JPH03143432A - Dispersion compression type ultrasonic diagnostic apparatus - Google Patents

Dispersion compression type ultrasonic diagnostic apparatus

Info

Publication number
JPH03143432A
JPH03143432A JP1281790A JP28179089A JPH03143432A JP H03143432 A JPH03143432 A JP H03143432A JP 1281790 A JP1281790 A JP 1281790A JP 28179089 A JP28179089 A JP 28179089A JP H03143432 A JPH03143432 A JP H03143432A
Authority
JP
Japan
Prior art keywords
signal
chirp
diagnostic apparatus
avodization
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1281790A
Other languages
Japanese (ja)
Inventor
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP1281790A priority Critical patent/JPH03143432A/en
Publication of JPH03143432A publication Critical patent/JPH03143432A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform an imaging wherein unnecessary components due to time side rope etc., are sufficiently suppressed by analyzing a specified watching range of a wave receiving signal, obtaining tentatively a responding characteristics of a constituting system, calculating an optimum charp signal and a kernel for compression and measuring a wave receiving signal. CONSTITUTION:A probe 8 is driven by means of a signal having a specified step function to obtain a wave receiving signal as an output of an amplifying part 9 and it is input in a CPU 1 through an A/D converter 10 and a buffer memory 11 and the CPU 1 performs a frequency analysis on the watching range of the signal. The wave shape of the transmitted wave is a wave shape obtd. on the original time axis by 1FFT wherein a complex spectrum in a selected frequency range, as the result, with a length obtaining a required TB product is multiplied with a reciprocal of an amplitude and a phase characteristics. However as this does not include avodization, it is furthermore, for example, multiplied with an avodization on a time axis of COS<2> type.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超音波診断装置に関し、特にその分散圧縮
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an ultrasonic diagnostic apparatus, and particularly to dispersion compression thereof.

[従来の技術] 従来の分散圧縮方式の超音波診断装置は、リニアF M
チャープ信号を用いて送受して圧縮し、被検体の映像を
得るものでしかなかった。
[Prior art] Conventional distributed compression type ultrasound diagnostic equipment uses linear FM
The only way to obtain an image of the subject was by sending and receiving chirp signals and compressing them.

しかし、探触子の端子から見てエコー源を含む往復信号
の構成の系には、周波数特性及び位相特性とがあり、そ
の制約の基で、最適な圧縮結果を得るには、さらに複雑
な処理が必要である。
However, the system of the structure of the round-trip signal including the echo source when viewed from the probe terminal has frequency characteristics and phase characteristics, and under these constraints, obtaining the optimal compression result requires a more complicated system. Processing is required.

例えば、時間−周波数軸上での振幅アボダイゼーション
はタイムサイドローブの低減に不可欠であるが、その関
数形は探触子やエコー源を含む系全体の特性に関してタ
イムサイドローブから低減される如く設定されなくては
ならない。
For example, amplitude avoidization on the time-frequency axis is essential for reducing time side lobes, but its functional form is such that it is reduced from time side lobes with respect to the characteristics of the entire system including the probe and echo source. Must be set.

しかし、従来の設計方針では系の周波数特性及び位相特
性を只イコラズすればよいという観点で処理されていた
However, in the conventional design policy, processing has been carried out from the viewpoint that it is sufficient to simply equalize the frequency characteristics and phase characteristics of the system.

[発明が解決しようとする課題] 上記のような従来の分散圧縮方式の超音波診断装置では
、上記の如〈従来の設計方針によると、系全体の特性に
関し、タイムサイドローブを最低化ないし又は最適化さ
れず、従って目的領域ないし、その中のエコー源の性質
によっては、タイムサイドローブが悪化することがある
という問題点があった。
[Problems to be Solved by the Invention] In the conventional dispersion compression type ultrasonic diagnostic apparatus as described above, as described above, according to the conventional design policy, the time sidelobes are minimized or There is a problem in that the time side lobe may be deteriorated depending on the characteristics of the target area or the echo source therein because it is not optimized.

