JPH03142351A - Method and apparatus for measuring electrolyte concentration in oily material - Google Patents

Method and apparatus for measuring electrolyte concentration in oily material

Info

Publication number
JPH03142351A
JPH03142351A JP28256189A JP28256189A JPH03142351A JP H03142351 A JPH03142351 A JP H03142351A JP 28256189 A JP28256189 A JP 28256189A JP 28256189 A JP28256189 A JP 28256189A JP H03142351 A JPH03142351 A JP H03142351A
Authority
JP
Japan
Prior art keywords
electrical conductivity
measuring
butter
electrolyte
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28256189A
Other languages
Japanese (ja)
Inventor
Mikio Kanzaki
神崎 幹雄
Toyohiko Doi
豊彦 土井
Hiroshi Nakanuma
浩 中沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP28256189A priority Critical patent/JPH03142351A/en
Publication of JPH03142351A publication Critical patent/JPH03142351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To easily and automatically make accurate measurement by determining the electrolyte concn. in a water phase in accordance with the measurement of an electrical conductivity by using the previously determined correlative relation between the electrolyte concn. and the electrical conductivity. CONSTITUTION:The oil material transferred in a piping 21 is first introduced into an introducing pipe 123 and a flow passage 12 by operating a suction pump 22 and is discharged from a stationary introducing pipe 121 side to substitute the inside of the flow passage 12 with the oily material. The while volume of the oily material in the stationary introducing pipe 120 is held in an axial rotating body 13 and is rotated in this state when the rotating body is half rotated. This oily material is brought into a flow passage 11. A transfer pump is then operated and the oily material in the flow passage 11 is extruded into a measuring container 17 by extracting water. The mixing ratio with the extracting water is known by measuring the whole liquid volume in the introducing pipe 120, i.e. in the container 17 when the volume of the oily material is known at this time. The oil phase and the water phase are separated to the two layers, upper and lower, when the liquid is rested after sufficient dissolving by the rotation of a stirrer 26. The electrical conductivity is measured by a sensor 18 disposed in the water layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、油性物質中に含有される塩類を初め電解質の
含量、例えばバター又はマーガリンなどの油性食品中の
塩分の簡易迅速な測定法及びその装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a simple and rapid method for measuring the content of salts and other electrolytes contained in oily substances, such as salts in oily foods such as butter or margarine. Regarding the device.

[技術の背景及び先行技術] 一般に家庭などで消費されるバターは、バタ製造におけ
るワーキング工程で過飽和の食塩懸濁液を所定量加えて
製造される加塩バターといわれるものである。この塩分
は、微小な結晶状態又は水相に溶解した状態でバター中
に混練されているが、その濃度は、バターの食感及び風
味を左右する極めて重要な因子であると同時に、かび等
の増殖防止に関係している。従って、加塩バター製造工
程での塩分濃度の検査工程は、品質管理上極めて重要か
つ不可欠な工程とされている。
[Technical Background and Prior Art] Butter that is generally consumed at home is called salted butter, which is produced by adding a predetermined amount of a supersaturated salt suspension during the working process of butter production. This salt is kneaded into butter in a fine crystalline state or in a state dissolved in an aqueous phase, and its concentration is an extremely important factor that affects the texture and flavor of butter. It is involved in preventing proliferation. Therefore, the salt concentration inspection process in the salted butter manufacturing process is considered to be an extremely important and essential process for quality control.

従来、加塩バターの塩分測定は、サンプリングしたもの
の所定量を沸騰水と混合し、水相に抽出された塩分をク
ロム酸カリウムを指示薬として哨酸銀溶液で滴定する方
法で行なわれている。この方法は、サンプリング、秤量
及び抽出滴定の作業が自動化がされておらず、人手を要
し、かつ手作業のため測定者による誤差が大きいと同時
に、回の測定結果が判明するのに30分程度も要するた
めリアルタイムの製造工程管理が難しく、測定の頻度も
十分なものとすることができなかった。
Conventionally, the salt content of salted butter has been measured by mixing a predetermined amount of the sample with boiling water, and titrating the salt extracted into the aqueous phase with a silver chloride solution using potassium chromate as an indicator. This method does not automate the sampling, weighing, and extraction titration operations, requires human labor, and is manual, resulting in large errors by the measurer. Since it requires a high degree of accuracy, real-time manufacturing process control is difficult, and measurement cannot be carried out frequently enough.

現在製品化されている、インライン型のセンサーを備え
たバター塩分自動分析装置にあっては、試料にγ線を照
射することを必須としているため、その照射により対象
物質中に放射性物質が生じる可能性があり、食品を対象
とするのは望ましくなく、また照射設備が高価であるた
め、実用化には問題がある。
Currently commercialized butter salinity automatic analyzers equipped with in-line sensors require irradiation of the sample with gamma rays, which may generate radioactive substances in the target material. It is undesirable to target foods because of the nature of the irradiation, and the irradiation equipment is expensive, so there are problems in practical application.

一方、オートインジェクターを備えた電量滴定方式の塩
分測定装置を用いたバターの塩分測定も試みられている
が、この方法は、測定を自動的かつ高精度で行なう特徴
を有するが、試料の前処理として秤量及び溶解等どの手
作業を要するので手間取り、また現段階では、製造ライ
ンからの自動サンプラーも開発されていないため、イン
ラインでの測定も難しいという問題がある。
On the other hand, attempts have been made to measure the salinity of butter using a coulometric titration salinity measuring device equipped with an autoinjector, but this method has the feature of automatically and highly accurate measurement; However, manual procedures such as weighing and dissolution are required, which is time-consuming, and at present, no automatic sampler for production lines has been developed, making it difficult to perform in-line measurements.

