JPH03142986A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH03142986A
JPH03142986A JP28210189A JP28210189A JPH03142986A JP H03142986 A JPH03142986 A JP H03142986A JP 28210189 A JP28210189 A JP 28210189A JP 28210189 A JP28210189 A JP 28210189A JP H03142986 A JPH03142986 A JP H03142986A
Authority
JP
Japan
Prior art keywords
wavelength
semiconductor laser
light emitting
end faces
emitting end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28210189A
Other languages
Japanese (ja)
Inventor
Shinichi Takigawa
信一 瀧川
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28210189A priority Critical patent/JPH03142986A/en
Priority to US07/494,075 priority patent/US5031186A/en
Publication of JPH03142986A publication Critical patent/JPH03142986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To stably oscillate a semiconductor laser even if a temperature varies by forming films each having reflectivity wavelength dependency on both light emitting end faces, and providing wavelength selectivity by using the dependency. CONSTITUTION:Films 1, 2 each having reflectivity wavelength dependency are formed on both light emitting end faces of a semiconductor laser device 3, and wavelength selectivity is provided by using the dependency. That is, Al2O3 films 1, 2 are formed on the two emitting faces by using a GaSlAs (Fabry-Perot type) semiconductor laser 3, and so designed that the reflectivity becomes maximum. Thus, even if a temperature varies, its oscillation wavelength is stable, and oscillation wavelength stability can be enhanced in a practical temperature range without narrowing a stable temperature range.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光通信・光情報処理機器などに用いられる半
導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor laser used in optical communications, optical information processing equipment, and the like.

[従来の技術] 光通信・光情報処理などに用いられる半導体レーザは、
温度変化・光出力変化に対して、発振波長が安定である
ことが要望される。
[Conventional technology] Semiconductor lasers used in optical communications, optical information processing, etc.
It is desired that the oscillation wavelength be stable against temperature changes and optical output changes.

通常のファブリ・ペロー型半導体レーザでは、発振可能
な縦モードに、しきい値利得差がない(波長選択性が無
い)ため、発振波長は、活性層が有するゲインピーク波
長で決定される。その活性層ゲインピーク波長は、温度
で大きく変化するため、発振波長も温度で大きく変化す
る。しかし温度の変化にともなって発振波長が大きく変
化しては、安定性に欠は実用上問題が多い。
In a typical Fabry-Perot semiconductor laser, the oscillation wavelength has no threshold gain difference (no wavelength selectivity) in the longitudinal mode in which it can oscillate, so the oscillation wavelength is determined by the gain peak wavelength of the active layer. Since the active layer gain peak wavelength varies greatly with temperature, the oscillation wavelength also varies greatly with temperature. However, if the oscillation wavelength changes significantly with changes in temperature, there are many practical problems due to lack of stability.

そこで、本発明者らは、この問題を改良するため、膜厚
がその膜内波長より充分に厚い、誘電体反射膜を、半導
体レーザの光出射端面に形成し、その誘電体反射膜の反
射率波長依存性を用いて、しきい値利得差を付加する方
法をすでに提案した。
Therefore, in order to improve this problem, the present inventors formed a dielectric reflective film, which is sufficiently thicker than the wavelength within the film, on the light emitting end facet of the semiconductor laser, and We have already proposed a method to add a threshold gain difference using the rate wavelength dependence.

この提案によれば、例えば誘電体の厚さとして、光学長
9λを用いると、約160℃の温度範囲において安定な
発振波長を得ることができる。
According to this proposal, if an optical length of 9λ is used as the thickness of the dielectric, a stable oscillation wavelength can be obtained in a temperature range of approximately 160° C.

[発明が解決しようとする課題] 上記の従来の方法において、発振波長安定性をより強め
る(例えば、1℃あたりの温度変化に対する発振波長変
化を小さくする)ためには、誘電体の膜厚をより厚くす
る必要がある。
[Problems to be Solved by the Invention] In the conventional method described above, in order to further strengthen the oscillation wavelength stability (for example, to reduce the oscillation wavelength change with respect to temperature change per 1°C), it is necessary to increase the dielectric film thickness. Needs to be thicker.

しかし、その膜厚を厚くすると、発振波長が安定な温度
範囲が、狭くなるという問題があった。
However, there is a problem in that increasing the film thickness narrows the temperature range in which the oscillation wavelength is stable.

これは、次のように説明できる。温度変化に伴う、ゲイ
ンピーク波長の変化において、発振波長が安定となる波
長は、数点ある。そのうち、隣り合う安定化波長をλ。
This can be explained as follows. There are several wavelengths at which the oscillation wavelength is stable as the gain peak wavelength changes due to temperature changes. Among them, the adjacent stabilizing wavelengths are λ.