この発明は、かかる問題点を解決するためになされたも
ので、探触子や媒質、エコー源等の系全体の特性を折込
んだ形で最適化されたアボダイゼーションを行うように
するものであり、ひいてはそのような手法によりタイム
サイドローブを低減できる分散圧縮方式の超音波診断装
置を得ることを目的とする。
This invention was made in order to solve these problems, and it performs abodization that is optimized by incorporating the characteristics of the entire system such as the probe, medium, echo source, etc. The purpose of this invention is to obtain an ultrasonic diagnostic apparatus using a dispersion compression method that can reduce time side lobes using such a method.

[課題を解決するための手段] この発明に係る分散圧縮方式の超音波診断装置は、前記
受波信号の注目区間を分析して、前記被検体の映像を得
るための構成系の応答特性を試行的に求める手段と、応
答特性に基づいて、最適なチャープ信号及び圧縮用カー
ネルを算出する手段と、チャープ信号及び圧縮用カーネ
ルを用いて前記受波信号を計測する手段とを備えたもの
である。
[Means for Solving the Problems] The distributed compression type ultrasound diagnostic apparatus according to the present invention analyzes the attention section of the received signal to determine the response characteristics of the component system for obtaining the image of the subject. It is equipped with means for experimentally determining the optimum chirp signal and compression kernel based on the response characteristics, and means for measuring the received signal using the chirp signal and the compression kernel. be.

また、被検体からのエコー源の深さに応じて、深さ毎に
受波信号を計測するものである。
Further, the received signal is measured for each depth according to the depth of the echo source from the subject.

また、構成系の中心周波数及び帯域幅を算出し、算出し
た中心周波数及び帯域幅に応じた周波数軸上のチャープ
幅を決定し、そのチャープ幅に応じた所定のTB積とな
るチャープ信号の時間幅を算出した後に、必要なアボダ
イゼーションから構成系の周波数特性及び位相特性を除
去して、所定のアボダイゼーションを行うものである。
In addition, the center frequency and bandwidth of the component system are calculated, the chirp width on the frequency axis is determined according to the calculated center frequency and bandwidth, and the time of the chirp signal that has a predetermined TB product according to the chirp width is determined. After calculating the width, the frequency characteristics and phase characteristics of the constituent system are removed from the necessary avodization to perform predetermined avodization.

[作用コ この発明においては、受波信号の所定の注目区間を分析
して、構成系の応答特性を試行的に求め、その応答特性
に基づいて、最適なチャープ信号及び圧縮用カーネルを
算出する。
[Operations] In this invention, a predetermined section of interest of the received signal is analyzed, the response characteristics of the constituent system are determined on a trial basis, and the optimal chirp signal and compression kernel are calculated based on the response characteristics. .

そして、算出したチャープ信号及び圧縮用カーネルを用
いて受波信号を計測する。
Then, the received signal is measured using the calculated chirp signal and compression kernel.

また、被検体からのエコー源の深さに応して、深さ毎に
受波信号の注目区間を分析して、構成系の応答特性を試
行的に求め、その応答特性に基づいて、最適なチャープ
信号及び圧縮用カーネルを算出する。
In addition, depending on the depth of the echo source from the subject, the section of interest of the received signal is analyzed for each depth, the response characteristics of the component system are determined on a trial basis, and based on the response characteristics, the optimal Calculate the chirp signal and compression kernel.

そして、算出したチャープ信号及び圧縮用カーネルを用
いて受波信号を計測する。
Then, the received signal is measured using the calculated chirp signal and compression kernel.

また、構成系の中心周波数及び帯域幅を算出し、算出し
た中心周波数及び帯域幅に応じた周波数軸上のチャープ
幅を決定し、そのチャープ幅に応じた所定のTB積とな
るチャープ信号の時間幅を算出した後に、必要なアボダ
イゼーションから構成系の周波数特性及び位相特性を除
去して、所定のアボダイゼーションを行う。
In addition, the center frequency and bandwidth of the component system are calculated, the chirp width on the frequency axis is determined according to the calculated center frequency and bandwidth, and the time of the chirp signal that has a predetermined TB product according to the chirp width is determined. After calculating the width, the frequency characteristics and phase characteristics of the constituent system are removed from the necessary avodization to perform predetermined avodization.

