JPH03143196A - Acoustic reproducing device - Google Patents

Acoustic reproducing device

Info

Publication number
JPH03143196A
JPH03143196A JP1283251A JP28325189A JPH03143196A JP H03143196 A JPH03143196 A JP H03143196A JP 1283251 A JP1283251 A JP 1283251A JP 28325189 A JP28325189 A JP 28325189A JP H03143196 A JPH03143196 A JP H03143196A
Authority
JP
Japan
Prior art keywords
signal
cross
sound field
correlation
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1283251A
Other languages
Japanese (ja)
Inventor
Yasutoshi Nakama
保利 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1283251A priority Critical patent/JPH03143196A/en
Publication of JPH03143196A publication Critical patent/JPH03143196A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sound field control effect and an illuminating effect synchronizing with the tempo and rhythm of a melody by calculating the auto- correlation function of an acoustic signal and controlling a sound field controller and an illuminator by the values of auto-correlation factors. CONSTITUTION:Values obtained through calculation in auto-correlation function calculating circuits 3-1,..., 3-n are correlation factors. They are converted into control signals for controlling an output signal 21 from an acoustic signal reproducing device 1 by auto-correlation factor converting circuits 4-1,..., 4-n to control a sound field controller 6. On the other hand, they are converted into signals for controlling an illuminator by auto-correlation factor converting circuits 5-1,..., 5-n to control an illuminator 7 with dimmer. Further, the output signal 21 from the acoustic signal reproducing device 1 and an output signal 30 from a sound field sensor respectively pass through low pass filters 9. The cut off frequency of the low pass filter 9 is set to about 100Hz. The signals passing through the respective filters enter a cross-correlation function calculating circuit 10 to calculate a cross-correlation function.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は試聴室等の空間において、音響信号と同期して
試聴室内の音響空間を制御し、照明効果を上げるととも
に、再生時に試聴室内で不足する重低音を付加し、高音
域を補正して、音響効果を高める音響再生装置に関する
ものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention controls the acoustic space in the listening room in synchronization with the acoustic signal in a space such as a listening room, improves the lighting effect, and prevents insufficient light in the listening room during playback. The present invention relates to a sound reproduction device that enhances acoustic effects by adding deep bass and correcting high frequencies.

従来の技術 一般の試聴室で音楽を楽しむ場合、最近はオーディオビ
ジュアル機器の高性能化に伴ない、音響と映像を共に楽
しむ機会が多くなった。この効果をより一層高めるもの
として、音場制御装置と照明装置がある。
Conventional Technology When listening to music in a general listening room, there are now more opportunities to enjoy both sound and video as audiovisual equipment has become more sophisticated. There are sound field control devices and lighting devices that further enhance this effect.

従来の音場制御装置は第8図に示すように、音場メニ1
−セレクト回路50により、ユーザが前もってメニュー
を設定し、音響信号再生装置1からの信号を制御する。
The conventional sound field control device has a sound field menu 1 as shown in FIG.
- The selection circuit 50 allows the user to set the menu in advance and control the signal from the audio signal reproduction device 1.

また、音響信号に同期して照明効果を制御する従来方式
について図面を参照しながら説明する。
Further, a conventional method for controlling lighting effects in synchronization with an acoustic signal will be explained with reference to the drawings.

第9図は従来の音響再生装置を示すものである。FIG. 9 shows a conventional sound reproduction device.

第9図において、音響信号再生装置lからの出力信号2
1は帯域分割フィルターによって周波数帯域毎に分割さ
れる。即ち、ローパスフィルター53パン1゛パスフイ
ルター54.ハイパスフィルター55によって3周波数
帯域に分割される。帯域としては低音域(20〜約20
0112) 、中音域(約200〜約5Kt(Z)、高
音域(約5KIIZ〜20Kl+Z)であり、力・、ト
オフ周波数は多少前後する。
In FIG. 9, the output signal 2 from the audio signal reproducing device l
1 is divided into frequency bands by a band division filter. That is, low pass filter 53 pan 1 pass filter 54. The high-pass filter 55 divides the signal into three frequency bands. The band is the low range (20 to about 20
0112), medium range (approximately 200 to approximately 5Kt(Z)), high frequency range (approximately 5KIIZ to 20Kl+Z), and the power and to-off frequencies vary somewhat.