、λm+□とすると、その差1λm+1−λfn1は、
誘電体の厚さに反比例することを示すことができる。
, λm+□, the difference 1λm+1−λfn1 is
It can be shown that it is inversely proportional to the thickness of the dielectric.

それゆえに誘電体の厚さを厚くすると、1λ   −λ
 1が小さくなり、より小さなゲm+1   m インピーク波長の変化、つまり、より小さな温度変化で
、発振波長は、λ から、λ   にジャm     
m+1 シブしてしまうという課題を有する。
Therefore, if the dielectric thickness is increased, 1λ −λ
1 becomes smaller, the oscillation wavelength jams from λ to λ with a smaller Ge m + 1 m change in the in-peak wavelength, that is, a smaller temperature change.
There is a problem that m+1 shives.

本発明は、前記従来技術の課題を解決するもので、温度
変化があっても発振波長が安定で、かつ安定な温度範囲
を狭めることなく、実用的温度領域において発振波長安
定性を高めることを目的とする。
The present invention solves the problems of the prior art described above, and aims to improve the stability of the oscillation wavelength in a practical temperature range without narrowing the oscillation wavelength and narrowing the stable temperature range. purpose.

[課題を解決するための手段] 上記目的を達成するため、本発明は下記の構成からなる
。すなわち本発明は、両光出射端面を有し、該両光出射
端面からレーザ光を発する半導体レーザ装置において、
前記両光出射端面に、反射率波長依存性を有する膜を形
成し、その反射率波長依存性を利用して、波長選択性を
持たせたことを特徴とする半導体レーザ装置である。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. That is, the present invention provides a semiconductor laser device that has both light emitting end faces and emits laser light from both light emitting end faces,
The semiconductor laser device is characterized in that a film having wavelength dependence of reflectance is formed on both of the light emitting end faces, and wavelength selectivity is imparted by utilizing the wavelength dependence of reflectance.

さらに本発明においては、反射率波長依存性として、誘
電体多重反射膜を用い、その膜厚が、その誘電体内波長
よりも、充分に厚いものであることが好ましい。
Further, in the present invention, it is preferable that a dielectric multiple reflection film is used and the film thickness is sufficiently thicker than the wavelength within the dielectric in order to determine the dependence of reflectance on wavelength.

また本発明においては、両光出射端面に形成した誘電体
の膜厚が、実質的に等しい厚さであることが好ましい。
Further, in the present invention, it is preferable that the film thicknesses of the dielectrics formed on both light emitting end faces be substantially equal.

[作用] 上記本発明の構成によれば、半導体レーザ装置の両光出
射端面に、反射率波長依存性を有する膜を形成し、その
反射率波長依存性を利用して、波長選択性を持たせたの
で、温度変化があっても発振波長が安定で、かつ安定な
温度範囲を狭めることなく、実用的温度領域において発
振波長安定性を高めることができる。
[Function] According to the above configuration of the present invention, a film having wavelength dependence of reflectance is formed on both light emitting end faces of the semiconductor laser device, and the film having wavelength dependence of reflectance is used to provide wavelength selectivity. Therefore, the oscillation wavelength is stable even when there is a temperature change, and the oscillation wavelength stability can be improved in a practical temperature range without narrowing the stable temperature range.

すなわち、半導体レーザの、片方の光出射端面に、膜厚
が、その膜内波長より充分に厚い誘電体反射膜を形成し
た場合、わずかな波長変化で、反射率は、Rから(R十
△R)に変化し、しきい値利得は、下記(1)式に示す
だけ上昇する。
In other words, if a dielectric reflective film is formed on one of the light emitting end faces of a semiconductor laser, and the film thickness is sufficiently thicker than the internal wavelength of the film, the reflectance will change from R to (R + △ R), and the threshold gain increases as shown in equation (1) below.

6g + 1. = (1/2L) l ’n  ((
R十△R)/R)−(1)一方、同様の誘電体を、半導
体レーザの両光出射端面に形成すると、わずかな波長変
化で、各端面反射率は、Rf、Rrから(Rf+△Rf
)。
6g + 1. = (1/2L) l 'n ((
On the other hand, if a similar dielectric material is formed on both light emitting end faces of a semiconductor laser, the reflectance of each end face will change from Rf and Rr to (Rf+△ Rf
).

(Rr+ΔRr)に変化し、しきい値利得は、下記0式
に示すだけ上昇する。
(Rr+ΔRr), and the threshold gain increases by an amount shown by the following equation 0.

6g + h 1=(1/2L) I n [((Rf
+△Rf)/Rfll(Rr+△Rr ) / Rr 
)]     ””・■だけ上昇する。
6g + h 1=(1/2L) I n [((Rf
+△Rf)/Rfll(Rr+△Rr)/Rr
)] Increases by ””・■.

