JPH03143514A - Filter medium - Google Patents

Filter medium

Info

Publication number
JPH03143514A
JPH03143514A JP28070489A JP28070489A JPH03143514A JP H03143514 A JPH03143514 A JP H03143514A JP 28070489 A JP28070489 A JP 28070489A JP 28070489 A JP28070489 A JP 28070489A JP H03143514 A JPH03143514 A JP H03143514A
Authority
JP
Japan
Prior art keywords
filter medium
cross
mixture
liq
acid catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28070489A
Other languages
Japanese (ja)
Inventor
Yasuoki Sasaki
佐々木 泰興
Hiroshi Miyaji
宏 宮地
Masanori Kobayashi
正典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP28070489A priority Critical patent/JPH03143514A/en
Publication of JPH03143514A publication Critical patent/JPH03143514A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1669Cellular material
    • B01D39/1676Cellular material of synthetic origin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To obtain the filter medium capable of removing fine particles in fluid with high efficiency by forming the medium with a polyvinyl acetal resin porous body having a three-dimensional reticular structure of <=40mum average pore diameter and >=60% porosity and having >=70mol% degree of acetalization. CONSTITUTION:An aq. soln. of completely or partially saponified PVA is prepared, and starch grains extracted from rice, wheat, etc., and the aldehydes (ordinarily formaldehyde) as a cross-linking agent are added to the soln., slowly agitated and uniformly mixed. An acid catalyst such as sulfuric acid is added to the obtained liq. mixture and sufficiently agitated, and the mixture is injected into a mold and heated to cause a cross-linking reaction. The reaction product is discharged from the mold and dipped in a concd. liq. mixture of the cross linking agent and acid catalyst for a long time to promote the cross-linking reaction. The obtained reaction product is sufficiently washed with water to remove the unreacted cross-linking agent, acid catalyst and remaining starch to obtain a filter medium having uniform fine open cells and a three-dimensional reticular structure. The fine dust in air and the impurity fine particles in liq. are efficiently removed by this filter medium.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は気体中および液体中に含有される微粒子を効率
よく除去することができる精密濾過に適した濾材に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a filter medium suitable for precision filtration that can efficiently remove particulates contained in gas and liquid.

(従来の技術) 近年、クリーンルームに対する要求も益々高度なものと
なり、例えばHEPAクラスと呼ばれるものは0.3μ
mの微粒子を99.97%以上捕捉するといった厳しい
ものである。従来、空気中の微細粉塵を除去する方法と
して紙状のフィルターが使用されてきた。このフィルタ
ーは極微細なガラスamまたは合成Iamの不織布より
なり、中でも比較的剛直なため捕捉性能を上げることが
できる割には通気抵抗が上がりにくいガラス繊維の不繊
布が主として使用されてきた。しかしながらこれらの不
織布は製造中に生ずる微小粒子や微細m維の脱落した1
・のが透過側へ流出するといった欠点がある。
(Prior art) In recent years, the requirements for clean rooms have become increasingly sophisticated. For example, the so-called HEPA class is 0.3μ
This is a strict method that captures 99.97% or more of the microparticles of m. Traditionally, paper filters have been used to remove fine dust from the air. This filter is made of ultrafine glass am or synthetic Iam nonwoven fabric, and among them, glass fiber nonwoven fabric has been mainly used because it is relatively rigid and can improve trapping performance but does not easily increase ventilation resistance. However, these nonwoven fabrics suffer from the shedding of microparticles and microfibers generated during manufacturing.
・There is a drawback that the water flows out to the permeation side.

一方、微細粒子を液体中から分離するためのフィルター
としてはメンブランフィルタ−や金属の焼結成形体が知
られている。しかしながらこれらはいずれも空隙率が小
さいため流体通過の圧力損失が大キく、更にメンブラン
フィルタ−は面積の大きいものが製造しにくく、金属の
焼結成形体は孔径分布の幅が大きいといった欠点がある
On the other hand, membrane filters and sintered metal bodies are known as filters for separating fine particles from liquids. However, all of these have drawbacks such as low porosity, which causes a large pressure loss when fluid passes through, and membrane filters that have a large area are difficult to manufacture, and sintered metal bodies have a wide pore size distribution. .