上記各フィルターをii1過したそれぞれの信号はレベ
ル検出回路56.57.58で各帯域毎の入力レベルが
検知される前記入力レベルに対応して調光器材照明装置
59.60.61が調光される構成になっている。
Each signal that has passed through each of the above filters is detected by a level detection circuit 56, 57, 58 to detect the input level for each band.Dimmer equipment lighting devices 59, 60, 61 are dimmed in accordance with the input level. The configuration is such that

発明が解決しようとする課題 しかしながら、上記のような従来の構成では、音場制御
装置は一度設定したものについて、すべての曲に最適に
音場制御できることは難かしく、曲毎に、あるいはフレ
ーズ毎に最適音場制御が必要になってくる。また、照明
の場合、入力信号のし・\ルに対応して照明が変化する
ので曲の中でレベルの大きい個所は照明も明る(、レベ
ルの低い個所は照明も暗くなり、しかもそれが連続的に
なる場合が多い。また、レベル検出の場合、検出の時定
数があり、それが曲の変化と同期しなくやや遅れた感じ
となり、音楽と照明との同期、音楽と音場との最適性あ
るいは効果との観点で問題があった。
Problems to be Solved by the Invention However, with the conventional configuration as described above, it is difficult for the sound field control device to perform optimal sound field control for every song once it has been set. Optimal sound field control becomes necessary. In addition, in the case of lighting, the lighting changes in response to the input signal level, so in parts of the song where the level is high, the lighting is bright (and where the level is low, the lighting is dimmed, and it is continuous). In addition, in the case of level detection, there is a detection time constant, which does not synchronize with changes in the song and gives a slightly delayed feeling, making it difficult to synchronize music and lighting, or to optimize the relationship between music and sound field. There were problems in terms of gender or effectiveness.

さらにCD(コンパクトディスク)、DAT(ディジタ
ルオーディオテープレコーダ)等に代表されるように音
楽信号の性能の向上は目ざましいものがある。しかし、
その反面、音響再生機器、特にスピーカにおいて、低音
域の再生と音場における高音域の指向特性、減衰特性に
は課題が多い。
Furthermore, the performance of music signals, as typified by CDs (compact discs), DATs (digital audio tape recorders), etc., has improved markedly. but,
On the other hand, in sound reproduction equipment, especially speakers, there are many problems with reproduction of low frequency ranges and directivity characteristics and attenuation characteristics of high frequency ranges in the sound field.

本発明は上記問題点に鑑み、入力信号のレベルに関係な
く、曲のテンポ、リズムに対応して音場の空間性、照明
が変化し、さらに入力信号に低域成分が含まれているに
もかかわらず、音場において低域が不足する場合、また
、入力信号に高域成分が含まれているにもかかわらず音
場、特に受聴点において高域成分が不足する場合、その
不足分を補なう音響再生装置を提供するものである。
The present invention has been developed in view of the above-mentioned problems, and the spatial nature of the sound field and lighting change according to the tempo and rhythm of the song, regardless of the level of the input signal, and furthermore, the input signal contains low-frequency components. However, if there is a shortage of low frequency components in the sound field, or if there is a shortage of high frequency components in the sound field, especially at the listening point, even though the input signal contains high frequency components, it is necessary to compensate for the shortage. The present invention provides a complementary sound reproduction device.

