JPH03140424A - Method and device for producing metal high in melting point and toughness - Google Patents

Method and device for producing metal high in melting point and toughness

Info

Publication number
JPH03140424A
JPH03140424A JP1279436A JP27943689A JPH03140424A JP H03140424 A JPH03140424 A JP H03140424A JP 1279436 A JP1279436 A JP 1279436A JP 27943689 A JP27943689 A JP 27943689A JP H03140424 A JPH03140424 A JP H03140424A
Authority
JP
Japan
Prior art keywords
vessel
container
reduction
conduit
condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1279436A
Other languages
Japanese (ja)
Other versions
JP2761485B2 (en
Inventor
Tatsuo Narutomi
成富 辰雄
Yoshinobu Toshida
利田 義信
Toshiyuki Oota
太田 年幸
Masashi Katsumaru
勝丸 昌司
Hisayuki Wada
和田 久幸
Takashi Sakano
阪野 喬
Tadayuki Choshi
調子 忠行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Osaka Titanium Co Ltd
Original Assignee
Chugai Ro Co Ltd
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd, Osaka Titanium Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP27943689A priority Critical patent/JP2761485B2/en
Publication of JPH03140424A publication Critical patent/JPH03140424A/en
Application granted granted Critical
Publication of JP2761485B2 publication Critical patent/JP2761485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To completely absorb the thermal expansion of a duct with a simple structure and to accurately control the mass of the residue in a reduction vessel by allowing one between the reduction vessel and condensation vessel in parallel to each other with the duct to follow the thermal expansion of the duct and supporting the other through a weight sensor. CONSTITUTION:The reduction vessel 10 and a heating furnace 20 are supported through a load cell 16, the condensation vessel 30 is set in a cooling furnace 40 and supported on a rack along with the furnace 40 through an air spring 60. At this time, the vessel 30 and furnace 40 are positioned at the neutral point of the spring 60 when the duct 70 is thermally expanded. The vessel 30 and furnace 40 are drawn toward the vessel 10 in consideration of the expansion of the duct 70, and the upper ports of the vessels 10 and 30 are connected with the horizontal duct 70. When the unreacted active metal and chloride remaining in the spongy metal formed in the vessel 10 are recovered in the vessel 30 by vacuum separation, the weight change of the vessel 10 is detected by a sensor 16. The progress of recovery is estimated from the change.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、Ti、Zr等の高融点高靭性金属を還元分離
により製造する装置およびその装置を使用した高融点高
靭性金属の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for producing high-melting-point, high-toughness metals such as Ti and Zr by reductive separation, and a method for producing high-melting-point, high-toughness metals using the apparatus. .

〔従来の技術〕[Conventional technology]

Ti、Zr等の高融点高靭性金属は、工業的Gこはその
塩化物を利用した還元法で製造されている。
High-melting-point, high-toughness metals such as Ti and Zr are produced by an industrial reduction method using the chloride of G.

還元法による高融点高靭性金属の製造には、従来より還
元容器と凝縮容器とが用いられており、最近は両者を並
置し、水平な導管で相互に連結した装置構成が多く採用
されている。
In the production of high-melting-point, high-toughness metals using reduction methods, reduction vessels and condensation vessels have traditionally been used, and recently equipment configurations in which both are placed side by side and interconnected through horizontal conduits have been increasingly adopted. .

このような製造装置では、還元容器内に高融点高靭性の
スポンジ状金属を生成させた後、そのスポンジ状金属に
残留する未反応活性金属およびその塩化物が真空分離さ
れ、その物質が導管を通して凝縮容器に回収される。真
空分離物質を凝縮容器に回収する場合、真空分離物質を
導管内で凝固させないために、導管が加熱されるが、そ
の加熱に伴って導管が熱膨張するのを避けることができ
ない。この熱膨張による導管の伸びは、大型装置では数
01m以上に及び、還元容器とiIi?容器とを水平な
導管で接続した装置での大きな問題になっている。従っ
て、この種の装置では導管の熱膨張を吸収することが重
要課題になっており、そのための具体的対策としては、
導管を途中で分断し、その間に間隙を設けた接続構造が
特開昭59−80593号公報に開示されている。
In such production equipment, after a high melting point and high toughness sponge metal is produced in a reduction vessel, the unreacted active metal and its chloride remaining in the sponge metal are vacuum separated, and the material is passed through a conduit. Collected in a condensation vessel. When the vacuum-separated substance is collected in a condensation vessel, the conduit is heated in order to prevent the vacuum-separated substance from solidifying within the conduit, but thermal expansion of the conduit due to the heating cannot be avoided. The extension of the conduit due to this thermal expansion is several hundred meters or more in large equipment, and the reduction vessel and iii? This is a major problem in devices that are connected to containers using horizontal conduits. Therefore, absorbing the thermal expansion of the conduit is an important issue in this type of equipment, and specific measures for this purpose include:
JP-A-59-80593 discloses a connection structure in which a conduit is divided in the middle and a gap is provided between the conduits.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記接続構造では、小型装置での導管の熱膨
張は上記間隙により吸収できるが、大型装置での数cm
以上に達する導管の伸びは殆ど吸収されない。従って、
導管の相互接続部分や導管と容器との接続部分に応力が
集中し、これらの接続部分に亀裂を発生させるおそれが
ある。しかも、上記間隙をシールするためのパツキンに
は冷却手段を必要とする。この冷却は導管の加熱と並行
して行われるので、技術的に難しく、接続構造の複雑化
を招き、実用的とは言い難い。
However, in the above connection structure, thermal expansion of the conduit in a small device can be absorbed by the gap, but in a large device the thermal expansion can be absorbed by several centimeters.
The elongation of the conduit exceeding this amount is hardly absorbed. Therefore,
Stress is concentrated at the interconnections of the conduits and the connections between the conduits and the container, which can cause cracks to form at these connections. Furthermore, the gasket for sealing the gap requires cooling means. Since this cooling is performed in parallel with the heating of the conduit, it is technically difficult, leads to a complicated connection structure, and is hardly practical.

