JPH0314249B2 - - Google Patents

Info

Publication number
JPH0314249B2
JPH0314249B2 JP59014688A JP1468884A JPH0314249B2 JP H0314249 B2 JPH0314249 B2 JP H0314249B2 JP 59014688 A JP59014688 A JP 59014688A JP 1468884 A JP1468884 A JP 1468884A JP H0314249 B2 JPH0314249 B2 JP H0314249B2
Authority
JP
Japan
Prior art keywords
optical
station
transmission line
output
coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59014688A
Other languages
Japanese (ja)
Other versions
JPS60158743A (en
Inventor
Kyoharu Inao
Seiichi Naito
Yoshihiro Sanpei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP59014688A priority Critical patent/JPS60158743A/en
Priority to US06/692,684 priority patent/US4783851A/en
Priority to GB08501307A priority patent/GB2154091B/en
Priority to DE3501967A priority patent/DE3501967C2/en
Publication of JPS60158743A publication Critical patent/JPS60158743A/en
Publication of JPH0314249B2 publication Critical patent/JPH0314249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals

Description

【発明の詳細な説明】 ≪発明の利用分野≫ 本発明は、光フアイバーを介して複数のステー
シヨンなどの間の通信を行なう光データウエイの
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <<Field of Application of the Invention>> The present invention relates to an improvement in an optical dataway that performs communication between a plurality of stations via optical fibers.

≪従来技術≫ 第1図は光カプラを用いた従来のマルチドロツ
プ形光データウエイの構成および動作を示す説明
図である。図では一方向のみ示してあるが、実際
にはこれを双方向化して用いる。ノードND11
〜ND16は光伝送線路L1とリンクして互いに
信号の授受を行なう。ノード数や距離の増加に伴
う信号の減衰を補うためリピータ(中継器)RP
が光伝送線路L1に挿入されている。第2図は各
ノードND1i(i=1、2、…)の構成を示す
もので、ステーシヨンST1iは光結合器A1i
を介して光伝送線路L1としている。第1図にお
いて、ステーシヨンST11,ST12が送出した
信号S11,S12は共にリピータRPにおいて
再生中継され信号レベルを回復したのち再びステ
ーシヨンST14,ST15,ST16等へ伝送さ
れる。
<<Prior Art>> FIG. 1 is an explanatory diagram showing the configuration and operation of a conventional multi-drop optical data way using optical couplers. Although only one direction is shown in the figure, it is actually used bidirectionally. Node ND11
~ND16 is linked with the optical transmission line L1 and exchanges signals with each other. Repeater RP to compensate for signal attenuation due to increase in number of nodes and distance
is inserted into the optical transmission line L1. Figure 2 shows the configuration of each node ND1i (i = 1, 2,...), and the station ST1i is connected to the optical coupler A1i.
The optical transmission line L1 is formed through the optical transmission line L1. In FIG. 1, signals S11 and S12 sent out by stations ST11 and ST12 are both regenerated and relayed by a repeater RP to recover the signal level and then transmitted again to stations ST14, ST15, ST16, etc.

このような構成の光データウエイでは、各ステ
シヨンの結合器は受動素子で構成されているため
高信頼性で伝送遅延が少なく誤り率が低いが、能
動素子で構成されるリピータの部分で、信頼性が
落ちるという欠点がある。
In an optical dataway with such a configuration, the coupler in each station is composed of passive elements, resulting in high reliability and low transmission delay and low error rate. It has the disadvantage of being less attractive.

≪発明の目的≫ 本発明は上記の問題点を解決するためになされ
たもので、高信頼性で伝送遅延が少なく誤り率が
低い光データウエイを実現することを目的として
いる。
<<Object of the Invention>> The present invention has been made to solve the above-mentioned problems, and its purpose is to realize an optical dataway with high reliability, low transmission delay, and low error rate.

≪発明の概要≫ 本発明に係る光データウエイは光伝送線路と、
この光伝送線路と接続する光結合器と、この光結
合器と接続するステーシヨンとを備え、光伝送線
路を介して複数のステーシヨンの間の通信を行な
う光データウエイにおいて、 ステーシヨンからの電気的制御信号により光伝
送線路とステーシヨンの間の光信号の結合比が可
変の光結合器と、受信光信号レベルが一定値以下
では前記結合比を1とする電気的制御信号を前記
光結合比器に出力して再生中継を行うステーシヨ
ンとを備えたことを特徴とする。
<<Summary of the invention>> The optical dataway according to the present invention includes an optical transmission line,
In an optical dataway that includes an optical coupler connected to this optical transmission line and a station connected to this optical coupler, electrical control from the station is performed for communication between multiple stations via the optical transmission line. an optical coupler whose coupling ratio of optical signals between the optical transmission line and the station is variable depending on a signal; and an electrical control signal that sets the coupling ratio to 1 when the received optical signal level is below a certain value to the optical coupling ratio. A station for outputting and reproducing and relaying the output.