[実施例コ 第1図はこの発明の一実施例を示す分散圧縮方式の超音
波診断装置の概略構成図である。
Embodiment FIG. 1 is a schematic diagram of a distributed compression type ultrasonic diagnostic apparatus showing an embodiment of the present invention.

(1)はメモリを有したCPUであり、周波数分析手段
を備え、後述する所定の処理を実行するものである。(
2)はCP U (1)からの信号に基づく映像を表示
するデイスプレィである。
(1) is a CPU having a memory, is equipped with a frequency analysis means, and executes a predetermined process to be described later. (
2) is a display that displays images based on signals from CPU (1).

(3)はCP U (1)からの指示に基づいて、所定
の回路部を駆動させるリアルタフィムコントローラ、(
4)はCP U (1)から出力される送波信号をスト
アして出力するバッファメモリ、(5)はバッファメモ
リ(4)からの送波信号をアナログ信号に変換するD/
A変換器、(6)はD/A変換器(5)から送波信号を
増幅する増幅部、(7)はリアルタイムコントローラ(
3)からの信号に基づいて送波信号を出力し、あるいは
受波信号を受信する送受切替部である。
(3) is a realfim controller that drives a predetermined circuit section based on instructions from the CPU (1);
4) is a buffer memory that stores and outputs the transmission signal output from CPU (1), and (5) is a D/D converter that converts the transmission signal from buffer memory (4) into an analog signal.
A converter, (6) is an amplification unit that amplifies the transmission signal from the D/A converter (5), and (7) is a real-time controller (
3) is a transmitting/receiving switching unit that outputs a transmitted signal or receives a received signal based on the signal from.

〈8)は探触子であり、送受切替部(7)からの所定の
ステップ関数を有した信号により送波信号を放射し、そ
のエコーを受信し電気信号に変換した受波信号として送
受切替部(7)に出力するものである。(9)は送受切
替部(7)から出力される受送信号を増幅する増幅部、
((0)は増幅部(9)から出力する受送信号をデジタ
ル変換するA/D変換器、(11)はA/D変換器から
のデジタル化された受送信号をストアして出力するバッ
ファメモリである。
<8) is a probe that emits a transmitting signal according to a signal having a predetermined step function from the transmitting/receiving switching unit (7), receives the echo, and converts it into an electrical signal as a receiving signal and switches the transmitting/receiving. It is output to section (7). (9) is an amplification unit that amplifies the reception signal output from the transmission/reception switching unit (7);
((0) is an A/D converter that digitally converts the received and transmitted signals output from the amplifier (9), and (11) stores and outputs the digitized received and transmitted signals from the A/D converter. It is buffer memory.

第2図は受波信号を説明する波形図であり、エコーを探
触子(8)で受信し、送受切替部(7)及び増幅部(9
)を介して得られた受波信号である。
FIG. 2 is a waveform diagram illustrating the received signal, in which the echo is received by the probe (8), the transmission/reception switching section (7) and the amplification section (9).
) is the received signal obtained through.

上記のように構成された分散圧縮方式の超音波診断装置
について以下に動作を説明する。
The operation of the distributed compression type ultrasonic diagnostic apparatus configured as described above will be described below.

探触子(8)を所定のステップ関数を有した信号で駆動
して、増幅部(9)の出力に第2図に示す受波信号を得
てA/D変換器(10)及びバッファメモリ(11)を
介してCP U (1)に入力したとすると、CP U
 (1)はその信号の例えば第2図に示す注目区間を周
波数分析して、例えば下記に説明するスペクトラム特性
を得たとする。
The probe (8) is driven with a signal having a predetermined step function to obtain the received signal shown in FIG. (11) to CPU (1), CPU
In (1), assume that the frequency analysis of the section of interest shown in FIG. 2, for example, of the signal is performed to obtain, for example, the spectrum characteristics described below.