課題を解決するための手段 上記課題を解決するために本発明は、音響信号再生装置
と、前記音響信号再生装置からの信号にもとづき自己相
関関数を計算する自己相関関数計算回路と、前記自己相
関関数計算回路からの出力信号を音場制御装置を制御す
る制御信号に変換する第1の自己相関係数変換部と、前
記制御信号により前記音響信号再生装置からの信号を制
御する音場制御装置と、前記自己相関関数計算回路から
の出力信号を照明調光用信号に変換する第2の自己相関
係数変換部と、前記照明調光用信号を入力とする調光器
材照明装置と、前記音響信号再生装置からの信号と再生
音場内に設けられた音場センサからの信号とをそれぞれ
ローパスフィルターを介して、相互相関関数を計算する
第1の相互相関関数計算回路と、前記音響信号再生装置
からの信号と再生音場内に設けられた音場センサからの
信号とをそれぞれハイパスフィルターを介して相互相関
関数を計算する第2の相互相関関数計算回路と、前記第
1の相互相関関数計算回路からの出力信号を第1の制御
信号に変換する第1の相互相関係数変換回路と、前記第
1の制御信号により前記ローパスフィルターからの出力
信号を制御する重低音付加装置と、前記第2の相互相関
関数計算回路からの出力信号を第2の制御信号に変換す
る第2の相互相関係数変換回路と、前記第2の制御信号
により前記ハイパスフィルターからの出力信号を制’<
:aする高域補正回路とから構成されている。
Means for Solving the Problems In order to solve the above problems, the present invention provides an audio signal reproducing device, an autocorrelation function calculation circuit that calculates an autocorrelation function based on a signal from the audio signal reproducing device, and a a first autocorrelation coefficient converter that converts an output signal from the function calculation circuit into a control signal that controls a sound field control device; and a sound field control device that controls a signal from the acoustic signal reproduction device using the control signal. a second autocorrelation coefficient converter that converts an output signal from the autocorrelation function calculation circuit into a lighting dimming signal; a dimming equipment lighting device that receives the lighting dimming signal as an input; a first cross-correlation function calculation circuit that calculates a cross-correlation function by passing a signal from the acoustic signal reproduction device and a signal from a sound field sensor provided in the reproduction sound field through a low-pass filter, respectively; and the acoustic signal reproduction circuit. a second cross-correlation function calculation circuit that calculates a cross-correlation function by passing a signal from the device and a signal from a sound field sensor provided in the reproduction sound field through a high-pass filter, respectively; and the first cross-correlation function calculation circuit. a first cross-correlation coefficient conversion circuit that converts an output signal from the circuit into a first control signal; a deep bass adding device that controls the output signal from the low-pass filter using the first control signal; a second cross-correlation coefficient conversion circuit that converts an output signal from the second cross-correlation function calculation circuit into a second control signal;
:A high frequency correction circuit.

作用 この構成によって、・音響信号の自己相関関数を計算し
、その自己相関係数の値によって音場制御装置と照明装
置を制御することにより、曲のテンポ、リズムと同期し
た音場制御効果と照明効果を得ることが可能となり、音
響信号と音場センサとの相互相関関数を計算し、その相
互相関係数の値によって重低音付加量を制御し、さらに
高音域を制御し、試聴室内において低音域と高音域のバ
ランスのとれた音質、音楽空間を得ることが可能となる
Effect: By calculating the autocorrelation function of the acoustic signal and controlling the sound field control device and lighting device according to the value of the autocorrelation coefficient, the sound field control effect can be achieved in synchronization with the tempo and rhythm of the song. It is now possible to obtain lighting effects, calculate the cross-correlation function between the acoustic signal and the sound field sensor, and use the value of the cross-correlation coefficient to control the amount of deep bass added, furthermore to control the treble range. It is possible to obtain sound quality and music space with a good balance between the bass and treble ranges.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における音響再生装置の槽底
を示すものである。第1図において、lは音響信号再生
装置、21は出力信号、2−1゜2−nはバンドパスフ
ィルター 3−1.・・・ 3nは自己相関関数計算回
路、4−1.・・・14nは自己相関係数変換回路、5
−1.・・・、5−nは自己相関係数変換回路、6は音
場制御装置、7は調光器材照明装置、8は音場センサ、
9はローパスフィルター、10は相互相関関数計算回路
、ilは相互相関係数変換回路、12は重低音付加装置
、13はハイパスフィルター、14は相互相関関数計算
回路、15は相互相関係数変換回路、16は高域補正回
路である。
FIG. 1 shows the bottom of a tank of a sound reproducing device according to an embodiment of the present invention. In FIG. 1, 1 is an acoustic signal reproducing device, 21 is an output signal, 2-1°2-n is a bandpass filter 3-1. ... 3n is an autocorrelation function calculation circuit, 4-1. ...14n is an autocorrelation coefficient conversion circuit, 5
-1. ..., 5-n is an autocorrelation coefficient conversion circuit, 6 is a sound field control device, 7 is a dimming equipment lighting device, 8 is a sound field sensor,
9 is a low-pass filter, 10 is a cross-correlation function calculation circuit, il is a cross-correlation coefficient conversion circuit, 12 is a heavy bass adding device, 13 is a high-pass filter, 14 is a cross-correlation function calculation circuit, and 15 is a cross-correlation coefficient conversion circuit. , 16 is a high frequency correction circuit.