そこで合成樹脂の多孔体を濾材に用いることが考えられ
るが、気孔率が高く且つ気孔径の小さなものは製造が極
めて困難で、具体的には平均気孔径が60μm以下のも
のは未だ満足すべきものが得られていないのが現状であ
る。
Therefore, it is possible to use a synthetic resin porous body as a filter medium, but it is extremely difficult to manufacture one with high porosity and small pore size, and specifically, one with an average pore size of 60 μm or less is still unsatisfactory. The current situation is that this has not been obtained.

(発明が解決しようとする課題) 本発明の目的は空気中の微細粉塵および液体中の夾雑微
粒子を高精度且つ効率よく除去でき、更に加工性も良好
な濾材を提供するにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a filter medium that can remove fine dust in the air and contaminant particles in a liquid with high precision and efficiency, and also has good workability.

(課題を解決するための手段) が70モル多以上であるポリビニルアセタール系樹脂多
孔体よりなる濾材によって達成される。
(Means for Solving the Problems) This is achieved by a filter medium made of a porous polyvinyl acetal resin having a mole of 70 or more.

本発明のポリビニルアセタール(以下「rVAtJと略
記する)系樹脂は、ポリビニルアルコール(以下「PV
AJと略記する)を触媒の存在下でアルデヒド類と架橋
反応させたもので、架橋の程度を示すアセタール化度が
70モル%以上、好ましくは80モル嘩以上のものであ
る。アセタール化度がTOモル嘩より低い場合は、耐水
性に乏しく湿潤状態で柔軟な物性となり、濾材としての
保形性3寸法安定性に欠けたものとなり実用的でない。
The polyvinyl acetal (hereinafter abbreviated as "rVAtJ") based resin of the present invention is a polyvinyl alcohol (hereinafter "PVAtJ") based resin.
AJ) is subjected to a crosslinking reaction with an aldehyde in the presence of a catalyst, and the degree of acetalization, which indicates the degree of crosslinking, is 70 mol% or more, preferably 80 mol% or more. If the degree of acetalization is lower than TO mortarization, the material will have poor water resistance and will have soft physical properties in a wet state, and will lack shape retention and three-dimensional stability as a filter medium, making it impractical.

本発明の濾材は平均気孔径が40μm以下、好ましくは
50μm以下、更に好ましくは20μm以下であって、
その気孔率は60%以上、好ましくは70%以上、更に
好ましくは80%以上の三次元網目構造を有するもので
ある。気孔径が40μmより大きいと微細な粒子の捕捉
率が低いものと11す、気孔率小さすぎると濾過による
圧力損失が大きいものとなる。
The filter medium of the present invention has an average pore diameter of 40 μm or less, preferably 50 μm or less, more preferably 20 μm or less,
It has a three-dimensional network structure with a porosity of 60% or more, preferably 70% or more, and more preferably 80% or more. If the pore size is larger than 40 μm, the capture rate of fine particles will be low, and if the porosity is too small, the pressure loss due to filtration will be large.

本発明の濾材の気孔は三次元網目構造をしているため、
気孔径が極めて小さいにもかかわらず気孔率が高く、通
気抵抗が低いものとなる。また濾材を通過する夾雑微粒
子を含有する気体または液体は、迷路の如き複雑な細孔
を通過することになり、その間に夾雑微粒子は慣性効果
、拡散効果。
Since the pores of the filter medium of the present invention have a three-dimensional network structure,
Although the pore diameter is extremely small, the porosity is high and the ventilation resistance is low. In addition, gas or liquid containing contaminant particles passing through the filter medium passes through a labyrinth of complex pores, during which time the contaminant particles are subject to inertial effects and diffusion effects.