≪実施例≫ 以下本発明を図面を用いて詳しく説明する。≪Example≫ The present invention will be explained in detail below using the drawings.

第3図は本発明に係わる光データウエイの一実
施例について、その構成と動作を信号レベルダイ
アグラムを用いて示す説明図である。図では一方
向のみ示してあるが、実際にはこれを双方向化し
て用いる。L2は光伝送線路、ND21〜ND2
6はこの光伝送線路L2とリンクするノードであ
る。第4図は各ノードND2i(i=1、2、…)
の構成を示すブロツク構成図で、A2iは前記光
伝送線路L2と接続する結合比可変の光結合器、
ST2iはこの光結合器A2iと接続しかつその
制御信号Ciで前記結合比を任意の値に変化させる
ステーシヨンである。
FIG. 3 is an explanatory diagram showing the configuration and operation of an embodiment of the optical dataway according to the present invention using a signal level diagram. Although only one direction is shown in the figure, it is actually used bidirectionally. L2 is an optical transmission line, ND21~ND2
6 is a node linked to this optical transmission line L2. Figure 4 shows each node ND2i (i=1, 2,...)
In this block diagram, A2i is an optical coupler with a variable coupling ratio connected to the optical transmission line L2;
ST2i is a station that is connected to this optical coupler A2i and changes the coupling ratio to an arbitrary value using its control signal Ci.

第5図は光結合器の光透過率をα1としたとき
の光結合器の入出力関係を示す説明図である。入
力光信号I1,I2と出力光信号O1,O2との
間には次の関係式がある。
FIG. 5 is an explanatory diagram showing the input/output relationship of the optical coupler when the light transmittance of the optical coupler is α1. The following relational expression exists between the input optical signals I1, I2 and the output optical signals O1, O2.

O1 O2=1−α1 α1 α1 1−α1 I1 I2 上記のような構成の光データウエイにおいて、
送信時にはノードの結合比α1の値と1して信号
を送出する(第6図A)。受信時には通常は1以
下の所定の値とする。(第6図B)が、ノード数
や距離の増加に伴う信号の減衰により前記ステー
シヨンの受信信号レベルが一定値以下になると前
記結合比α1を1として再生中継を行なう(第6
図A)。
O1 O2=1−α1 α1 α1 1−α1 I1 I2 In the optical dataway configured as above,
At the time of transmission, the value of the coupling ratio α1 of the node is set to 1 and the signal is sent out (FIG. 6A). At the time of reception, it is normally set to a predetermined value of 1 or less. (Fig. 6B), when the received signal level of the station falls below a certain value due to signal attenuation due to an increase in the number of nodes or distance, regenerative relay is performed with the coupling ratio α1 set to 1 (Fig. 6B).
Figure A).

以下第3図の信号レベルダイアグラムにもとづ
いて説明する。31は各ステーシヨンにおける受
信可能信号レベル範囲、32は同再生信号レベル
範囲である。受信信号レベルが再生信号レベル範
囲32まで低下すると、結合比は1に切換わる。
ステーシヨンST21から送出された信号S21
はノードND23,D25において再生信号レベ
ル範囲に達し、再生中継されて信号レベルを回復
する。同様にステーシヨンST22から送出され
た信号S22はノードND24において再生信号
レベル範囲に達し、再生中継されて信号レベルを
回復する。すなわち再生中継される箇所はどのス
テーシヨンから送出されるかで変る。
The following description will be made based on the signal level diagram shown in FIG. 31 is the receivable signal level range at each station, and 32 is the reproduced signal level range. When the received signal level drops to the reproduced signal level range 32, the coupling ratio switches to 1.
Signal S21 sent from station ST21
reaches the reproduction signal level range at nodes ND23 and D25, and is reproduced and relayed to recover the signal level. Similarly, the signal S22 sent from the station ST22 reaches the reproduction signal level range at the node ND24, and is reproduced and relayed to recover the signal level. In other words, the location where the signal is reproduced and relayed varies depending on the station from which the signal is transmitted.