第3図はスペクトラム特性を説明する図であり、探触子
(8)、送受切替部(7)及び目的とする被検体の領域
のエコー源による系の周波数特性を全て含めた伝達特性
を意味するものである。
Figure 3 is a diagram explaining the spectrum characteristics, which means the transmission characteristics including all the frequency characteristics of the system due to the probe (8), the transmission/reception switching section (7), and the echo source in the area of the target object. It is something to do.

また、点線は位相特性を示すものであり、周波数特性の
他に位相特性を計算して、直線成分を除去し、その曲り
の成分を示すものである。
Further, the dotted line indicates the phase characteristic, and the phase characteristic is calculated in addition to the frequency characteristic, the linear component is removed, and the curved component is indicated.

この第3図のスペクトラム特性を用いて、周波数の利用
する区間(以下利用区間という)を判断する。
Using the spectrum characteristics shown in FIG. 3, the section in which the frequency is used (hereinafter referred to as the section in use) is determined.

しかし、第3図の(a)の区間では、狭すぎて未利用の
区間を損失することになる。
However, the section (a) in FIG. 3 is too narrow, resulting in the loss of an unused section.

また、(C)の区間では簡単にはイコライズしきれない
。つまり、ブリイコライズドされた送波信号の振幅変調
成分が大きくなり過ぎて効率が悪くなる。
Further, equalization cannot be easily achieved in the section (C). In other words, the amplitude modulation component of the bri-equalized transmission signal becomes too large, resulting in poor efficiency.

そこで、第3図の(b)の区間のように、例えば往復摘
入損失で約6dB程度で区切るのが最も効率がよい。
Therefore, it is most efficient to divide the round trip loss by approximately 6 dB, for example, as in the section (b) of FIG. 3.

また、予め試行的にプリイコライズされた送波信号を作
成してから判断し、再試行するのもよい。
Alternatively, it is also good to create a pre-equalized transmission signal on a trial basis, make a determination, and then try again.

第4図(a)及び(b)はプリイコライズされたリニヤ
チャープ信号である。
FIGS. 4(a) and 4(b) are pre-equalized linear chirp signals.

この送波波形は選択された周波数区間の、また結果とし
て(最大値は予定しておいて、それ以内の時間幅での)
所望のTB積を得る長さの複素スペクトラムとしく又は
、そのようなスペクトラムの形で信号を用意し)、それ
に上記により求めた系の振幅及び位相特性の逆数を乗じ
て、それからIFFTでもとの時間軸上により得た波形
である。
This transmitted waveform is of the selected frequency interval and as a result (the maximum value is planned, and the time width within it)
Prepare a complex spectrum with a length to obtain the desired TB product (or prepare a signal in the form of such a spectrum), multiply it by the reciprocal of the amplitude and phase characteristics of the system obtained above, and then use IFFT to obtain the original signal. This is a waveform obtained on the time axis.

しかし、これではアボダイゼーションが入っていないか
ら、更に例えばCO52型の時間軸上でのアボダイゼー
ションをかける。
However, this does not include avodization, so avodization on the time axis of CO52 type, for example, is further applied.

第5図はアボダイズドFMチャープの波形を示す図であ
り、リニヤC082型の時間軸上でのアボダイゼーショ
ンを掛けた波である。
FIG. 5 is a diagram showing the waveform of an avocized FM chirp, which is a wave that has been subjected to avocization on the time axis of the linear C082 type.

これは、受信等において、探触子(8)を介して受信し
たエコー信号をスライディングコンボリューション積分
する核関数(カーネル)としては単純に理想的なりニヤ
FMチャープ信号に同じCO32型のアボダイゼーショ
ンを行ったものを用いればよい。
This is simply an ideal kernel for sliding convolution integration of the echo signal received via the probe (8) during reception, etc. This is the same CO32 type avodization as the near FM chirp signal. You can use the one that has been done.

さらに、上記注目区間を被検体の深さ毎に別々に行い、
得られたイメージを編集して一枚の完成された画像にす
ればさらによい。
Furthermore, the above noted sections are performed separately for each depth of the object,
It would be even better if the resulting image could be edited into a single completed image.