以下その動作について説明する。The operation will be explained below.

音響信号再生装置lから再生される音楽信ぢは出力信号
21となり、複数のバンドパスフィルター3−1.・・
・、3−nを通る。通常このバンドパスフィルターは3
〜4帯域くらいに帯域分割される。
The music signal reproduced from the audio signal reproduction device 1 becomes an output signal 21, which is transmitted through a plurality of bandpass filters 3-1.・・・
・, passes through 3-n. Usually this bandpass filter is 3
The band is divided into ~4 bands.

帯域としては3分割の場合のカットオフ周波数fclは
100〜2oo11Z、  fczは3に〜5KH2付
近に設定される。また、4分割の場合のカットオフ周波
数fcIは100H2,f、、はI KH2,f C3
は5KIIZ付近にそれぞれ設定される。以上のような
帯域を通過した信号は自己相関関数計算回路3−1.・
・・3−nに入り、自己相関関数が計算される。
As for the band, the cutoff frequency fcl in the case of three divisions is set to 100 to 2oo11Z, and fcz is set to around 3 to 5KH2. In addition, the cutoff frequency fcI in the case of 4 divisions is 100H2, f, , is I KH2, f C3
are set around 5KIIZ. The signal passing through the above bands is sent to the autocorrelation function calculation circuit 3-1.・
...3-n is entered, and the autocorrelation function is calculated.

一般にある信号χ(1)の自己相関関数φχχ(τ)は
次式で与えられる。ただし、Tは信号χ(シ)の同期で
ある。
Generally, the autocorrelation function φχχ(τ) of a certain signal χ(1) is given by the following equation. However, T is the synchronization of the signal χ(shi).

ある遅延時間τ1.τ2.・・・、τ7におけるn個の
τにおける相関係数を求めるには第2図に示す回路で測
定できる。
A certain delay time τ1. τ2. . . , the correlation coefficients for n τs at τ7 can be measured using the circuit shown in FIG.

入力信号χ(j)20は直接信号21と遅延回路22−
1、・・・、22−nを通った遅延信号23−1.・・
・、23nとが掛算器24−1.・・・、24−nで掛
算され、時定数丁をもつ平均回路25−1.・・・、2
5−nで平均されて、ある遅延時間τ1.τ2.・・・
、τ7における相関係数を求めることができる。
The input signal χ(j) 20 is connected to the direct signal 21 and the delay circuit 22-
1, . . . , 22-n, the delayed signals 23-1 .・・・
. , 23n are the multipliers 24-1 . . . , 24-n, and an averaging circuit 25-1 . ..., 2
5-n for a certain delay time τ1. τ2. ...
, τ7 can be found.

音楽信号の特性によって自己相関関数のエンベロープを
みると第3図のような傾向がみられる。
When looking at the envelope of the autocorrelation function depending on the characteristics of the music signal, a tendency as shown in Figure 3 can be seen.