第7図は光結合器A2iの一実施例を示す構成
説明図である。この光結合器の構成は特願昭58−
146652号「高速光スイツチ」に示したものとほぼ
同じで、PLZTの電気光学効果を利用したもので
ある。図において、71,72はそれぞれ入力光
信号I1,I2を導く光フアイバー、73,74
はこの光フアイバー71,72に結合する光フア
イバーコネクターである。二重の実線で囲んだ部
分CPは光結合部であつて、この中は50〜100℃の
ある一定の温度に維持されるようになつている。
光結合部CPにおいて、75,76はそれぞれ前
記光フアイバーコネクター73,74を通つて入
つてくる入力光を集光させるレンズ、77はビー
ムスプリツタ771と全反射プリズム772とを
組合せて構成した偏光分離器で、ここにレンズ7
5,76を通つて入力光が入射する。78および
79はそれぞれ77から出た2つの偏光波が照射
されるように設置されたPLZT、80はこの
PLZT78,79に制御信号を与えるためのドラ
イ端子、81はビームスプリツタ811と全反射
プリズム812とを組合せて構成した偏光合成器
で、ここには、各PLZT78および79を通つた
光が入射する。82,83はレンズで、それぞれ
PLZT78および79に焦点が合うように設置さ
れている。84,85は光フアイバ用コネクター
で、レンズ82,83を通つた偏光合成器81か
らの出力光が、ここを通り、出力光信号O1,O
2として光フアイバ86,87に導かれる。
FIG. 7 is a configuration explanatory diagram showing one embodiment of the optical coupler A2i. The configuration of this optical coupler was disclosed in the patent application filed in 1983.
It is almost the same as the one shown in No. 146652, "High-speed optical switch," and utilizes the electro-optic effect of PLZT. In the figure, 71 and 72 are optical fibers that guide input optical signals I1 and I2, respectively, and 73 and 74
is an optical fiber connector that connects to these optical fibers 71 and 72. The part CP surrounded by double solid lines is an optical coupling part, and the inside thereof is maintained at a constant temperature of 50 to 100°C.
In the optical coupling part CP, 75 and 76 are lenses that condense the input light that enters through the optical fiber connectors 73 and 74, respectively, and 77 is a polarized light constructed by combining a beam splitter 771 and a total reflection prism 772. In the separator, here is lens 7
Input light enters through 5 and 76. 78 and 79 are PLZTs installed so that the two polarized waves emitted from 77 are irradiated, and 80 is this PLZT.
Dry terminal 81 is a polarization combiner configured by combining a beam splitter 811 and a total reflection prism 812, and the light that has passed through each PLZT 78 and 79 is incident here. . 82 and 83 are lenses, respectively.
It is set so that PLZT78 and 79 are in focus. 84 and 85 are optical fiber connectors, through which the output light from the polarization combiner 81 that has passed through lenses 82 and 83 passes, and output optical signals O1 and O.
2 to optical fibers 86 and 87.

このように構成した光結合器の動作を次に説明
する。光結合部CPにおいて、レンズ75を通つ
て偏光分離器77に入射した光は、S波とP波に
分離し、P波はPLZT79に、S波はPLZT78
にそれぞれ入る。ここでPLZT78,79は制御
電圧が印加されなければ電気光学効果は生じな
い。したがつて、この状態では、PLZT79を通
つたP波およびPLZT78を通つたS波は、いず
れもレンズ82、光フアイバ用コネクター84を
通つて、光フアイバー86側に出力される。
PLZT78,79に制御電圧が印加されると、電
気光学効果が生じ、ここを通過するP波はS波
に、S波はP波に、それぞれ偏光面が90°回転す
る。この結果、PLZT78を通過しP波となつた
光およびPLZT79を通過しS波となつた光は、
いずれも偏光合成器81に入射後、レンズ83、
光フアイバ用コネクター85を通つて、光フアイ
バー87側に出力される。レンズ76を通つて偏
光分離器77に入射した光についても同様で、
PLZT78,79に制御電圧が印加されなければ
光フアイバー87側に出力され、制御電圧が印加
されれば光フアイバー86側に出力される。
The operation of the optical coupler configured in this way will be explained next. In the optical coupling section CP, the light that has passed through the lens 75 and entered the polarization separator 77 is separated into S waves and P waves.
into each. Here, the PLZTs 78 and 79 do not produce an electro-optical effect unless a control voltage is applied. Therefore, in this state, both the P wave that has passed through the PLZT 79 and the S wave that has passed through the PLZT 78 are output to the optical fiber 86 side through the lens 82 and the optical fiber connector 84.
When a control voltage is applied to the PLZTs 78 and 79, an electro-optical effect occurs, and the plane of polarization is rotated by 90 degrees, so that the P wave passing through the PLZTs becomes an S wave, and the S wave becomes a P wave. As a result, the light that passed through PLZT78 and became a P wave, and the light that passed through PLZT79 and became an S wave,
After entering the polarization combiner 81, the lens 83,
It passes through the optical fiber connector 85 and is output to the optical fiber 87 side. The same goes for the light that enters the polarization separator 77 through the lens 76.
If no control voltage is applied to the PLZTs 78 and 79, the output is output to the optical fiber 87, and if a control voltage is applied, the output is output to the optical fiber 86.

