
て溶媒を風乾または加熱により除去する。塗布またはス
プレー法は多孔膜を濾布、濾紙、フィルター等の上に置
いて溶液を塗布、またはスプレーし、減圧または風乾、
加熱等の操作により溶媒を除去する。
The impregnation method involves immersing a porous polymer membrane in the solution, replacing the remaining air in the porous membrane with the solution by ultrasonic cavitation or vacuum degassing, removing excess solution, and then air drying the solvent as necessary. Or remove by heating. In the coating or spraying method, the porous membrane is placed on a filter cloth, filter paper, filter, etc., the solution is coated or sprayed, and then dried under reduced pressure or in the air.
The solvent is removed by heating or other operations.

さらに本発明において、注目されるべき特徴の一つに多
孔膜の空孔中に充填されるイオン導電体が固体状であっ
ても液体状であってもよいという点にある0例えば、分
子量約500以下のポリエチレングリコール類、および
そのアルカリ金属塩との複合体は常温で液体状を保つこ
とができる。また、モノオール、ジオール、ポリオール
構造をもつポリエチレンオキサイド、ポリプロピレンオ
キサイド、またはそれらの共重合体の多くは液体状のポ
リエーテルである。これらの液体状のポリエーテル類の
液状高分子およびそのアルカリ金属もくしはアルカリ土
類金属塩またはプロトン酸の複合体は本発明の固体高分
子多孔膜の空孔中に毛管凝縮力を応用して不動化させ、
実質的に固体状のTN膜電解賞を化体することができる
。不動化液体電解質膜を調製するためには液体の表面張
力、および液体と固体高分子多孔膜との接触角が重要で
あり、20″Cにおける液体の表面張力が706yne
−cm−’以下、好ましくは45dyne ” Cm−
’以下であり、且つ20°Cにおける接触角が60”以
下、好ましくは70゜以下であることが必要である。
Furthermore, in the present invention, one of the noteworthy features is that the ionic conductor filled into the pores of the porous membrane may be in a solid state or a liquid state. Polyethylene glycols having a molecular weight of 500 or less and their complexes with alkali metal salts can remain liquid at room temperature. Further, many of polyethylene oxide, polypropylene oxide, and copolymers thereof having monool, diol, and polyol structures are liquid polyethers. These liquid polymers such as liquid polyethers and their alkali metal or alkaline earth metal salts or complexes of protonic acids are produced by applying capillary condensation force into the pores of the solid polymer porous membrane of the present invention. and immobilize it,
A substantially solid TN membrane electrolyte can be embodied. In order to prepare an immobilized liquid electrolyte membrane, the surface tension of the liquid and the contact angle between the liquid and the solid polymer porous membrane are important.
-cm-' or less, preferably 45 dyne" Cm-
' and the contact angle at 20°C is 60'' or less, preferably 70° or less.

本発明の電解質薄膜の用途としては、−次電池、二次電
池、エレクトロクロミックデバイス、大容量キャパシタ
ー、センサーなどがある。これらの電気化学的プロセス
において、消費される電気エネルギーや発電エネルギー
は電解質の電気抵抗によるオーム損に関係するところが
大きいので、低抵抗の電解質膜が要求される。膜の抵抗
は次式により表される。
Applications of the electrolyte thin film of the present invention include secondary batteries, secondary batteries, electrochromic devices, large capacity capacitors, sensors, etc. In these electrochemical processes, the electrical energy consumed and the energy generated are largely related to ohmic loss due to the electrical resistance of the electrolyte, so an electrolyte membrane with low resistance is required. The resistance of the membrane is expressed by the following equation.

R−に−1/A ここに、lは膜の厚さ(Cm) 、Aは断面積(cff
l)Kは比例定数で、−辺の長さが単位長、一般に1膜
mなる立方体の電気抵抗を示し、比抵抗(Ω・d)とよ
ばれる。実用的な特性値としては膜の単位面積について
の抵抗値である実効抵抗R’  (Ω・cffl)で示
す。
R-to-1/A Here, l is the film thickness (Cm), A is the cross-sectional area (cff
l) K is a proportionality constant, and the length of the minus side indicates the electrical resistance of a cube of unit length, generally one film m, and is called specific resistance (Ω·d). A practical characteristic value is expressed as an effective resistance R' (Ω·cffl), which is a resistance value per unit area of the film.

R’−A−R−に−42 導電性薄膜の実効抵抗は上式に示されるように比抵抗と
膜厚により決定されるが、温度や共存物によっても影響
をうける。実用的な観点から室温でのR′値が低いこと
が必要であり、大面積比が可能な場合でも、例えばt、
oooΩ・d以下であるこ−とが望ましい。
R'-A-R--42 The effective resistance of a conductive thin film is determined by the resistivity and film thickness as shown in the above equation, but is also influenced by temperature and coexisting substances. From a practical point of view, it is necessary that the R' value at room temperature be low, and even if a large area ratio is possible, for example, t,
It is desirable that it be less than oooΩ·d.