第3図において、自己相関関数は遅延時間τの関数であ
り、自己相関関数のエンヘローブは例えばトーンバース
ト波形でみると、第4図(a)に示す原信号(周波数5
KllZ)に対してその自己相関関数は同図(b)のよ
うになる。相関係数の大きさをみる場合、遅延時間τの
値によっては非常に近接した場合でもその値は大きく変
わることが予想できる。そこで遅延時間τ。における相
関係数をみるのにエンヘローブを求めて、その直流出力
電圧で規定する方が音楽信3の特性は表わしやすい(第
4図(C))。この特性を求めるのが第2図に示す回路
である。この回路を用いて音楽信号の特性を求め、遅延
時間τ、〜τ。と直流出力電圧との関係を表わすと傾向
として第3図のa、b、cの傾向がある。
In FIG. 3, the autocorrelation function is a function of delay time τ, and the enrove of the autocorrelation function is, for example, the original signal (frequency 5
The autocorrelation function for KllZ) is as shown in FIG. When looking at the magnitude of the correlation coefficient, it can be expected that the value will vary greatly depending on the value of the delay time τ even if they are very close. Therefore, the delay time τ. It is easier to express the characteristics of music signal 3 by determining the enherobe and defining it by its DC output voltage to see the correlation coefficient in (Fig. 4 (C)). The circuit shown in FIG. 2 is used to determine this characteristic. This circuit is used to determine the characteristics of the music signal, and the delay time τ, ~τ. When expressing the relationship between the voltage and the DC output voltage, there are trends a, b, and c in FIG. 3.

自己相関関数は(1)弐に示すように、ある遅延時間に
おける自分自身との相関であるから、音楽信号の物理特
性としてテンポの早い曲、リズミカルな曲は相関係数が
小さく、スローテンポの曲は相関係数が大きくなる。
As shown in (1) 2, the autocorrelation function is the correlation with itself at a certain delay time, so as a physical characteristic of the music signal, fast-tempo songs and rhythmic songs have a small correlation coefficient, while slow-tempo songs have a small correlation coefficient. Songs have a large correlation coefficient.

自己相関関数計算回路3−■、・・・、3−nで計算さ
れた値が相関係数となり、自己相関係数変換回路4−1
.・・・、4−nで音響信号再生装置lからの出力信号
21を制御する制御信号に変換され音場制御装置6を制
御する。一方、自己相関係数変換回路5−1.・・・、
5−nで照明装置を制御する信号に変換され、調光器材
照明装置7を制御する。
The values calculated by the autocorrelation function calculation circuits 3-■, ..., 3-n become the correlation coefficients, and the autocorrelation coefficient conversion circuits 4-1
.. . . , 4-n converts the output signal 21 from the acoustic signal reproduction device 1 into a control signal to control the sound field control device 6. On the other hand, autocorrelation coefficient conversion circuit 5-1. ...,
5-n, it is converted into a signal for controlling the lighting device, and controls the dimmer lighting device 7.

さらに音響信号再生装置1からの出力信号21と音場セ
ンサからの出力信号30はそれぞれローパスフィルター
9を通る。このローパスフィルター9はカットオフ周波
数fclを約1001(Zに設定される。
Further, the output signal 21 from the acoustic signal reproducing device 1 and the output signal 30 from the sound field sensor each pass through a low-pass filter 9. This low-pass filter 9 has a cutoff frequency fcl set to approximately 1001 (Z).

この2つのそれぞれのフィルターを通過した信号は相互
相関関数計算回路IOに入り、相互相関関数が計算され
る。
The signals that have passed through these two filters enter a cross-correlation function calculation circuit IO, where a cross-correlation function is calculated.

一般にある信号χD)とyct>の相互相関関数φχy
(τ)は次式で与えられる。
In general, the cross-correlation function φχy of a certain signal χD) and yct>
(τ) is given by the following formula.

ある遅延時間τ工、・・・、τ。におけるn個のτにお
ける相互相関係数を求めるには第5図に示す回路で測定
できる。
A certain delay time τ, ..., τ. In order to obtain the cross-correlation coefficients for n τ's, measurement can be performed using the circuit shown in FIG.