このように構成された装置によれば、制御電圧
によつて光入力信号I1およびI2を光出力O1
またはO2へ切換えることができる。すなわち制
御電圧がOVの場合光入力I1は光出力O1とな
り、光入力I2は光出力O2となる。制御電圧を
OVから増加していくにしたがつて、光入力I1
は光出力O2へ、光入力I2は光出力O1へ次第
に移つてゆく。第8図はこの様子を示した特性曲
線図で、制御電圧により、I1からO1への光透
過率α11およびI1からO2への光透過率α12が
どのように変化するかも実測したものである。こ
のように光透過率を制御電圧により任意にかつ連
続的にコントロールすることができる。
According to the device configured in this way, the optical input signals I1 and I2 are changed to the optical output O1 by the control voltage.
Or you can switch to O2. That is, when the control voltage is OV, the optical input I1 becomes the optical output O1, and the optical input I2 becomes the optical output O2. control voltage
As it increases from OV, the optical input I1
gradually shifts to the optical output O2, and the optical input I2 gradually shifts to the optical output O1. FIG. 8 is a characteristic curve diagram showing this situation, and also shows how the light transmittance α11 from I1 to O1 and the light transmittance α12 from I1 to O2 change depending on the control voltage. In this way, the light transmittance can be arbitrarily and continuously controlled by the control voltage.

このように、上記のような構成の光データウエ
イによれば、リピータを使用せず、受動形の光結
合器を用いているので経済性と高信頼性を実現で
きる。
In this manner, the optical dataway having the above configuration does not use repeaters and uses a passive optical coupler, making it possible to realize economic efficiency and high reliability.

又送信時と受信時の結合比を切り換えることが
できるので送受信間損失も小さくできる。
Furthermore, since the coupling ratio during transmission and reception can be switched, loss between transmission and reception can also be reduced.

また故障・事故等により、予想できない位置で
光電力が減衰した場合にも、近傍のステーシヨン
が光信号レベルを回復させるので、リピータを固
定位置に挿入するよりもはるかに効果的である。
Furthermore, even if the optical power is attenuated at an unpredictable location due to a failure or accident, a nearby station will restore the optical signal level, making it much more effective than inserting a repeater at a fixed location.

なお上記の実施例ではマルチドロツプ形光デー
タウエイの場合について示したが、ループ形光デ
ータウエイについても同様に実現できる。
In the above embodiment, a multi-drop type optical data way is shown, but a loop type optical data way can also be realized in the same manner.

なお上記の実施例では光結合器においてPLZT
などの電気光学素子を用いたが、これに限らず
YIGなどの磁気光学素子を用いてもよい。
Note that in the above example, PLZT is used in the optical coupler.
We used electro-optical elements such as, but are not limited to
A magneto-optical element such as YIG may also be used.

≪発明の効果≫ 以上述べたように本発明によれば高信頼性で伝
送遅延が少なく誤り率が低いとともに送受信間の
減衰量が小さい光データウエイを実現することが
できる。又経済性も優れている。
<<Effects of the Invention>> As described above, according to the present invention, it is possible to realize an optical dataway with high reliability, low transmission delay, low error rate, and small attenuation between transmission and reception. It is also economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光カプラを用いた従来のマルチドロツ
プ形光データウエイの構成および動作を示す説明
図、第2図は第1図のノード部分の構成を示す構
成ブロツク図、第3図は本発明に係わる光データ
ウエイの一実施例について、その構成と動作を信
号レベルダイアグラムを用いて示す説明図、第4
図は第3図のノード部分の構成を示す構成ブロツ
ク図、第5図は光結合器の入出力関係を示す説明
図、第6図は第4図の装置の動作を説明するため
の説明図、第7図は第5図の光結合器の一実施例
を示す構成説明図、第8図は光結合器の入出力特
性を示す特性曲線図である。 77……偏光分離器、78,79……電気光学
素子、81……偏光合成器、771,811……
ビームスプリツタ、772,812……全反射プ
リズム、L2……光伝送線路、A2i……光結合
器、Ci……制御信号、α1……結合比、ST2i
……ステーシヨン。(i=1、2、…)。
FIG. 1 is an explanatory diagram showing the configuration and operation of a conventional multi-drop optical data way using optical couplers, FIG. 2 is a block diagram showing the configuration of the node part in FIG. 1, and FIG. An explanatory diagram showing the configuration and operation of an embodiment of the related optical dataway using a signal level diagram, Part 4
The figure is a configuration block diagram showing the configuration of the node part in Figure 3, Figure 5 is an explanatory diagram showing the input/output relationship of the optical coupler, and Figure 6 is an explanatory diagram to explain the operation of the device in Figure 4. , FIG. 7 is a configuration explanatory diagram showing one embodiment of the optical coupler shown in FIG. 5, and FIG. 8 is a characteristic curve diagram showing the input/output characteristics of the optical coupler. 77... Polarization separator, 78, 79... Electro-optical element, 81... Polarization combiner, 771, 811...
Beam splitter, 772, 812... Total reflection prism, L2... Optical transmission line, A2i... Optical coupler, Ci... Control signal, α1... Coupling ratio, ST2i
...Station. (i=1, 2,...).