本発明者らは、上述の現況に鑑み、加塩バター中の塩分
濃度を、その製造工程において、インラインで、かつリ
アルタイムで更に満足のいく精度でもって測定する方法
について鋭意検討した結果、慕)バターと抽出水をそれ
ぞれ所定量混合溶解し、塩分を水相中に抽出した場合、
水相の電気伝導度とバター中の塩分濃度との相関が高く
、水相の電気伝導度の値は、バター中の塩分濃度の一定
指標として充分利用し得るものであること、b)上記の
相関関係は、抽出水に乳化剤を添加することにより、そ
の測定精度を上げること及び測定に要する時間を短縮し
得ること、 C)所定量のバターの試料を、連続的に流れるバター製
造ラインから随時サンプリングし、抽出水との混合及び
測定を自動化し得る機構を見い出したこと、 の知見に基づき、本発明を完成した。
In view of the above-mentioned current situation, the present inventors have conducted intensive studies on a method for measuring the salt concentration in salted butter in-line and in real time during the manufacturing process with more satisfactory accuracy. When predetermined amounts of salt and extraction water are mixed and dissolved, and the salt is extracted into the aqueous phase,
b) There is a high correlation between the electrical conductivity of the aqueous phase and the salt concentration in butter, and the electrical conductivity value of the aqueous phase can be sufficiently used as a constant index of the salt concentration in butter; The correlation is that by adding an emulsifier to the extracted water, the measurement accuracy can be increased and the time required for measurement can be shortened. The present invention was completed based on the findings of the following: discovery of a mechanism that can automate sampling, mixing with extracted water, and measurement.

尚、本発明はバター以外の油性物質及び塩分以外の塩類
を初め電解質一般にも適用し得ることも判明した。
It has also been found that the present invention can be applied to electrolytes in general, including oily substances other than butter and salts other than salt.

[発明の目的及び要約] 本発明の目的は、バターまたはマーガリン等の油性食品
中の塩分のような、油性物質中に含有される塩類を初め
電解質の濃度を、簡易迅速かつ自動的に精度よく測定す
る方法及びその装置を提供することにあり、更に該油性
物質が配管中を連続的に流動する場合にも、自動サブリ
ングし得る上記方法及びその装置を提供することである
[Objective and Summary of the Invention] An object of the present invention is to easily, quickly, and automatically measure the concentration of electrolytes, including salts contained in oily substances, such as salt in oily foods such as butter or margarine. The object of the present invention is to provide a method and apparatus for measuring the same, and furthermore, to provide the above-mentioned method and apparatus capable of automatic sub-ringing even when the oily substance flows continuously in a pipe.

即ち、本発明の一つは、 電解質を含有する油性物質及びその抽出水の各々の所定
量を攪拌溶解し、電解質を水相に抽出後、該水相中の電
解質濃度を測定することにより、上記油性物質中の電解
質濃度を測定する方法において、 上記抽出水に乳化剤を添加すること、及び水相中の電解
質濃度を予め求められた電解質濃度と電気伝導度の相関
関係を用い電気伝導度の測定に基づいて決定すること、
を特徴とする油性物質中の電解質濃度の測定法であり、 更に、本発明の他の一つは、 次の(0乃至(+1)の構成を有することを特徴とする
、上記本発明の一の測定法を実施する装置である。
That is, one aspect of the present invention is to stir and dissolve predetermined amounts of an oily substance containing an electrolyte and its extracted water, extract the electrolyte into an aqueous phase, and then measure the electrolyte concentration in the aqueous phase. In the method for measuring the electrolyte concentration in the oily substance, an emulsifier is added to the extracted water, and the electrolyte concentration in the aqueous phase is determined by using a predetermined correlation between the electrolyte concentration and the electrical conductivity. to determine based on measurements;
Another aspect of the present invention is a method for measuring an electrolyte concentration in an oily substance, which is characterized by having the following configuration (0 to (+1)). This is a device that performs the measurement method.

(I)軸回転体13及びこの周壁を囲撓し回転方向に液
密に摺接する外套体+33において、軸回転体13を貫
通する回転導通管11G及び120と、これらの各々の
両端と連通し外套体+33を貫通する固定導通管111
及び112並びに121及び122とによって流路11
及び12が形成され、軸回転体13の所定の回転によっ
て、一の回転導通管+20の両端が他の一の回転導通管
110の両端と同位置に置換される関係に配置されて構
成されるサンプリングループ30、(b)固定導通管1
12を介して、流路11に連通し、乳化剤の添加された
抽出水を保持する保持容器14、 (c)流路11から固定導通管111を介して流出する
液体を受け、電気伝導度測定用センサー18を備えた測
定容器17、 (d)固定導通管122を介して流路12に連通ずる油
性物質の導入管123、 発明の詳細な説明] 本発明において、測定対象となる被検試料、食品では、
加塩バター、マーガリン、みそ及びスプレッド並びに食
品以外では、化粧品、軟膏類、練り歯磨きなどが該当し
、油脂が主な組成であったり、あるいは高粘度を示す製
品でありかつ種々塩類を初め一般に電解質を含有するも
のである。これらは、例えば加塩バターでいえば、乳脂
肪を多く含みかつ塩分を微小結晶及び水和状態で含むた
め、そのままではイオン電極などを用いて塩分を測定で
きない。そのため、抽出水を用いて、油性物質中の塩類
を水相に抽出させる。
(I) In the outer body +33 that surrounds the shaft rotating body 13 and its surrounding wall and slides in liquid-tight contact in the rotational direction, it communicates with the rotational conduction pipes 11G and 120 that pass through the shaft rotating body 13, and both ends of each of these. Fixed conduction pipe 111 penetrating the mantle body +33
and 112 and 121 and 122.
and 12 are formed, and by a predetermined rotation of the shaft rotating body 13, both ends of one rotary conduit tube +20 are replaced at the same position as both ends of the other rotary conduit tube 110. Sampling loop 30, (b) fixed conduit 1
12, a holding container 14 communicates with the channel 11 and holds the extracted water to which an emulsifier has been added; (d) an oily substance introduction pipe 123 communicating with the flow path 12 via a fixed conduction pipe 122; Detailed Description of the Invention] In the present invention, a test sample to be measured , in food,
In addition to salted butter, margarine, miso, spreads, and foods, cosmetics, ointments, and toothpastes are products that are mainly composed of fats and oils, or products that exhibit high viscosity and that generally contain various salts and electrolytes. It contains. For example, salted butter contains a lot of milk fat and contains salt in the form of microcrystals and hydrated butter, so the salt content cannot be measured as is using an ion electrode or the like. Therefore, extraction water is used to extract the salts in the oily substance into the aqueous phase.