さえぎり効果、tカ効果および静電効果等の相互作用に
より捕捉されることになる。このため平均気孔径よりも
か、なり小さな粒径の微粒子も捕捉することができ、メ
ンブランフィルタ−や金属の焼結成形体並の濾過精度を
低い圧力損失で行なうことができる。
This will be captured by interactions such as the blocking effect, the tactile effect, and the electrostatic effect. Therefore, it is possible to capture fine particles having a particle size that is smaller than or equal to the average pore diameter, and it is possible to achieve filtration accuracy comparable to that of a membrane filter or a sintered metal body with low pressure loss.

更に本発明の濾材は、加工性に優れた素材であり、例え
ばはさみやナイフといった通常の手段で切断やスライス
することができ、その形状や厚さも比較的容易に成形す
ることができる。
Further, the filter medium of the present invention is a material with excellent workability, and can be cut or sliced by ordinary means such as scissors or a knife, and its shape and thickness can be relatively easily formed.

本発明の濾材は例えば次のようにして製造することがで
きる。即ち、完全又は部分ケン化のPVムを水溶液とな
し、これに澱粉粒および架橋剤としてのアルデヒド類を
加え、温度50゛C以下、好ましくは25〜40°Cで
1時間以上、好ましくは2〜5時間ゆっくり撹拌しなが
ら均一に混合する。
The filter medium of the present invention can be manufactured, for example, as follows. That is, completely or partially saponified PV gum is made into an aqueous solution, starch granules and aldehydes as a crosslinking agent are added thereto, and the mixture is heated at a temperature of 50°C or less, preferably 25 to 40°C for 1 hour or more, preferably 2 Mix evenly with slow stirring for ~5 hours.

上記澱粉粒としては、例えば米、小麦等から抽出精製さ
れた澱粉粒が好適である。上記アルデヒド類としては通
常ホルムアルデヒドが用いられる。
As the starch granules, for example, starch granules extracted and purified from rice, wheat, etc. are suitable. Formaldehyde is usually used as the aldehyde.

次に得られた混合液に硫酸等の酸触媒を加え充分撹拌し
た後、型枠に注型し、加温して架橋反応を行う。ここで
得られた反応生成物はアセタール化度が5oNToモル
貸のものであり、湿潤状態においては柔軟且つ軟弱であ
り、寸法安定性に欠けるものである。引き続きこの反応
生成物を型枠より取り出し、架橋剤および酸触媒の濃度
がそれぞれ15〜25重!!kCs程度の高濃度混合液
に浸漬し40〜700°Cの温度で長時間更に架橋反応
を進める。続いて、得られた反応生成物を充分水洗し、
未反応の架橋剤と酸触媒及び残存している澱粉等が除去
され、均一微細な連続気孔を有する本発明の濾材を得る
ことができる。得られた濾材はアセタール化度が70モ
ル嘩以上のPvAt系樹脂多孔体で、平均気孔径が5〜
40μm、気孔率が60〜85容量囁の三次元網目構造
の気孔を有するものである。
Next, an acid catalyst such as sulfuric acid or the like is added to the resulting mixed solution, and the mixture is thoroughly stirred, then poured into a mold, and heated to carry out a crosslinking reaction. The reaction product obtained here has a degree of acetalization of 50NTo molar, is soft and weak in a wet state, and lacks dimensional stability. Subsequently, this reaction product was taken out from the mold, and the concentrations of the crosslinking agent and the acid catalyst were 15 to 25 times each! ! It is immersed in a high-concentration mixed solution of about kCs, and the crosslinking reaction is further carried out for a long time at a temperature of 40 to 700°C. Subsequently, the obtained reaction product was thoroughly washed with water,
Unreacted crosslinking agent, acid catalyst, remaining starch, etc. are removed, and the filter medium of the present invention having uniform, fine, continuous pores can be obtained. The obtained filter medium is a PvAt-based resin porous material with an acetalization degree of 70 molar or more, and an average pore diameter of 5 to 5.
It has pores with a three-dimensional network structure of 40 μm and a porosity of 60 to 85 volumes.