更に、誘電体の厚さを等しくすると、 Rf=Rr=R,△Rf=△Rr=△Rとおけるので、
前記0式は、次の(3)式のようになる。
Furthermore, if the thickness of the dielectric is made equal, Rf=Rr=R, △Rf=△Rr=△R, so
The above equation 0 becomes the following equation (3).

6g     −=1/L  In  ((R+△R)
  /R)  ・ (3)+h 前記(1)式に比べて、この(3)式では、しきい値利
得変化が、2倍になっており、波長安定性が、より強ま
ることを示す。
6g −=1/L In ((R+△R)
/R) · (3)+h Compared to the above equation (1), in this equation (3), the threshold gain change is twice as large, indicating that the wavelength stability is further enhanced.

また前記(1)式、(3)式はともに((R十△R)/
R)の関数であるから、1λ   −λ 1は変m+1
   m わらず、波長安定な温度範囲も変わらない。
In addition, both equations (1) and (3) above are ((R + △R)/
R), so 1λ −λ 1 is a variable m+1
m, and the wavelength stable temperature range remains the same.

[実施例] 以下実施例を用いて本発明をさらに具体的に説明する。[Example] The present invention will be explained in more detail below using Examples.

なお本発明は下記の実施例に限定されるのではない。Note that the present invention is not limited to the following examples.

第1図は、本発明の実施例による半導体レーザの外観図
である。第工図において、半導体レーザ装置3の両光出
射端面に、反射率波・長依存性を有する膜1.2を形成
し、その反射率波長依存性を利用して、波長選択性を持
たせた。
FIG. 1 is an external view of a semiconductor laser according to an embodiment of the present invention. In the drawing, a film 1.2 having a wavelength/length dependence of reflectance is formed on both light emitting end faces of a semiconductor laser device 3, and wavelength selectivity is imparted by utilizing the wavelength dependence of the reflectance. Ta.

より具体的には、ゲインピーク波長780 nmのGa
A/As (ファブリ・ペロー型)半導体レーザ3を用
いた。また、ふたつの光出射面にはAl2O3(光学長
9λ、誘電体内波長の9倍の厚さ)1.2が形成されて
おり、波長780nmで、しきい値利得が最も低い(す
なわち反射率が最も高い)ように設計しである。共振器
長は250μmである。
More specifically, Ga with a gain peak wavelength of 780 nm
An A/As (Fabry-Perot type) semiconductor laser 3 was used. In addition, Al2O3 (optical length 9λ, thickness 9 times the wavelength inside the dielectric) 1.2 is formed on the two light exit surfaces, and at a wavelength of 780 nm, the threshold gain is the lowest (that is, the reflectance is Designed to be the most expensive. The resonator length is 250 μm.

第2図は、その素子のしきい値利得の波長依存性を示す
(簡単のため、最小のしきい値利得を零にしている)。
FIG. 2 shows the wavelength dependence of the threshold gain of the device (for simplicity, the minimum threshold gain is set to zero).

第2図の実線は、半導体レーザの両光出射面にAl2O
3を光学長さ9λの厚さに形成した場合を示し、破線は
、半導体レーザの片光出対面にAA’203を光学長さ
9λの厚さに形成し、もう片光出射面は襞間とした場合
である。
The solid line in Figure 2 indicates Al2O on both light emitting surfaces of the semiconductor laser.
The dashed line shows the case where AA'203 is formed to have an optical length of 9λ and a thickness of 9λ on one side of the semiconductor laser, and the other side is formed between the folds. This is the case.

破線に比べて実線は、しきい値利得変化が大きくなって
いるが、しきい値利得最小波長の間隔が変わっていない
ことがわかる。
It can be seen that although the threshold gain change is larger in the solid line than in the broken line, the interval between the minimum threshold gain wavelengths remains unchanged.

第3図は、発振波長の温度依存性を示す。FIG. 3 shows the temperature dependence of the oscillation wavelength.

片面AA’2039λの場合と同じく、波長安定な温度
範囲は、−60〜100℃である。
As in the case of single-sided AA'2039λ, the wavelength stable temperature range is -60 to 100°C.

そして、温度に対する波長変化は、1.1A/degか
ら0.6A/degに低減されていることがわかる。
It can also be seen that the wavelength change with respect to temperature is reduced from 1.1 A/deg to 0.6 A/deg.