また、上記第4図及び第5図の波形はCPU(1)のメ
モリに記憶される。
Further, the waveforms shown in FIGS. 4 and 5 are stored in the memory of the CPU (1).

[発明の効果] 以上のようにこの発明によれば、受波信号の所定の注目
区間を分析して、構成糸の応答特性を試行的に求め、そ
の応答特性に基づいて、最適なチャープ信号及び圧縮用
カーネルを算出して、受波信号を計測するようにしたの
で、タイムサイドローブ等による不要成分が充分抑圧さ
れたイメージングがてきるという効果が得られている。
[Effects of the Invention] As described above, according to the present invention, a predetermined attention section of the received signal is analyzed, the response characteristics of the component threads are determined on a trial basis, and the optimal chirp signal is determined based on the response characteristics. Since the received signal is measured by calculating the compression kernel and the compression kernel, the effect of imaging is obtained in which unnecessary components such as time side lobes are sufficiently suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す分散圧縮方式の超音
波診断装置の概略構成図、第2図は受波信号を説明する
波形図、第3図はスペクトラム特性を説明する図、第4
図(a)及び(b)はプリイコライズされたりニヤチャ
ープ信号、第5図はアボダイズドFMチャープの波形を
示す図である。 図において、(1)はメモリを有したCPU。 (2)はデイスプレィ、(3)はリアルタイムコントロ
ーラ、(4)はバッファメモリ、(5)はD/A変換器
、(6)は増幅部、(7)は送受切替部、(8)は探触
子、(9)は増幅部、(10)はA/D変換器、〈II
)はバッファメモリである。
FIG. 1 is a schematic configuration diagram of a distributed compression type ultrasonic diagnostic apparatus showing an embodiment of the present invention, FIG. 2 is a waveform diagram explaining a received signal, FIG. 3 is a diagram explaining spectrum characteristics, and FIG. 4
Figures (a) and (b) are diagrams showing pre-equalized and near-chirp signals, and Figure 5 is a diagram showing the waveform of an avocized FM chirp. In the figure, (1) is a CPU with memory. (2) is the display, (3) is the real-time controller, (4) is the buffer memory, (5) is the D/A converter, (6) is the amplifier, (7) is the transmit/receive switch, and (8) is the detector. Tentacle, (9) is the amplification section, (10) is the A/D converter, <II
) is the buffer memory.

Claims (3)

【特許請求の範囲】[Claims] (1)探触子を駆動して被検体に超音波を放射し、その
エコーを電気信号に変換した受波信号を圧縮して被検体
の映像を得る超音波診断装置において、前記受波信号の
注目区間を分析して、前記被検体の映像を得るための構
成系の応答特性を試行的に求める手段と、 前記応答特性に基づいて、最適なチャープ信号及び圧縮
用カーネルを算出する手段と、 前記チャープ信号及び圧縮用カーネルを用いて前記受波
信号を計測する手段と を特徴とする分散圧縮方式の超音波診断装置。
(1) In an ultrasonic diagnostic apparatus that drives a probe to emit ultrasonic waves to a subject, converts the echoes into electrical signals, and compresses a received signal to obtain an image of the subject, the received signal means for experimentally determining response characteristics of a constituent system for obtaining an image of the subject by analyzing the attention section of the object; and means for calculating an optimal chirp signal and compression kernel based on the response characteristics. , means for measuring the received signal using the chirp signal and a compression kernel.
(2)被検体からのエコー源の深さに応じて、深さ毎に
前記受波信号を計測する請求項1記載の分散圧縮方式の
超音波診断装置。
(2) The dispersion compression type ultrasonic diagnostic apparatus according to claim 1, wherein the received signal is measured for each depth according to the depth of the echo source from the subject.
(3)前記構成系の中心周波数及び帯域幅を算出し、算
出した中心周波数及び帯域幅に応じた周波数軸上のチャ
ープ幅を決定し、そのチャープ幅に応じた所定のTB積
となるチャープ信号の時間幅を算出した後に、必要なア
ボダイゼーションから前記構成系の周波数特性及び位相
特性を除去して、所定のアボダイゼーションを行う請求
項1記載の分散圧縮方式の超音波診断装置。
(3) Calculate the center frequency and bandwidth of the component system, determine the chirp width on the frequency axis according to the calculated center frequency and bandwidth, and create a chirp signal that has a predetermined TB product according to the chirp width 2. The dispersion compression type ultrasonic diagnostic apparatus according to claim 1, wherein after calculating the time width, the frequency characteristics and phase characteristics of the component system are removed from the necessary avodization to perform predetermined avodization.
JP1281790A 1989-10-31 1989-10-31 Dispersion compression type ultrasonic diagnostic apparatus Pending JPH03143432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1281790A JPH03143432A (en) 1989-10-31 1989-10-31 Dispersion compression type ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1281790A JPH03143432A (en) 1989-10-31 1989-10-31 Dispersion compression type ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JPH03143432A true JPH03143432A (en) 1991-06-19