(発明の効果) 本発明の濾材は、均−且つ微細な連続気孔を有し、気孔
率が高いため濾過の際の圧力損失も小さく、寸法安定性
にすぐれ、耐薬品性も良好である。
(Effects of the Invention) The filter medium of the present invention has uniform and fine continuous pores, has a high porosity, has a small pressure loss during filtration, has excellent dimensional stability, and has good chemical resistance.

また本発明の濾材は、ガラス繊維不織布の濾材に見られ
るような微小粒子や微細m維の脱落といった現象もなく
、広い面積のものも得易く、所望の形状や厚さに切断し
たりスライスすることもでき、更に容易に折り曲げるこ
ともできるので、気体用。
Furthermore, the filter medium of the present invention does not have the phenomenon of shedding of microparticles or microfibers that occurs in filter media made of glass fiber nonwoven fabric, and can easily be obtained with a wide area, and can be cut or sliced into desired shapes and thicknesses. It can also be bent easily, so it is suitable for gases.

液体−用の各種高精度濾過用に極めて好適である。It is extremely suitable for various high-precision filtration of liquids.

本発明の濾材は、従来極めて製造するのが困難であった
、0.311mの微粒子を119.97%以上捕捉する
HEPAクラスの濾材として適したものである。
The filter medium of the present invention is suitable as a HEPA class filter medium that captures 119.97% or more of 0.311 m fine particles, which have been extremely difficult to manufacture in the past.

以下、実施例により本発明を詳述するが、その前に本明
細書の各種特性値の測定法について記述する。
Hereinafter, the present invention will be described in detail with reference to Examples, but before that, methods for measuring various characteristic values in this specification will be described.

く大気塵捕集率〉 環境空気中に浮遊する大気塵を濾材で捕集し、濾過前後
の大気塵量より求めた。測定は200mmX 200m
mの大きさの濾材を濾過試験装置に取り付け、流速50
0cc/分で環境空気を2分間流し、この時の濾過前後
の大気塵数をパーティクルカウンターKO−Of(リオ
ン■製〕により、0.3μm以上の大気塵を測るように
セットして測定した。
Atmospheric dust collection rate〉 Atmospheric dust floating in the ambient air was collected using a filter medium, and was determined from the amount of atmospheric dust before and after filtration. Measurement is 200mm x 200m
A filter medium of size m was attached to the filtration test device, and the flow rate was 50
Ambient air was flowed for 2 minutes at 0 cc/min, and the number of atmospheric dust before and after filtration was measured using a particle counter KO-Of (manufactured by Rion ■), which was set to measure atmospheric dust of 0.3 μm or more.

大気塵捕集率は下記式によって求めた。The atmospheric dust collection rate was determined using the following formula.

〈液体濾過試験〉 試験濾材を47mm−のガラスフィルターホルダーに挾
みこみクリップで固定して吸引びんに取り付け、アスピ
レータ−で減圧吸引して下記の微粒子分散原液を11/
分の吸引速度で1分間濾過し濾液を得た。得られた濾液
および原液それぞれ70mJi!中に含まれる微粒子数
を液体自動粒子カウンターMODEL  470G (
HIAO/ROYCO社製)を用いて5種類の粒径側に
計数し、それぞれの粒径範囲における捕捉率(%)を下
記式より求めた。
<Liquid filtration test> The test filter medium was inserted into a 47 mm glass filter holder, fixed with a clip, attached to a suction bottle, and vacuum suctioned with an aspirator to obtain the following particulate dispersion stock solution.
The mixture was filtered for 1 minute at a suction speed of 1 minute to obtain a filtrate. The resulting filtrate and stock solution were each 70 mJi! The number of fine particles contained in the liquid is measured using a liquid automatic particle counter MODEL 470G (
HIAO/ROYCO) was used to count five types of particle sizes, and the capture rate (%) in each particle size range was determined from the following formula.