抽出水は、それ自体の電気伝導度の影響を無視小とする
ため脱イオン水を用いるのが望ましく、例えば加塩バタ
ーの場合、抽出液体の測定オーダーが数ms/m程度で
あるため、抽出水として、この値の102〜10−′以
下であれば、支障はない。
It is preferable to use deionized water as the extraction water so that the influence of its own electrical conductivity is negligible.For example, in the case of salted butter, the measurement order of the extraction liquid is about several ms/m, so it is preferable to use deionized water. As long as it is less than 102 to 10-' of this value, there will be no problem.

油性物質と抽出水との混合比率は、油性物質中に含まれ
る塩類を初め電解質濃度の程度により適宜選定されるが
、一般には、抽出液体の電気伝導度が1〜l0m5/α
となるように決める。
The mixing ratio of the oily substance and extracted water is appropriately selected depending on the concentration of salts and electrolytes contained in the oily substance, but in general, the electrical conductivity of the extracted liquid is 1 to 10m5/α.
Decide so that

用いる乳化剤としては、水に容易に溶解し、乳化効果の
優れたものであれば、特に限定されないが、例えばIC
1社製のトゥイーン20 (Tveen20)、トウィ
ーン40 (Tveen 40) 、  トゥイーン6
0 (−Tveen 6G) 、  ) ウィーン80
 (Tveen 80)等を用いた場合には、溶解性の
点でトゥイーン20が望ましい。その添加量は、抽出水
に対し、約0.5%程度である。
The emulsifier used is not particularly limited as long as it dissolves easily in water and has an excellent emulsifying effect, but for example, IC
Tveen 20, Tveen 40, Tveen 6 manufactured by one company
0 (-Tveen 6G), ) Vienna 80
(Tveen 80), etc., Tween 20 is preferable in terms of solubility. The amount added is about 0.5% based on the extracted water.

先ず、本発明の装置を、図面に基づいて説明する。図1
は、本発明の装置の一実施例と示す説明図(配置図)で
ある。図中21は、油性物質が連続的に移送される配管
であり、油性物質は、導入管+23に設けられたサクシ
ョンポンプ22を介してその採取口19からサンプリン
グループ30の−っの流路12へ導入される。この流路
12は、軸回転体13を略円弧状に屈曲して貫通した回
転導通管120と、この回転導通管120の両端に連通
し、外套体133を貫通する2つの固定導通管+21及
び122によって構成されており、外套体133は、軸
回転体13を囲撓し、軸回転体の回転時にあって互いに
液密に摺接する。両者は例えば、摺り合せガラスなどで
構成される。一方、流路12と同一に構成された流路1
2と回転中心20に関し、点対象に設けられ、この流路
11に対し、保持容器14から、移送ホンプ24及び開
閉バルブ15を介して乳化剤の添加された抽出水が固定
導入管112側から導入され、一方の固定導入管11+
には、ストップパルプ25を有する排出管+13が連通
ずる。この排出管INから流出する液体を受ける位置に
、測定容器が設けられ、この測定容器には、電気伝導度
測定用のセンサー18及び収納液体を攪拌するマグネチ
ックスターラーの攪拌子26が設けられている。
First, the apparatus of the present invention will be explained based on the drawings. Figure 1
1 is an explanatory diagram (layout diagram) showing one embodiment of the device of the present invention. In the figure, reference numeral 21 denotes a pipe through which the oily substance is continuously transferred, and the oily substance is transferred from the sampling port 19 to the flow path 12 of the sampling loop 30 via the suction pump 22 provided in the introduction pipe +23. will be introduced to This flow path 12 includes a rotary conduit tube 120 that is bent into a substantially arc shape and passes through the shaft rotating body 13, and two fixed conduit tubes +21 and 21 that communicate with both ends of this rotary conduit tube 120 and pass through the mantle body 133. 122, and the outer body 133 surrounds the shaft rotating body 13 and slides into fluid-tight contact with each other when the shaft rotating body 13 rotates. Both are made of, for example, laminated glass. On the other hand, the flow path 1 having the same structure as the flow path 12
Extraction water to which an emulsifier has been added is introduced from the holding container 14 into the flow path 11 from the fixed introduction pipe 112 side via the transfer pump 24 and the opening/closing valve 15. and one fixed introduction tube 11+
A discharge pipe +13 with a stop pulp 25 communicates with it. A measuring container is provided at a position to receive the liquid flowing out from the discharge pipe IN, and this measuring container is provided with a sensor 18 for measuring electrical conductivity and a stirring bar 26 of a magnetic stirrer for stirring the stored liquid. There is.

本装置を用いた測定法は、次のように実施される。The measurement method using this device is carried out as follows.