Family

ID=17644014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1281790A Pending JPH03143432A (en) 1989-10-31 1989-10-31 Dispersion compression type ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPH03143432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021074A1 (en) * 1999-09-24 2001-03-29 Japan Science And Technology Corporation Ultrasonic transmitter/receiver by pulse compression
JP2009156694A (en) * 2007-12-26 2009-07-16 Kanazawa Inst Of Technology Measurement method and device
JP2010162147A (en) * 2009-01-15 2010-07-29 Aloka Co Ltd Ultrasonic diagnostic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021074A1 (en) * 1999-09-24 2001-03-29 Japan Science And Technology Corporation Ultrasonic transmitter/receiver by pulse compression
US6730029B1 (en) 1999-09-24 2004-05-04 Japan Science And Technology Corporation Ultrasonic transmitter/receiver by pulse compression
JP2009156694A (en) * 2007-12-26 2009-07-16 Kanazawa Inst Of Technology Measurement method and device
JP2010162147A (en) * 2009-01-15 2010-07-29 Aloka Co Ltd Ultrasonic diagnostic device

Similar Documents

Publication Publication Date Title
KR100362000B1 (en) Ultrasound imaging method and apparatus based on pulse compression technique using modified golay code
US7749167B2 (en) Apparatus and method for ultrasonic diagnostic imaging
US10641879B2 (en) Systems and methods for distortion free multi beam ultrasound receive beamforming
JP2002539881A (en) Ultrasound imaging using pulse compression
US7666142B2 (en) Ultrasound doppler diagnostic apparatus and image data generating method
JP2002233529A (en) Wired frequency division multiplex communication for ultrasonic probe
WO2003090625A1 (en) Ultrasonograph
KR20030055430A (en) Ultrasound imaging system and method using the weighted chirp signals
US6599248B1 (en) Method and apparatus for ultrasound diagnostic imaging
JP2003190157A (en) Ultrasonic diagnostic system
Cohen et al. Fourier domain beamforming for coherent plane-wave compounding
US4676250A (en) Method and apparatus for estimating the attenuation-vs-frequency slope of a propagation medium from the complex envelope of a signal
JP3242864B2 (en) Ultrasonic diagnostic apparatus and ultrasonic transmitting / receiving method for ultrasonic diagnostic
JP2003265466A (en) Ultrasonograph
JPH03143432A (en) Dispersion compression type ultrasonic diagnostic apparatus
JPH10309277A (en) Ultrasonic imaging system
JP3088586B2 (en) Ultrasound diagnostic equipment
JP2001000434A (en) Method and system for imaging substances
JP2951045B2 (en) Ultrasonic reflection intensity measurement device
JP2569582Y2 (en) Ultrasound diagnostic equipment
JP3295787B2 (en) Ultrasound diagnostic equipment
JPH0542157A (en) Ultrasonic diagnostic device
JPS63241481A (en) Heterodyne receiver for sonar system
JPS6359106B2 (en)
JP2024508328A (en) Acoustic image processing and measurement using windowed nonlinear frequency modulation chirp