(ここでAは原液70mj!中の個数、Bは濾液70m
A!中の個数) 微粒子分散原液: J IS  Z−8901に規定されるJIS−81試
験粉体(関東ローム粉、平均粒子径8μm)0.1gを
21の水に分散せしめたもの。
(Here, A is the number of particles in 70 mj of stock solution, B is 70 mj of filtrate.
A! (number of particles in) Fine particle dispersion stock solution: 0.1 g of JIS-81 test powder (Kanto loam powder, average particle size 8 μm) specified in JIS Z-8901 was dispersed in 21 water.

(実施例1) 重合度IT00の部分ケン化PVAを温水に溶解して、
濃度20″!/1量% 、1440mgのPVA水溶液
となし、これを45°Cに温調し用意した。次に米澱粉
asoyを540mJの水に加え撹拌し分散液とし、こ
れを先に用意したPVA水溶液に加え、更に37%ホル
ムアルデヒド水溶液380m1加えた後、ゆっくりと撹
拌しなから液温を32°Cに保持して3時間熟成した。
(Example 1) Partially saponified PVA with a degree of polymerization IT00 was dissolved in hot water,
A 1440 mg PVA aqueous solution with a concentration of 20''!/1% by weight was prepared and the temperature was adjusted to 45°C.Next, rice starch asoy was added to 540 mJ of water and stirred to form a dispersion, which was prepared first. In addition to the PVA aqueous solution prepared, 380 ml of a 37% formaldehyde aqueous solution was added, and the mixture was aged for 3 hours while slowly stirring while maintaining the liquid temperature at 32°C.

熟成後、50嘩硫酸を290m1加え、更に水を加えて
液量を31に調整して均一に撹拌混合した。得られた混
合液を塩化ビニル製の型枠に注型し、約60°Cで40
時間架橋反応させた。得られた反応生成物を型枠から取
り出し、これを15貸ホルムアルデヒド、26%硫酸の
混合液に浸漬し46°Cで3日間反応させ、続いて充分
に水洗して未反応のホルムアルデヒド、硫酸ならびに澱
粉等を除去した後乾燥してPVAt系樹脂多孔体を得た
。次にこれを厚さ1.3mmに切断しシート状の濾材と
した。
After aging, 290 ml of 50% sulfuric acid was added, water was further added to adjust the liquid volume to 31%, and the mixture was stirred and mixed uniformly. The resulting mixture was poured into a mold made of vinyl chloride and heated at approximately 60°C for 40 minutes.
A crosslinking reaction was carried out for a period of time. The obtained reaction product was removed from the mold, immersed in a mixed solution of 15% formaldehyde and 26% sulfuric acid, and reacted at 46°C for 3 days, and then thoroughly washed with water to remove unreacted formaldehyde, sulfuric acid, After removing starch and the like, it was dried to obtain a PVAt-based resin porous body. Next, this was cut to a thickness of 1.3 mm to obtain a sheet-like filter medium.

得られた濾材は、アセタール化度82モル%。The obtained filter medium had an acetalization degree of 82 mol%.

気孔率85容量嘩、平均気孔径70μmで孔径分布の小
さい三次元網目構造の連続気孔を有するPYAt 系樹
脂多孔体であって、寸法安定性の良好なものであった。
It was a PYAt resin porous body having a porosity of 85, a mean pore diameter of 70 μm, and continuous pores in a three-dimensional network structure with a small pore size distribution, and had good dimensional stability.

この濾材の気体用濾材としての特性値は第1表の通りで
あった。比較例として市販(7)HEPA 用ガ5スl
a維濾紙AF−992(東洋濾紙fR)の結果を示した
。又、液体用濾材としての特性値は第2表の通りであっ
た。
The characteristic values of this filter medium as a gas filter medium were as shown in Table 1. Commercially available (7) HEPA gas 5 liters as a comparative example
The results for a fiber filter paper AF-992 (Toyo Roshi fR) are shown. Further, the characteristic values as a liquid filter medium were as shown in Table 2.