先ず、サクションポンプ22を作動させ、配管21中を
移送される油性物質を、導入管123及び流路12に導
入し、固定導入管12+側から排出させ、流路12内を
油性物質で置換する。この導入に際し油性物質が高粘性
である場合、導入管+23を加熱するヒーター27を設
けて、低粘化させて導入を容易にしている。そして、軸
回転体13を半回転させると固定導入管120内の油性
物質は、軸回転体13と外套体+33各々の内外面を液
密に摺動するので、内部にその全量を保持されたまま回
転され、流路11内に持たらされる。即ち、固定導入管
120及び+10は相互に完全に置換される。
First, the suction pump 22 is activated, and the oily substance transferred through the pipe 21 is introduced into the introduction pipe 123 and the flow path 12, and is discharged from the fixed introduction pipe 12+ side, replacing the inside of the flow path 12 with the oily substance. . If the oily substance is highly viscous during this introduction, a heater 27 is provided to heat the introduction tube +23 to reduce the viscosity and facilitate introduction. When the rotating shaft 13 is rotated half a turn, the oily substance in the fixed introduction tube 120 slides liquid-tightly on the inner and outer surfaces of the rotating shaft 13 and the outer mantle +33, so that the entire amount is retained inside. It is rotated as it is and held in the flow path 11. That is, fixed inlet tubes 120 and +10 completely replace each other.

次いで、移送ポンプを作動させ、開閉バルブ15及び2
5を開弁し、抽出水によって、流路11内の油性物質を
測定容器17に押し出す。この時、固定導入管+20の
即ち油性物質の容量が既知であれば測定容器17内の全
液量を測定することにより、抽出水との混合比率が知れ
る。そして、攪拌子26の回転により十分に溶解後静置
させると、上下2層に油相及び水相が分離され、水層中
に臨ましめたセンサー18によって電気伝導度が計測さ
れる。尚、電気伝導度の温度による影響を防止するため
、保持容器14及び測定容器I7を恒温にする手段を用
いることが好ましい。
Next, the transfer pump is operated and the on-off valves 15 and 2 are opened.
5 is opened, and the extracted water pushes out the oily substance in the channel 11 into the measurement container 17. At this time, if the volume of the oily substance in the fixed introduction pipe +20 is known, the mixing ratio with the extraction water can be determined by measuring the total amount of liquid in the measurement container 17. When the mixture is sufficiently dissolved by rotation of the stirrer 26 and allowed to stand still, an oil phase and an aqueous phase are separated into two layers, upper and lower, and the electrical conductivity is measured by a sensor 18 placed in the aqueous layer. In order to prevent the electrical conductivity from being affected by temperature, it is preferable to use means for keeping the holding container 14 and the measuring container I7 at a constant temperature.

次に、試験例を示して本発明を詳述する。Next, the present invention will be explained in detail by showing test examples.

(試験例1)乳化剤の効果 上記の装置を用いて、加塩バター製造時ワキフグ工程後
の塩分濃度を一定に調製されたバターを配管中よりサン
プリングし、所定量の溶解水との混合溶解後、水相の電
気伝導度を測定するに際し、抽出水への乳化剤添加の有
無の影響を調べた。
(Test Example 1) Effect of emulsifier Using the above-mentioned device, butter that had been prepared to have a constant salt concentration after the wakifugu process during the production of salted butter was sampled from inside the pipe, and after mixing and dissolving it with a predetermined amount of dissolved water, When measuring the electrical conductivity of the aqueous phase, we investigated the effect of adding an emulsifier to the extracted water.

先ず、乳化剤として前記トウイーン20を用い、抽出水
に 0.5%となるよう添加し、約50℃に保温した。
First, Tween 20 was used as an emulsifier and added to extraction water at a concentration of 0.5%, and kept at about 50°C.

また、サンプリングループの一の回転導通管120の容
量は、2mlのものを用いた。
Further, the capacity of the rotating conduction tube 120 in one of the sampling loops was 2 ml.

次いで、サクションポンプ22を用い、加熱された導入
管+23及び流路12の中を流し、完全に内部の空気を
バターで置換したところで、サンプリングループの軸回
転体13を半回転し、固定導通管120及び+10を相
互に入れ換える。ストップバルブ15を開き、ポンプ2
4を用いて、約50°Cに保温された抽出水で試料を押
し出しながら同温度に保温された測定容器I7に排出さ
せ、測定容器17の目盛から抽出水容量が40 mlと
なったところで、開閉バルブ25を閉じ、マグネチック
スクーラーの回転翼を用いた攪拌子26で約2分間攪拌
した。静置後、分離した油相及び水相のうち、水相の電
気伝導度を測定容器の底部に設けたセンサー18で測定
した後、ドレンバルブ28から電液を排出させ、その後
抽出水を保持容器14から測定容器17に流し、各導通
管センサー及び測定容器17を定置洗浄する。
Next, the suction pump 22 is used to flow through the heated introduction tube + 23 and the flow path 12, and when the air inside is completely replaced with butter, the rotating shaft 13 of the sampling loop is rotated by half a turn, and the fixed conduit tube is replaced with butter. Interchange 120 and +10. Open stop valve 15 and pump 2
4, the sample was extruded with extraction water kept at about 50°C and discharged into the measurement container I7 kept at the same temperature, and when the extraction water volume reached 40 ml from the scale of the measurement container 17, The on-off valve 25 was closed, and the mixture was stirred for about 2 minutes using a stirrer 26 using a rotating blade of a magnetic cooler. After standing still, the electrical conductivity of the aqueous phase of the separated oil phase and aqueous phase is measured with a sensor 18 provided at the bottom of the measurement container, and then the electrolyte is discharged from the drain valve 28, and the extracted water is then retained. It flows from the container 14 to the measurement container 17, and each conduction pipe sensor and the measurement container 17 are cleaned in place.

以上の操作及び測定を、乳化剤の添加の有無の各場合に
繰り返し行なった。
The above operations and measurements were repeated with and without the addition of an emulsifier.