音響信号に10011Z以下の成分が多く含まれている
にもかかわらず、音場センサから10011Z以下の成
分が少ない場合は、この相互相関係数が小さな値となる
。一方、相互相関係数が大きい場合は音場にも十分な低
域成分がでている。従って相互相関係数変換回路11で
は第6図に示すような関数でローパスフィルターからの
出力信号28への付加量を制御する制御信号27を重低
音付加装置12へ入力する。
Even though the acoustic signal contains many components of 10011Z or less, if there are few components of 10011Z or less from the sound field sensor, this cross-correlation coefficient will have a small value. On the other hand, when the cross-correlation coefficient is large, sufficient low-frequency components appear in the sound field. Therefore, in the cross-correlation coefficient conversion circuit 11, a control signal 27 for controlling the amount of addition to the output signal 28 from the low-pass filter is input to the deep bass adding device 12 using a function as shown in FIG.

第5図において、相互相関係数の直流出力電圧27と重
低音付加量との関係をその効果、目的によって図示する
ようなa、b、(の関係で付加しようとするものである
。つまり同図aは相関係数が大きくなると急速に付加量
を減らし、bは直線関係で変化、Cはaとは逆に相関係
数の変化にも付加量の変化をある大きさまではゆるやか
に付加量を変化させるものである。
In FIG. 5, the relationship between the DC output voltage 27 of the cross-correlation coefficient and the amount of heavy bass added is to be added in the relationships a, b, (() as shown in the figure depending on the effect and purpose. In other words, the same In diagram a, the amount of addition decreases rapidly as the correlation coefficient increases, in b, it changes in a linear relationship, and in C, contrary to a, the amount of addition gradually changes even when the correlation coefficient changes, up to a certain size. It changes the

また、同様に、音響信号に高域成分が多く含まれている
にもかかわらず、音場センサから高域成分が少ない場合
は、この相互相関係数が小さな値となる。一方、相互相
関係数が大きい場合は音場にも十分な高域成分がでてい
る。従って相互相関係数変換回路15でも第6図に示す
ような関係でハイパスフィルター13からの出力信号1
7への補正量を制御する制御信号18を高域補正回路1
6へ入力する。
Similarly, even though the acoustic signal contains many high-frequency components, if there are few high-frequency components from the sound field sensor, this cross-correlation coefficient will have a small value. On the other hand, when the cross-correlation coefficient is large, sufficient high-frequency components appear in the sound field. Therefore, in the cross-correlation coefficient conversion circuit 15, the output signal 1 from the high-pass filter 13 is
The control signal 18 that controls the amount of correction to the high frequency correction circuit 1
Enter into 6.

第5図において、相互相関係数の直流出力電圧17と高
域成分補正量との関係の考え方は上述した重低音付加量
との関係と同様である。
In FIG. 5, the concept of the relationship between the DC output voltage 17 of the cross-correlation coefficient and the high frequency component correction amount is the same as the relationship with the deep bass addition amount described above.

なお、本実施例以外の構成として、第7図のようにバン
ドパスフィルターを使用せず、音楽信号の全シi)域に
ついて同様に計算することも可能である。
Note that as a configuration other than the present embodiment, it is also possible to perform calculations in the same manner for the entire i) range of the music signal without using the bandpass filter as shown in FIG.

発明の効果 以上のように本発明は、音響信号再生装置からの出力信
号の自己相関関数を計算し、その係数の値に応じて、音
場制御装置と照明装置を制御する。
Effects of the Invention As described above, the present invention calculates the autocorrelation function of the output signal from the acoustic signal reproducing device, and controls the sound field control device and the lighting device according to the value of the coefficient.