Claims (1)

【特許請求の範囲】 1 光伝送線路と、この光伝送線路と接続する光
結合器と、この光結合器と接続するステーシヨン
とを備え、光伝送線路を介して複数のステーシヨ
ンの間の通信を行なう光データウエイにおいて、 ステーシヨンからの電気的制御信号により光伝
送線路とステーシヨンの間の光信号の結合比が可
変の光結合器と、受信光信号レベルが一定値以下
では前記結合比を1とする電気的制御信号を前記
光結合器に出力して再生中継を行うステーシヨン
とを備えたことを特徴とする光データウエイ。
[Claims] 1. A system comprising an optical transmission line, an optical coupler connected to the optical transmission line, and a station connected to the optical coupler, and capable of communicating between a plurality of stations via the optical transmission line. In the optical dataway, the coupling ratio of the optical signal between the optical transmission line and the station is variable according to an electrical control signal from the station, and the coupling ratio is set to 1 when the level of the received optical signal is below a certain value. and a station that outputs an electrical control signal to the optical coupler to perform regenerative repeating.
JP59014688A 1984-01-27 1984-01-30 Optical data way Granted JPS60158743A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59014688A JPS60158743A (en) 1984-01-30 1984-01-30 Optical data way
US06/692,684 US4783851A (en) 1984-01-27 1985-01-18 Optical communication system
GB08501307A GB2154091B (en) 1984-01-27 1985-01-18 Optical data way
DE3501967A DE3501967C2 (en) 1984-01-27 1985-01-22 Optical data connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014688A JPS60158743A (en) 1984-01-30 1984-01-30 Optical data way

Publications (2)

Publication Number Publication Date
JPS60158743A JPS60158743A (en) 1985-08-20
JPH0314249B2 true JPH0314249B2 (en) 1991-02-26

Family

ID=11868134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014688A Granted JPS60158743A (en) 1984-01-27 1984-01-30 Optical data way

Country Status (1)

Country Link
JP (1) JPS60158743A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132440A (en) * 1981-02-09 1982-08-16 Toshiba Corp Annular optical communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132440A (en) * 1981-02-09 1982-08-16 Toshiba Corp Annular optical communication system

Also Published As

Publication number Publication date
JPS60158743A (en) 1985-08-20

Similar Documents

Publication Publication Date Title
US5737110A (en) Optical communication system using dark soliton lightwave
US4783851A (en) Optical communication system
US5307428A (en) Optical domain digital pulse switching
EP0571134A1 (en) Optical regenerator circuit
JPH02230220A (en) Light transmission system
US5911015A (en) Polarization-independent Kerr modulator, and an all-optical clock recovery circuit including such a modulator
US5010586A (en) Optical two-way transmission system with loop reflector modulator
US5259048A (en) Optical equalizer
JPH0314249B2 (en)
US4868897A (en) Network formed as an optical homodyne or heterodyne receiver circuit
CA2075881C (en) Transmission systems for the polarisation-independent transmission of signals
US5293264A (en) Transmission system for the polarization-insensitive transmission of signals
US4902087A (en) Fiber optic bypass switch
JP2006072028A (en) Optical switch
JPH0314248B2 (en)
JPH0339417B2 (en)
JP3359820B2 (en) Bidirectional optical transmission equipment
JPH0314247B2 (en)
JPS60158741A (en) Optical data way
JPH02192235A (en) Optical repeater
JPS60189732A (en) Optical switch for optical network
JPS6324575B2 (en)
JPH0425190A (en) Semiconductor laser amplifier provided with spare
JPS61281631A (en) Optical data way
JPH03297000A (en) Optical storage device