尚、本試験の測定値に、上記の洗浄がどのような影響を
及ぼすか即ち、洗浄効果が十分か否かについては、次の
テストによりその効果は十分なものとされた。即ち、サ
ンプリングされた配管中のバターを押し出す乳化剤の添
加された抽出水を32 ml流した時点で、開口端部1
6より採取した抽出水の電気伝導は、約0. Of m
S/m (平均値)となっており、配管中のバター及び
塩分は、問題なく洗浄されていることが知れた。また、
乳化剤添加しない場合では、測定値は、高い傾向を示し
洗浄不十分であることが知れた。
In addition, as to what kind of influence the above-mentioned cleaning had on the measured values of this test, that is, whether the cleaning effect was sufficient or not, the following test determined that the effect was sufficient. That is, at the time when 32 ml of extraction water to which an emulsifier was added to extrude the butter in the sampled pipe was poured, the open end 1
The electrical conductivity of the extracted water collected from No. 6 was approximately 0. Of m
S/m (average value), indicating that the butter and salt in the pipes were cleaned without any problems. Also,
When no emulsifier was added, the measured values tended to be high, indicating that cleaning was insufficient.

測定順毎の電気伝導度の値を、図2に示す。FIG. 2 shows the electrical conductivity values for each measurement order.

同図において、乳化剤添加の場合が○、乳化剤添加しな
い場合が×の記号で示されている。同図の結果から次の
ことが知れる。
In the same figure, the case where an emulsifier is added is shown by the symbol ◯, and the case where the emulsifier is not added is shown by the symbol x. The following can be learned from the results shown in the figure.

乳化剤添加しない場合は、測定値のバラツキが大きく、
安定性に欠けること、また測定回数の増加に伴い測定値
が徐々に低下する傾向がみられるが、これは脂肪等によ
り電極の汚れの影響が存在すること、が判明した。一方
、乳化剤添加の場合は、バラツキも小さく、経時的にも
一定値を示している。また、測定値の絶対値は、両者を
比較した場合、乳化剤添加の方が低い値を示しているが
、これは乳化剤中の非電解質が導電性を妨害しているこ
とに依るものである。
If no emulsifier is added, the measurement values will vary widely,
There was a lack of stability, and there was a tendency for the measured values to gradually decrease as the number of measurements increased, but it was found that this was due to the influence of dirt on the electrodes due to fat, etc. On the other hand, in the case of adding an emulsifier, the variation is small and shows a constant value over time. Furthermore, when comparing the two, the absolute value of the measured value is lower with the addition of an emulsifier, but this is due to the non-electrolyte in the emulsifier interfering with conductivity.

(試験例2)水相の電気伝導度と塩分濃度の相関塩分の
既知のバターの試料(塩分0〜1.6wt%)及び乳化
剤トウィーン20の0.5%抽出水を用意し、試験例1
の測定容器17を用いて、両者の混合比率など試験例1
と同様にして、水相の電気伝導度を測定した。
(Test Example 2) Correlation between electrical conductivity of aqueous phase and salinity A sample of butter with a known salinity (salt 0 to 1.6 wt%) and water extracted with 0.5% emulsifier Tween 20 were prepared, and Test Example 1
Test example 1, such as the mixing ratio of both, using the measurement container 17 of
The electrical conductivity of the aqueous phase was measured in the same manner as above.

この結果を図3に示す。また、同図から、バター中の塩
分X(%)と電気伝導度y 、(mS/s)のせること
になる。
The results are shown in FIG. Also, from the same figure, the salt content in butter, X (%), and the electrical conductivity, y, (mS/s) will be added.

従って、バターの塩分は、バターを−゛定の比率で抽出
水(乳化剤添加)に混合し水相の電気伝導度を測定する
ことにより、計測し得ることが判明した。
Therefore, it has been found that the salinity of butter can be measured by mixing butter with extraction water (emulsifier added) in a fixed ratio and measuring the electrical conductivity of the aqueous phase.

(試験例3)電気伝導度の温度特性 塩分1.6%のバターを用いたこと及び測定容器17の
保持温度を28〜50℃に変更したこと以外は、試験例
2と同様に、電気伝導度を測定した。
(Test Example 3) Temperature characteristics of electrical conductivity The electrical conductivity The degree of

この結果を図4に示した。ぼぼ比例関係がみられ、その
係数(傾き)は、0.031m5/a/’Cであった。
The results are shown in FIG. A nearly proportional relationship was observed, and its coefficient (slope) was 0.031 m5/a/'C.

バター塩分測定誤差を±2%以内にするためには、電気
伝導度測定を±0.02m5の精度で行なう必要がある
。従って、この精度で測定を行なうには、±0.5℃以
下の温度管理、あるいは、正確な温度補償を行なうのが
望ましいことが知れる。
In order to keep the butter salt measurement error within ±2%, it is necessary to measure the electrical conductivity with an accuracy of ±0.02 m5. Therefore, in order to perform measurements with this accuracy, it is known that it is desirable to control the temperature to within ±0.5° C. or to perform accurate temperature compensation.

次に、本発明を実施例により詳述する。Next, the present invention will be explained in detail with reference to Examples.

(実施例1) 塩分濃度1.6%のバターの製造において、ワーキング
工程後のバター移送配管より、図1に示した装置を用い
て、サンプリングを行ない、電気伝導度を経時的に測定
し、バター中の塩分の品質管理面からの検査を実施した
(Example 1) In the production of butter with a salt concentration of 1.6%, sampling was performed from the butter transfer pipe after the working process using the apparatus shown in Figure 1, and the electrical conductivity was measured over time. We conducted an inspection of the salt content in butter from a quality control perspective.