さらに前記出力信号と音場センサからの出力信号との相
互相関関数を計算しその値に応して、重低音の付加量と
高音域成分の補正量とを制御するものであり、試聴室内
での音響効果、照明効果を高めることが可能である。
Furthermore, the cross-correlation function between the output signal and the output signal from the sound field sensor is calculated, and the amount of addition of deep bass and the amount of correction of high-frequency components are controlled according to the value. It is possible to enhance the acoustic and lighting effects of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における音響再生装置の構成
を示すブロック図、第2図は本発明に用いる自己相関関
数計算回路の構成例を示すブロック図、第3図は自己相
関関数計算例を示す特性図、第4図は原信号と自己相関
関数の波形図、第5図は本発明に用いる相互相関関数計
算回路の構成例を示すブロック図、第6図は相互相関係
数と重低音付加量及び高域成分補正量との関係図、第7
図は本発明における他の実施例を示すブロック図、第8
図、第9図は従来の音響再生装置のブロック図である。 ■・・・・・・音響信号再生装置、2・・・・・・バン
ドパスフイルター、3・・・・・・自己相関関数計算回
路、4.5・・・・・・自己相関係数変換回路、6・・
・・・・音場制御装置、7・・・・・・調光器材照明装
置、8・・・・・・音場センサ、9・・・・・・ローパ
スフィルター、10.14・・・・・・相互相関関数計
算回路、11.15・・・・・・相互相関係数変換回路
、12・・・・・・重低音付加装置、13・・・・・・
バイパスフィルタ、16・・・・・・高域補正回路。
FIG. 1 is a block diagram showing the configuration of an audio reproduction device according to an embodiment of the present invention, FIG. 2 is a block diagram showing a configuration example of an autocorrelation function calculation circuit used in the present invention, and FIG. 3 is a block diagram showing an example of the configuration of an autocorrelation function calculation circuit used in the invention. FIG. 4 is a waveform diagram of the original signal and autocorrelation function, FIG. 5 is a block diagram showing a configuration example of a cross-correlation function calculation circuit used in the present invention, and FIG. 6 is a diagram showing the cross-correlation coefficient and Relationship diagram between heavy bass addition amount and high frequency component correction amount, 7th
Figure 8 is a block diagram showing another embodiment of the present invention.
9 are block diagrams of a conventional sound reproduction device. ■...Acoustic signal reproducing device, 2...Band pass filter, 3...Autocorrelation function calculation circuit, 4.5...Autocorrelation coefficient conversion Circuit, 6...
... Sound field control device, 7 ... Light control equipment lighting device, 8 ... Sound field sensor, 9 ... Low pass filter, 10.14 ... ... Cross-correlation function calculation circuit, 11.15 ... Cross-correlation coefficient conversion circuit, 12 ... Deep bass addition device, 13 ...
Bypass filter, 16... High frequency correction circuit.

Claims (3)