第 表 (実施例2) 実施例1において用いた米澱粉に替えて小麦澱粉を用い
る他は実施例1と同様の方法でPvAt系MB脂多孔体
とし、厚さ2.0mmに切断して本発明の濾材を得た。
Table (Example 2) A PvAt-based MB porous body was prepared in the same manner as in Example 1 except that wheat starch was used instead of the rice starch used in Example 1, and cut into 2.0 mm thick pieces. An inventive filter medium was obtained.

得られた濾材の平均気孔径は30μmで、液体用濾材と
しての特性値は第2表の通りであった。
The average pore diameter of the obtained filter medium was 30 μm, and the characteristic values as a liquid filter medium were as shown in Table 2.

Claims (1)

【特許請求の範囲】[Claims] 平均気孔径40μm以下、気孔率60%以上の三次元網
目構造を有し、アセタール化度が70モル%以上である
ポリビニルアセタール系樹脂多孔体よりなる濾材。
A filter material made of a porous polyvinyl acetal resin having a three-dimensional network structure with an average pore diameter of 40 μm or less, a porosity of 60% or more, and a degree of acetalization of 70 mol% or more.
JP28070489A 1989-10-27 1989-10-27 Filter medium Pending JPH03143514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28070489A JPH03143514A (en) 1989-10-27 1989-10-27 Filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28070489A JPH03143514A (en) 1989-10-27 1989-10-27 Filter medium

Publications (1)

Publication Number Publication Date
JPH03143514A true JPH03143514A (en) 1991-06-19

Family

ID=17628792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28070489A Pending JPH03143514A (en) 1989-10-27 1989-10-27 Filter medium

Country Status (1)

Country Link
JP (1) JPH03143514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269620A (en) * 1993-03-16 1994-09-27 Kanebo Ltd Sheet-like filter medium
RU2681906C2 (en) * 2015-07-21 2019-03-13 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ" (СПбГАУ) Method for obtaining filter element based on a porous polyvinylformal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269620A (en) * 1993-03-16 1994-09-27 Kanebo Ltd Sheet-like filter medium
RU2681906C2 (en) * 2015-07-21 2019-03-13 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ" (СПбГАУ) Method for obtaining filter element based on a porous polyvinylformal

Similar Documents

Publication Publication Date Title
US3862030A (en) Microporous sub-micron filter media
JP6956103B2 (en) Air filter containing polymer sorbent for aldehydes
JP3145429B2 (en) Porous polytetrafluoroethylene structure and method for producing the same
Elford Principles governing the preparation of membranes having graded porosities. The properties of “gradocol” membranes as ultrafilters
JP2004538143A (en) High strength asymmetric cellulosic membrane
CN110719805A (en) Air filter comprising polymeric adsorbent for aldehyde
CN106310983A (en) Disposable polyethersulfone air microfiltration membrane and preparation method thereof
JPH03143514A (en) Filter medium
CA1274856A (en) Process for producing open-pore sintered glass having a large open pore volume, particularly suitable as filters for liquids and gases at high flow rates
JPH03270703A (en) Air filter medium
US3784490A (en) Microporous vinyl chloride polymers and method of making the same
JPH0243911A (en) Gas filter
JP2003166446A (en) Engine air cleaner
KR100402559B1 (en) Porous dust/water collecting filter comprising thermoplastic resin and manufacturing method thereof
CN106345321A (en) Trapezoidal efficient dust-removal inorganic film and manufacturing method thereof
JP4689790B2 (en) Internal hydrophilic membrane of anionic copolymer blend
JPS5829335B2 (en) Method for manufacturing polyvinyl acetal porous material
JPH04193315A (en) Filter having porous layer
JPH11188212A (en) Bornless filter
JPS62277119A (en) High-performance filter paper
JP7489198B2 (en) Molded adsorbent and water purification cartridge
JPH11244630A (en) Filter medium and filter
JPH0391543A (en) Production of porous polyvinyl acetal body
JP4584703B2 (en) Sheet or polymer solid having molecular adsorption function, and production method thereof
TW469156B (en) A filter element made to fit within a filter element housing and a method of filtration