尚、サンプリングループの一の回転導通管120の容量
即ちサンプリングバターの容量を2mlとしたこと、乳
化剤トウィーン20を0.5%濃度になるように添加し
た抽出水でサンプリングバターを押し出して流路11を
流し1回に抽出水40 mlを使用したこと、約50℃
に保持したこと、測定容器の保温温度を約50℃に保持
したこと、測定容器の攪拌時間を2分30秒としたこと
、塩分と電気伝導度の相関関係として前記式(1)を用
いたこと、測定間隔の洗浄時間を約3分としたこと、そ
の他実験例2と同様に電気伝導度を測定し、同時に式(
1)より塩分を算出した。
It should be noted that the capacity of the rotating conduit tube 120 in one of the sampling loops, that is, the capacity of the sampling butter, was set to 2 ml, and the sampling butter was pushed out with extraction water to which the emulsifier Tween 20 was added to a concentration of 0.5%. 40 ml of extraction water was used at one time, at approximately 50°C.
The temperature of the measurement container was maintained at approximately 50°C, the stirring time of the measurement container was 2 minutes and 30 seconds, and the above formula (1) was used as the correlation between salinity and electrical conductivity. In addition, the cleaning time between measurement intervals was approximately 3 minutes, and the electrical conductivity was measured in the same manner as in Experimental Example 2. At the same time, the equation (
The salinity was calculated from 1).

製造中、2時間のデータを次に示す。Data for 2 hours during production are shown below.

以上の如く、短時間の間隔で、簡易かつ自動的にバター
中の塩分量が計測された。尚、60分及び90分の測定
時には前記した従来法であるクロム酸カリウム(指示薬
)及び硝酸銀溶液を用いる方法で実測したが塩分(%)
は、それぞれ1.62及び1.58であり、同等な値で
あった。
As described above, the amount of salt in butter was easily and automatically measured at short intervals. In addition, when measuring for 60 minutes and 90 minutes, the salt content (%) was actually measured using the conventional method described above using potassium chromate (indicator) and silver nitrate solution.
were 1.62 and 1.58, respectively, which were equivalent values.

(実施例2)バターオイルの脂肪分鮮度の判定一般的な
バターフレーバーは、乳脂肪(バターオイル)を、リパ
ーゼにより脂肪酸に加水分解することにより得られるが
、加水分解の程度は、バターフレーバーの風味に大きく
影響するため、フレーバー製造にあっては、脂肪の加水
分鮮度を正確簡便にモニターする必要がある。
(Example 2) Determination of fat content freshness of butter oil General butter flavor is obtained by hydrolyzing milk fat (butter oil) into fatty acids using lipase. In flavor production, it is necessary to accurately and conveniently monitor the freshness of fat hydrolysis, as it greatly affects flavor.

分解した脂肪酸の一部は水溶性となるため、水相部の電
気伝導度と分解度の相関を予め知ることにより、本発明
の手段を用い、適正な脂肪酸分鮮度を容易に測定できる
ことになる。
Since some of the decomposed fatty acids become water-soluble, by knowing in advance the correlation between the electrical conductivity of the aqueous phase and the degree of decomposition, it is possible to easily measure the appropriate fatty acid freshness using the means of the present invention. .

(予備実験) 乳脂肪(バターオイル)と水との7=3の混合物を攪拌
溶解したものに対し、リパーゼ(パンクレアチックリパ
ーゼ、シグマ社製)2wt%を加え37℃で攪拌を継続
しながら酵素分解し、適宜サンプリングを行なった。乳
脂肪分解度は分解生成物の油相部1gを中和するのに要
するN /10水酸化ナトリウム溶液の体積として求め
た。一方分解生成物2gを40gの水と混合、攪拌し、
水相部の電気伝導度の測定を行ない、乳脂肪分解度との
相関を調べた。その結果、乳脂肪分解度(Xml)及び
電気伝導度(yXIOμs/1)の関係は図5の如く直
線関係にあり、X及びyは式(2): x=  1.03 y −1,34で表わせることが判
明した。また、乳脂肪分解度6.7mlにおいて得られ
たバターフレーバーは良好な風味を有することが判明し
た。
(Preliminary experiment) 2 wt% of lipase (pancreatic lipase, manufactured by Sigma) was added to a stirred and dissolved mixture of milk fat (butter oil) and water in a ratio of 7=3, and the mixture was stirred at 37°C while continuing to stir. It was enzymatically degraded and sampled as appropriate. The degree of milk fat decomposition was determined as the volume of N/10 sodium hydroxide solution required to neutralize 1 g of the oil phase of the decomposition product. Meanwhile, 2 g of the decomposition product was mixed with 40 g of water and stirred,
The electrical conductivity of the aqueous phase was measured and its correlation with the degree of milk fat decomposition was investigated. As a result, the relationship between milk fat decomposition degree (Xml) and electrical conductivity (yXIOμs/1) is a linear relationship as shown in FIG. 5, and X and y are expressed by formula (2): It turns out that it can be expressed as Furthermore, it was found that the butter flavor obtained at a milk fat decomposition degree of 6.7 ml had a good flavor.

(バターフレーバーの製造) 上記実験をスケールアップし同一条件で分解度6.7m
lでのバターフレーバーを製造した。
(Production of butter flavor) The above experiment was scaled up and the decomposition degree was 6.7 m under the same conditions.
A butter flavor of 1 was produced.

水300kg及びバターオイル700kgをIfloo
lのジャケット付きタンクにて攪拌溶解し、上記実験と
同一のリパーゼ2kgを添加し攪拌しながら37℃に保
持し酵素分解を行なった。
Ifloo 300kg of water and 700kg of butter oil
The mixture was stirred and dissolved in a 1-liter jacketed tank, and 2 kg of the same lipase as in the above experiment was added and kept at 37° C. with stirring to perform enzymatic decomposition.

分解開始後、図1に示した本発明の装置を用い、導入管
123の先端の採取口19を図6の如くタンクのポンプ
41を有する循環パイプ40に取り付け、均−混合状態
下で経時的にサンプリングを行ない電気伝導度を測定し
た。
After the start of decomposition, using the apparatus of the present invention shown in FIG. 1, the sampling port 19 at the tip of the introduction pipe 123 is attached to the circulation pipe 40 having the pump 41 of the tank as shown in FIG. Sampling was carried out and the electrical conductivity was measured.