【特許請求の範囲】[Claims] (1)音響信号再生装置と、前記音響信号再生装置から
の信号にもとづき自己相関関数を計算する自己相関関数
計算回路と、前記自己相関関数計算回路からの出力信号
を音場制御装置を制御する制御信号に変換する第1の自
己相関係数変換部と、前記制御信号により前記音響信号
再生装置からの信号を制御する音場制御装置と、前記自
己相関関数計算回路からの出力信号を照明調光用信号に
変換する第2の自己相関係数変換部と、前記照明調光用
信号を入力とする調光器材照明装置と、前記音響信号再
生装置からの信号と再生音場内に設けられた音場センサ
からの信号とをそれぞれローパスフィルターを介して、
相互相関関数を計算する第1の相互相関関数計算回路と
、前記音響信号再生装置からの信号と再生音場内に設け
られた音場センサからの信号とをそれぞれハイパスフィ
ルターを介して相互相関関数を計算する第2の相互相関
関数計算回路と、前記第1の相互相関関数計算回路から
の出力信号を第1の制御信号に変換する第1の相互相関
係数変換回路と、前記第1の制御信号により前記ローパ
スフィルターからの出力信号を制御する重低音付加装置
と、前記第2の相互相関関数計算回路からの出力信号を
第2の制御信号に変換する第2の相互相関係数変換回路
と、前記第2の制御信号により前記ハイパスフィルター
からの出力信号を制御する高域補正回路とを具備してな
る音響再生装置。
(1) An audio signal reproduction device, an autocorrelation function calculation circuit that calculates an autocorrelation function based on the signal from the audio signal reproduction device, and an output signal from the autocorrelation function calculation circuit to control a sound field control device. a first autocorrelation coefficient conversion unit that converts the output signal from the autocorrelation function calculation circuit into a control signal; a sound field control device that controls the signal from the audio signal reproduction device using the control signal; a second autocorrelation coefficient converting unit that converts into a light signal; a dimming equipment lighting device that receives the lighting dimming signal as input; and a signal from the acoustic signal reproducing device and a reproducing sound field provided in The signal from the sound field sensor is passed through a low-pass filter,
A first cross-correlation function calculation circuit calculates a cross-correlation function, and a cross-correlation function is calculated by passing the signal from the acoustic signal reproduction device and the signal from a sound field sensor provided in the reproduction sound field through high-pass filters, respectively. a second cross-correlation function calculation circuit for calculating, a first cross-correlation coefficient conversion circuit for converting an output signal from the first cross-correlation function calculation circuit into a first control signal, and the first control a deep bass adding device that controls the output signal from the low-pass filter using a signal; and a second cross-correlation coefficient conversion circuit that converts the output signal from the second cross-correlation function calculation circuit into a second control signal. and a high-frequency correction circuit that controls an output signal from the high-pass filter using the second control signal.
(2)自己相関関数計算回路は、音響信号再生装置から
の出力信号を複数の周波数帯域に分割するバンドパスフ
ィルター群を通した信号にもとづき自己相関関数を計算
する請求項(1)記載の音響再生装置。
(2) The audio according to claim 1, wherein the autocorrelation function calculation circuit calculates the autocorrelation function based on a signal passed through a group of bandpass filters that divides the output signal from the audio signal reproduction device into a plurality of frequency bands. playback device.
(3)第1の自己相関係数変換部と第2の自己相関係数
変換部とは、それぞれ異なる変換特性を有する請求項(
1)記載の音響再生装置。
(3) The first autocorrelation coefficient converter and the second autocorrelation coefficient converter have different conversion characteristics.
1) The sound reproduction device described above.
JP1283251A 1989-10-30 1989-10-30 Acoustic reproducing device Pending JPH03143196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1283251A JPH03143196A (en) 1989-10-30 1989-10-30 Acoustic reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1283251A JPH03143196A (en) 1989-10-30 1989-10-30 Acoustic reproducing device

Publications (1)

Publication Number Publication Date
JPH03143196A true JPH03143196A (en) 1991-06-18

Family

ID=17663041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1283251A Pending JPH03143196A (en) 1989-10-30 1989-10-30 Acoustic reproducing device

Country Status (1)

Country Link
JP (1) JPH03143196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046288A1 (en) * 2005-10-18 2007-04-26 Pioneer Corporation Localization control device, localization control method, localization control program, and computer-readable recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046288A1 (en) * 2005-10-18 2007-04-26 Pioneer Corporation Localization control device, localization control method, localization control program, and computer-readable recording medium

Similar Documents

Publication Publication Date Title
AU612157B2 (en) Amplitude compressing/expanding circuit
JP3537674B2 (en) Audio system
JP2008191659A (en) Speech emphasis method and speech reproduction system
US4870690A (en) Audio signal transmission system
JPH03219800A (en) Sound effect equipment
JP6015146B2 (en) Channel divider and audio playback system including the same
JPH06177688A (en) Audio signal processing unit
US7233833B2 (en) Method of modifying low frequency components of a digital audio signal
JPH01144900A (en) Sound field reproducing device
JP3979133B2 (en) Sound field reproduction apparatus, program and recording medium
US8208648B2 (en) Sound field reproducing device and sound field reproducing method
JPH0633752Y2 (en) Vibration device
JPH03143196A (en) Acoustic reproducing device
JP3120394B2 (en) Tone control circuit
JPS6350195A (en) Audio signal transmission system
JPH02122797A (en) Sound reproducing device
JPH0482500A (en) Acoustic reproducing device
JP3287970B2 (en) Method and apparatus for adding reverberation
JPH1026994A (en) Karaoke grading device
EP2079252A1 (en) Sound image localization processing apparatus and others
JPS59105707A (en) Acoustic effect device
JP3371424B2 (en) Resonant sound adding device
JPH03284800A (en) Accoustic device
JP3918808B2 (en) Audio signal effect applying method, audio signal effect applying device, and program
JP2001154674A (en) Effect adding device