〔実施例〕〔Example〕

叉益員上 膜厚25Ina、実効半径0.14m、空孔率45%の
ポリプロピレン製多孔膜(市販ジュラガード2500 
@ )の空孔中に平均分子量240のポリ(オキシエチ
レン・オキシプロピレン)グリコールモノエーテルに過
塩素酸リチウム10−t%を溶解させて得られた表面張
力33.2dyne−cm−’の溶液を含浸法により固
定化させ、室温(24°C)での比電導率を測定した。
A polypropylene porous membrane with a film thickness of 25 Ina, an effective radius of 0.14 m, and a porosity of 45% (commercially available Duraguard 2500)
A solution with a surface tension of 33.2 dyne-cm-' obtained by dissolving 10-t% of lithium perchlorate in poly(oxyethylene/oxypropylene) glycol monoether with an average molecular weight of 240 was added to the pores of @). It was fixed by an impregnation method, and the specific conductivity at room temperature (24°C) was measured.

裏旌拠主=主 膜厚6!!m、平均孔径0.10−1空孔率2%(実施
例2)、および膜厚10−1平均孔径0.44、空孔率
10%(実施例3)のポリカーボネート製多孔膜(市販
ニュークリボア■)の空孔中に平均分子量240のジメ
トキポリエチレンオキサイドに対し過塩素酸リチウム1
1−t%を溶解して得られた表面張力37.8dyne
 −cln−’の溶液を浸漬法により固定化シ、室温(
24°C)での、比電導率を測定した。
Urajo base = main film thickness 6! ! m, average pore diameter 0.10-1, porosity 2% (Example 2), and membrane thickness 10-1, average pore diameter 0.44, porosity 10% (Example 3). Lithium perchlorate 1 for dimethoxypolyethylene oxide with an average molecular weight of 240 in the pores of the bore (■)
The surface tension obtained by dissolving 1-t% is 37.8 dyne.
A solution of -cln-' was immobilized by immersion at room temperature (
The specific conductivity was measured at 24°C.

五較拠工 膜厚25n、実効半径0.072m、空孔率38%のポ
リプロピレン製多孔膜(市販ジュラガード2400@)
について実施例と同様な固定化液体膜を得て比電導率を
測定した。
Polypropylene porous membrane with a five-layer membrane thickness of 25n, effective radius of 0.072m, and porosity of 38% (commercially available Duraguard 2400@)
An immobilized liquid film similar to that in the example was obtained and its specific conductivity was measured.

五較孤主 比較例1の多孔膜の空孔中に平均分子量400のポリエ
チレングリコールに過塩素酸リチウム13−t%を溶解
させた表面張力46.5dyne−cm−’の溶液を含
浸させ真空脱気したが固定化させることができなかった
。多孔膜と当該?容液との接触角は61.2゜であった
The pores of the porous membrane of Comparative Example 1 were impregnated with a solution of 13-t% lithium perchlorate dissolved in polyethylene glycol with an average molecular weight of 400 and had a surface tension of 46.5 dyne-cm-', followed by vacuum desorption. I felt it, but I couldn't get it fixed. Porous membrane and related? The contact angle with the liquid was 61.2°.

止較皿主 膜厚104、平均孔径0.80印、空孔率15%のポリ
空脱気したが固定化させることができなかった。
Although the main film thickness of the stop plate was 104 mm, the average pore diameter was 0.80 marks, and the porosity was 15%, it could not be fixed even though it was degassed.

表1に結果をまとめて記す。Table 1 summarizes the results.