サンプリングした分解液の容量を2mlとし、乳化剤ト
ウィーン20を0,5%程度になるように添加した抽出
水を用いたこと及び分解度と電気伝導度の関係式(2)
を用いたこと以外は、実施例1と同様にして、電気伝導
度を経時的に測定した。測定値の経時変化を図7に示す
The volume of the sampled decomposition liquid was 2 ml, and the extraction water to which the emulsifier Tween 20 was added to about 0.5% was used, and the relationship between decomposition degree and electrical conductivity (2)
Electric conductivity was measured over time in the same manner as in Example 1, except that . Figure 7 shows the changes in measured values over time.

そして、目標とする分解度に対応する電気伝導度7.8
XIOμsに近接した測定値?、4XI(1μsの得ら
れた時点(2時間後)で、タンクジャケットに蒸気を通
し、80℃約10分間の加熱によって酵素を失活した。
And the electrical conductivity is 7.8, which corresponds to the target resolution.
Measured value close to XIOμs? , 4XI (1 μs), the enzyme was inactivated by passing steam through the tank jacket and heating at 80° C. for approximately 10 minutes.

そして、3方コツク42を切換え、ポンプ41を起動し
、遠心式セパレータ43により、水相部と油粕部を分離
した。水相部は出口44より廃棄した。油相部を出口4
5より排出後冷却することにより、風味良好なバターフ
レーバー6SQkgを得た。
Then, the three-way pump 42 was switched, the pump 41 was started, and the centrifugal separator 43 separated the aqueous phase portion and the oil cake portion. The aqueous phase was discarded through outlet 44. Outlet 4 of oil phase
By cooling after discharging from No. 5, 6SQ kg of butter flavor with good flavor was obtained.

また、本発明の測定対象となる試料は、上記したバター
オイルに限られるものではなく、食品では、マーガリン
、みそ及びスプレッド、食品以外では、化粧品、軟膏類
及び練り歯磨き等のように、塩類一般に電解質を含有す
る油性物質及び高粘度物質についても、それらの濃度測
定に際し、適用可能である。
In addition, the samples to be measured in the present invention are not limited to the above-mentioned butter oil, but also salts in general, such as margarine, miso, and spreads in food products, and cosmetics, ointments, toothpaste, etc. It is also applicable to oily substances and high viscosity substances containing electrolytes when measuring their concentration.

[発明の効果] (1)バターまたはマーガリン等の油性食品の塩分をは
じめ、油性物質中の塩類など電解質を簡易に短時間で測
定し得る。
[Effects of the Invention] (1) Salt in oily foods such as butter or margarine, as well as electrolytes such as salts in oily substances, can be measured easily and in a short time.

(2)連続的に流動する油性物質を配管から、自動的に
サンプリングし、塩類など電解質含量を簡易に測定でき
る。
(2) Continuously flowing oily substances can be automatically sampled from piping and the content of electrolytes such as salts can be easily measured.

(3)測定間隔を短くすることができるから、実質的に
連続的自動的な塩類など電解質含量の測定を可能にし得
る。
(3) Since the measurement interval can be shortened, it is possible to substantially continuously and automatically measure the content of electrolytes such as salts.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明の装置の配置図であり、図2は測定順毎
の電気伝導度の測定値の値を示すグラフであり、図3は
、電気伝導度と塩分の関係を示すグラフであり、図4は
電気伝導度と温度の関係を示すグラフである。図5は脂
肪分鮮度と電気伝導度の関係を示すグラフであり、図6
は、本発明の方法を実施する装置の取り付は状態を示す
配置図である。図7は、電気伝導度の経時変化を示すグ
ラフである。 (符号の説明) +1.12;流 路 111、120.121.122 、固定導通管121
1、 +10 、回転導通管 13;軸回転体 30・サンプリングループ 14;保持容器 17・測定容器 18、電気伝導度測定用センサー ω縁とソ華dく L八 C+、      0   ri  ()0    ′
A  ど 5 会6瀦律纒ン 十 (恥ら
FIG. 1 is a layout diagram of the device of the present invention, FIG. 2 is a graph showing the measured values of electrical conductivity for each measurement order, and FIG. 3 is a graph showing the relationship between electrical conductivity and salinity. 4 is a graph showing the relationship between electrical conductivity and temperature. Figure 5 is a graph showing the relationship between fat freshness and electrical conductivity, and Figure 6
1 is a layout diagram showing the installation of an apparatus for carrying out the method of the present invention; FIG. FIG. 7 is a graph showing changes in electrical conductivity over time. (Explanation of symbols) +1.12; flow path 111, 120.121.122, fixed conduction pipe 121
1, +10, rotating conduction tube 13; shaft rotating body 30, sampling loop 14; holding container 17, measuring container 18, electric conductivity measurement sensor
A 5 meeting 6

Claims (2)