[発明の効果] 以上のように本発明によれば、半導体レーザ装置の両光
出射端面に、反射率波長依存性を有する膜を形成し、そ
の反射率波長依存性を利用して、波長選択性を持たせた
ので、温度が変化しても安定して半導体レーザを発振す
ることができ、安定領域の温度範囲を狭めることなく、
発振波長安定性を高めることができるという顕著な効果
を遠戚することができた。
[Effects of the Invention] As described above, according to the present invention, a film having reflectance wavelength dependence is formed on both light emitting end faces of a semiconductor laser device, and wavelength selection is performed by utilizing the reflectance wavelength dependence. This allows the semiconductor laser to oscillate stably even when the temperature changes, without narrowing the stable temperature range.
We were able to distantly trace the remarkable effect of increasing the oscillation wavelength stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体レーザ装置の外
観図、第2図は本発明の一実施例のしきい値利得の波長
依存性を示す図、第3図は本発明の一実施例の発振波長
の温度依存性を示す図である。 1:反射率波長依存性を有する膜 :反射率波長依存性を有する膜 :半導体レーザ装置 第1図 破線二半導体レーザの片光出射面にA12’sを光学長
さ9λの厚さに形成し、もう片光出射面は温度(’C)
FIG. 1 is an external view of a semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a diagram showing wavelength dependence of threshold gain in an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 3 is a diagram showing the temperature dependence of the oscillation wavelength in an example. 1: Film with wavelength dependence of reflectance: Film with wavelength dependence of reflectance: Semiconductor laser device Figure 1: Broken line 2 A12's is formed on the single-light emission surface of the semiconductor laser to a thickness of optical length 9λ. , the other light exit surface is at temperature ('C)

Claims (3)

【特許請求の範囲】[Claims] (1)両光出射端面を有し、該両光出射端面からレーザ
光を発する半導体レーザ装置において、前記両光出射端
面に、反射率波長依存性を有する膜を形成し、その反射
率波長依存性を利用して、波長選択性を持たせたことを
特徴とする半導体レーザ装置。
(1) In a semiconductor laser device that has both light emitting end faces and emits laser light from both light emitting end faces, a film having a reflectance wavelength dependent is formed on both the light emitting end faces, and the reflectance is wavelength dependent. A semiconductor laser device characterized in that it has wavelength selectivity by taking advantage of its properties.
(2)反射率波長依存性として、誘電体多重反射膜を用
い、その膜厚が、その誘電体内波長よりも、充分に厚い
ものである請求項1記載の半導体レーザ装置。
(2) The semiconductor laser device according to claim 1, wherein a dielectric multi-reflection film is used as the reflectance wavelength dependence, and the film thickness is sufficiently thicker than the wavelength within the dielectric.
(3)両光出射端面に形成した誘電体の膜厚が、実質的
に等しい厚さである請求項2記載の半導体レーザ装置。
(3) The semiconductor laser device according to claim 2, wherein the dielectrics formed on both light emitting end faces have substantially the same thickness.
JP28210189A 1989-03-15 1989-10-30 Semiconductor laser device Pending JPH03142986A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28210189A JPH03142986A (en) 1989-10-30 1989-10-30 Semiconductor laser device
US07/494,075 US5031186A (en) 1989-03-15 1990-03-15 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28210189A JPH03142986A (en) 1989-10-30 1989-10-30 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH03142986A true JPH03142986A (en) 1991-06-18

Family

ID=17648141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28210189A Pending JPH03142986A (en) 1989-03-15 1989-10-30 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH03142986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434462B1 (en) * 2002-03-11 2004-06-05 삼성전자주식회사 Wavelength locker for optical transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434462B1 (en) * 2002-03-11 2004-06-05 삼성전자주식회사 Wavelength locker for optical transmitter

Similar Documents

Publication Publication Date Title
US4634928A (en) Superluminescent light-emitting diode and related method
NL8801667A (en) FI - COATING FOR DFB / DBR LASER DIODS.
JP2004140240A (en) Semiconductor laser
US6487227B1 (en) Semiconductor laser
JP2004088049A (en) Optical semiconductor device
US5282219A (en) Semiconductor laser structure having a non-reflection film
JPH0349281A (en) Semiconductor laser element
US4852112A (en) Semiconductor laser with facet protection film of selected reflectivity
JPH03142986A (en) Semiconductor laser device
US4720834A (en) Internal-reflection-interference semiconductor laser device
JPS60124887A (en) Distributed feedback type semiconductor laser
JPS6097684A (en) Surface luminous laser and manufacture thereof
KR100754956B1 (en) Semiconductor laser device and laser system
JP3080312B2 (en) Manufacturing method of semiconductor laser
US5031186A (en) Semiconductor laser device
JPS6340387A (en) Semiconductor laser device
JP2006128475A (en) Semiconductor laser
JPH1075004A (en) Semiconductor light-emitting device
JPH02241075A (en) Semiconductor laser
US6885793B2 (en) Cleaving laser diode bars having gratings
JP2011176380A (en) Method of designing coating film of optical semiconductor device
JPS6014489A (en) Semiconductor light emitting device
JPH0316292A (en) Semiconductor laser device
JPH0548197A (en) Distribution feedback type semiconductor laser
JPH01184893A (en) Semiconductor laser