表1 実施例1 実施例2 実施例3 比較例1 比較例2 比較例3 25 0.4X0.04 0.14 6   0.10 10   0.40 25 0.2X0.02 0゜0?2 25 0.2X0.02 0.0?2 10   0.80 PEO/PP0240 33.2 PEO24037,8 PEO24037,8 PEO/PP0240 33.2 PEG400  46.5 PEO24037,8 お、9 36.1 (資)、1 羽、8 61.2 あ、1 2.1X10−’ 4.2X10” 1.5X10−4 3.4X10−’ 注) 平均孔径が0.4 Jll X O,04−とは長径0
.4−1短径0.04−であることを意味し、実効半径
はこの孔が矩形と考えて孔断面積を求め、次にその断面
が真円と考えて求めた半径である。
Table 1 Example 1 Example 2 Example 3 Comparative example 1 Comparative example 2 Comparative example 3 25 0.4X0.04 0.14 6 0.10 10 0.40 25 0.2X0.02 0°0?2 25 0 0.2 , 8 61.2 Ah, 1 2.1X10-'4.2X10" 1.5X10-4 3.4X10-' Note) Average pore diameter is 0.4 Jll X O,04- means major axis 0
.. 4-1 means that the minor axis is 0.04-, and the effective radius is the radius determined by calculating the cross-sectional area of the hole assuming that the hole is rectangular and then assuming that the cross-section is a perfect circle.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、平均貫通孔径が0.1−超0.7−以
下の固体高分子夛孔性薄膜にイオン導電体を充填して成
る電解!薄膜が提供され、液洩れのない力学的強度に優
れたフレキシブルで低抵抗の電解質薄膜が得られる。
According to the present invention, an electrolytic film is produced by filling an ionic conductor into a solid polymer permeable thin film having an average through-pore diameter of more than 0.1 and less than or equal to 0.7. A flexible, low-resistance electrolyte thin film with excellent mechanical strength and no leakage can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 1.平均貫通孔径が0.1μm超0.7μm以下の固体
高分子多孔性膜の空孔中にイオン導電体を充填して成る
電解質薄膜。
1. An electrolyte thin film comprising an ionic conductor filled in the pores of a solid polymer porous membrane having an average through-pore diameter of more than 0.1 μm and 0.7 μm or less.
2.イオン導電体がエチレンオキシドとプロピレンオキ
シドのそれぞれ単独又は複合の重合体とアルカリ金属も
しくはアルカリ土類金属塩又はプロトン酸との複合体か
らなり、表面張力が45dyne・cm^−^1以下の
液体である請求項1記載の電解質薄膜。
2. The ionic conductor is made of a composite of a single or composite polymer of ethylene oxide and propylene oxide and an alkali metal or alkaline earth metal salt or protonic acid, and is a liquid with a surface tension of 45 dyne cm or less. The electrolyte thin film according to claim 1.
JP1282020A 1989-10-31 1989-10-31 Membranous electrolyte Pending JPH03145004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1282020A JPH03145004A (en) 1989-10-31 1989-10-31 Membranous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282020A JPH03145004A (en) 1989-10-31 1989-10-31 Membranous electrolyte

Publications (1)

Publication Number Publication Date
JPH03145004A true JPH03145004A (en) 1991-06-20

Family

ID=17647119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282020A Pending JPH03145004A (en) 1989-10-31 1989-10-31 Membranous electrolyte

Country Status (1)

Country Link
JP (1) JPH03145004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257484A (en) * 2002-02-28 2003-09-12 Ube Ind Ltd Polyimide porous membrane composite material and lithium ion electrolytic membrane
JP2014110232A (en) * 2012-12-04 2014-06-12 Asahi Kasei E-Materials Corp Fluorine-based polymer electrolyte film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257484A (en) * 2002-02-28 2003-09-12 Ube Ind Ltd Polyimide porous membrane composite material and lithium ion electrolytic membrane
JP2014110232A (en) * 2012-12-04 2014-06-12 Asahi Kasei E-Materials Corp Fluorine-based polymer electrolyte film

Similar Documents

Publication Publication Date Title
JP2644002B2 (en) Immobilized liquid membrane electrolyte
Yu et al. A recast Nafion/graphene oxide composite membrane for advanced vanadium redox flow batteries
US5858264A (en) Composite polymer electrolyte membrane
CN101939862B (en) Porous electrodes and associated methods
CN106299222B (en) A kind of diaphragm and its secondary cell
JP2004526278A (en) Proton selective conducting membrane
Liu et al. Flexible supercapacitor with a record high areal specific capacitance based on a tuned porous fabric
CN109075369B (en) Composite membrane for flow battery
JP2002505506A (en) Ion conductive matrix and use thereof
KR20150059531A (en) Redox flow battery
KR20130012492A (en) Lithium secondary cell comprising polar solvent and bi-polar plate coated with poly-dopamine
CN111029515A (en) Sulfonated graphene oxide-based single-ion polymer electrolyte membrane and preparation method and application thereof
Niu et al. Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery
Yan et al. Shutdown-functionalized poly ethylene-vinyl alcohol sulfonate lithium and poly (vinyl alcohol) composite lithium-ion battery separator
CN103915650B (en) A kind of lithium ion battery polymer dielectric and preparation method thereof
JPH04204522A (en) Electrolytic thin film
JP3084793B2 (en) Solid electrode composition
JPH03145004A (en) Membranous electrolyte
JP2002203602A (en) Electrolyte component holding separator, its way of use and its manufacturing
JPH02291607A (en) Thin film electrolyte
JP4631168B2 (en) Polymer electrolyte
CN113571840A (en) Aramid fiber composite diaphragm based on in-situ modification, and preparation method and application thereof
JPH03145005A (en) Electrolyte membrane
CN111900313A (en) Diaphragm and application thereof
JP3839706B2 (en) Adhesive porous membranes, polymer gel electrolytes obtained from them, and their applications