【特許請求の範囲】[Claims] (1)電解質を含有する油性物質及び抽出水の各々の所
定量を攪拌溶解し、電解質を水相に抽出後、該水相中の
電解質濃度を測定することにより、上記油性物質中の電
解質濃度を測定する方法において、 上記抽出水に乳化剤を添加すること、及び水相中の電解
質濃度を予め求められた電解質濃度と電気伝導度の相関
関係を用い電気伝導度の測定に基づいて決定すること、
を特徴とする油性物質中の電解質濃度の測定法。
(1) Stir and dissolve predetermined amounts of each of an oily substance containing an electrolyte and extracted water, extract the electrolyte into an aqueous phase, and then measure the electrolyte concentration in the aqueous phase to determine the electrolyte concentration in the oily substance. In the method for measuring, adding an emulsifier to the extracted water, and determining the electrolyte concentration in the aqueous phase based on the measurement of electrical conductivity using a predetermined correlation between electrolyte concentration and electrical conductivity. ,
A method for measuring electrolyte concentration in an oily substance, characterized by:
(2)次の(a)乃至(d)の構成を有することを特徴
とする、請求項1記載の測定法を実施する装置。 (a)軸回転体13及びこの周壁を囲撓し回転方向に液
密に摺接する外套体133において、軸回転体13を貫
通する回転導通管110及び120と、これらの各々の
両端と連通し外套体133を貫通する固定導通管111
及び112並びに121及び122とによって流路11
及び12が形成され、軸回転体13の所定の回転によっ
て、一の回転導通管120の両端が他の一の回転導通管
110の両端と同位置に置換される関係に配置されて構
成されるサンプリングループ30、 (b)固定導通管112を介して、流路11に連通し、
乳化剤の添加された抽出水を保持する保持容器14、 (c)流路11から固定導通管111を介して流出する
液体を受け、電気伝導度測定用センサー18を備えた測
定容器17、 (d)固定導通管122を介して流路12に連通する油
性物質の導入管123、
(2) An apparatus for carrying out the measuring method according to claim 1, characterized in that it has the following configurations (a) to (d). (a) In the outer body 133 that surrounds the shaft rotating body 13 and its surrounding wall and slides in liquid-tight contact in the rotational direction, it communicates with the rotational conduction pipes 110 and 120 that pass through the shaft rotating body 13 and both ends of each of these. Fixed conduction pipe 111 passing through the mantle 133
and 112 and 121 and 122.
and 12 are formed, and are arranged in such a relationship that, by a predetermined rotation of the shaft rotating body 13, both ends of one rotary conduit tube 120 are replaced at the same positions as both ends of the other rotary conduit tube 110. a sampling loop 30, (b) communicating with the flow path 11 via a fixed conduit 112;
a holding container 14 that holds extraction water to which an emulsifier has been added; (c) a measuring container 17 that receives the liquid flowing out from the flow path 11 via the fixed conduction pipe 111 and is equipped with a sensor 18 for measuring electrical conductivity; (d) ) an oily substance introduction pipe 123 communicating with the flow path 12 via a fixed conduit pipe 122;
JP28256189A 1989-10-30 1989-10-30 Method and apparatus for measuring electrolyte concentration in oily material Pending JPH03142351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28256189A JPH03142351A (en) 1989-10-30 1989-10-30 Method and apparatus for measuring electrolyte concentration in oily material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28256189A JPH03142351A (en) 1989-10-30 1989-10-30 Method and apparatus for measuring electrolyte concentration in oily material

Publications (1)

Publication Number Publication Date
JPH03142351A true JPH03142351A (en) 1991-06-18

Family

ID=17654081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28256189A Pending JPH03142351A (en) 1989-10-30 1989-10-30 Method and apparatus for measuring electrolyte concentration in oily material

Country Status (1)

Country Link
JP (1) JPH03142351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2385131A (en) * 2001-10-03 2003-08-13 Yi-Chia Liao Container for measuring conductive properties of a liquid
CN105021782A (en) * 2015-07-09 2015-11-04 安徽省光明粮油工业有限公司 Oil quality observation and verifying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2385131A (en) * 2001-10-03 2003-08-13 Yi-Chia Liao Container for measuring conductive properties of a liquid
CN105021782A (en) * 2015-07-09 2015-11-04 安徽省光明粮油工业有限公司 Oil quality observation and verifying device
CN105021782B (en) * 2015-07-09 2016-11-16 安徽省光明粮油工业有限公司 A kind of oil observes verifying attachment

Similar Documents

Publication Publication Date Title
American Public Health Association et al. Standard Methods for the Examination of Dairy Products, Bacteriological, Bioassay and Chemical
Litwinenko et al. Relationship between crystallization behavior, microstructure, and mechanical properties in a palm oil-based shortening
EP0150111B1 (en) Method for measuring changes in a physical property of liquid and semisolid materials
WO1996030749A1 (en) Method of determining nonelectrolyte concentration in electrolyte solution and method and apparatus for preparing solution containing mixture of electrolyte with nonelectrolyte
North Colorimetric determination of capsaicin in oleoresin of capsicum
US4304119A (en) Method and device for measuring the freezing point lowering
Berry Jr et al. Heating characteristics of cream‐style corn processed in a Steritort: Effects of headspace, reel speed and consistency
Bénézech et al. Flow properties of stirred yoghurt: structural parameter approach in describing time‐dependency
JPH03142351A (en) Method and apparatus for measuring electrolyte concentration in oily material
US3442623A (en) Method of determining the fat content of milk and related products
Nakanishi et al. Nonadiabatic thermometric titrations involving operational amplifier compensation of exchanged heat
CN107727715A (en) A kind of content of fluoride ion assay method of soda ash product and bittern
Walker et al. The application of calorimetry to the study of ruminal fermentation in vitro
RU2734942C2 (en) Method for selection of raw material for food product
Urban The Influence of, Electrolytes, on, the, Specific, Heat, of, Water
Lester On the measurement of hydrion concentration in some dairy products by means of Biilmann's quinhydrone electrode
JP2005283294A (en) Measurement method for reducing sugar and its instrument
Hossain et al. Estimation of Food Additives in Dairy Products
CN219896424U (en) Parching machine for processing medicinal materials
JPH05120545A (en) Coffee liquid concentration measuring method and coffee automatic vending machine
SU1288596A1 (en) Method of determining quality of processed cheese
CN101320012B (en) Simple measuring method of normal milk acidity
SU1075155A1 (en) Method of determination of heated frying fat quality
RU2204132C2 (en) Procedure establishing content of common salt in cheese
SU1288597A1 (en) Method of determining thermal resistance of milk and milk products