また、還元容器内に生成した高融点高靭性のスポンジ状
金属に残留する未反応活性金属およびその塩化物を凝縮
容器に回収する場合、還元容器内の残留物を量が増加す
ると製品品質が低下し、必要以上に真空分離処理を行っ
た場合には電力使用量が増加し、経済性が低下する。従
って、還元容器内の最終的な残留物質量を正確に管理す
る必要がある。しかるに、還元容器内の残留物質量につ
いては、従来は定量的な検出法が存在しなかった。
In addition, when recovering unreacted active metals and their chlorides remaining in the high-melting-point, high-toughness spongy metal generated in the reduction vessel into the condensation vessel, the product quality will deteriorate as the amount of residue in the reduction vessel increases. However, if the vacuum separation process is performed more than necessary, the amount of electricity used will increase and the economic efficiency will decrease. Therefore, it is necessary to accurately control the final amount of residual substances in the reduction container. However, conventionally, there has been no quantitative detection method for the amount of residual substances in the reduction container.

従って、分離回収の処理時間は炉の使用電力の変化や経
験的な時間計算から統計的に決定されており、その結果
、残留物質量が一定しないという問題を生じていた。
Therefore, the processing time for separation and recovery is statistically determined based on changes in the power consumption of the furnace and empirical time calculations, resulting in the problem that the amount of residual substances is not constant.

本発明は斯かる状況に鑑みなされたもので、簡単な構造
で導管の熱膨張を完全に吸収できると共に、還元容器内
の残留物質を分離回収する場合に分離回収反応の進行度
が定量的に推定でき、適正な時間で分離回収処理を行う
ことができる高融点高靭性金属の製造装置および方法を
提供することを目的とする。
The present invention was developed in view of this situation, and it has a simple structure that can completely absorb the thermal expansion of the conduit, and also allows quantitative progress of the separation and recovery reaction when separating and recovering residual substances in the reduction vessel. It is an object of the present invention to provide an apparatus and method for producing a high-melting-point, high-toughness metal that can be estimated and separated and recovered in an appropriate time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の製造装置は、製造すべき高融点高靭性金属の塩
化物を活性金属で還元して高融点高靭性のスポンジ状金
属を生成する還元容器と、該還元容器内に生成したスポ
ンジ状金属に残留する未反応活性金属およびその塩化物
を真空分離により回収する凝縮容器とを備えており、該
凝縮容器が前記還元容器の側方に並設され、両者が導管
にて一体的に連結されると共に、還元容器もしくは凝縮
容器の一方が、前記導管の熱膨張に伴って従動し得るよ
うに支持され、他方が重量センサを介して支持されてい
ることを特徴としてなる。
The production apparatus of the present invention includes a reduction container for reducing a chloride of a high-melting-point, high-toughness metal to be produced with an active metal to produce a high-melting-point, high-toughness sponge-like metal, and a sponge-like metal produced in the reduction container. and a condensation container for recovering unreacted active metals and their chlorides remaining in the reactor by vacuum separation, and the condensation container is arranged side by side with the reduction container, and both are integrally connected by a conduit. In addition, one of the reduction vessel and the condensation vessel is supported so as to be able to follow the thermal expansion of the conduit, and the other is supported via a weight sensor.

本発明の製造方法は、前記還元容器内に生成したスポン
ジ状金属に残留する未反応活性金属およびその塩化物を
真空分離により前記凝縮容器内に回収する際に、重量セ
ンサを介して支持された容器の重量変化を検出し、検出
された重量変化より分離回収反応の進行度を推定するこ
とを特徴としてなる。
In the production method of the present invention, when the unreacted active metal and its chloride remaining in the sponge-like metal generated in the reduction vessel are recovered into the condensation vessel by vacuum separation, the The feature is that the weight change of the container is detected and the progress of the separation and recovery reaction is estimated from the detected weight change.

〔作  用〕[For production]

本発明の製造装置では、導管の熱膨張に伴って還元容器
もしくは凝縮容器の一方の容器が全体的に従動するので
、両方の容器が導管で一体的に連結さ耗ていても導管の
熱膨張が吸収される。従って、導管全体を一体的に構成
でき、その加熱が容易になると共に、パツキンおよびそ
の冷却機構が不用になり、導管およびその付帯機構が著
しく簡素化される。また、導管の熱膨張は、導管を通じ
て回収する物質の量や温度による影響を受け、複雑な伸
びを示すが、容器の従動で熱膨張を吸収する場合には、
導管の複雑な伸びにも容器が正確に追従し、その伸びを
確実に吸収することができる。
In the manufacturing apparatus of the present invention, one of the reducing vessels and the condensing vessel is entirely driven by the thermal expansion of the conduit, so even if both vessels are integrally connected by the conduit and worn out, the conduit expands thermally. is absorbed. Therefore, the entire conduit can be constructed in one piece, making it easy to heat the conduit, and eliminating the need for a packing and its cooling mechanism, thereby significantly simplifying the conduit and its ancillary mechanisms. In addition, the thermal expansion of a conduit is affected by the amount and temperature of the material recovered through the conduit, and exhibits complicated elongation, but when thermal expansion is absorbed by a container,
The container can accurately follow the complicated elongation of the conduit and reliably absorb the elongation.

更に、他方の容器が重量センサを介して支持されている
ので、還元容器内の残留物質を分離回収する際に、その
容器の重量変化を重量センサによって検出すれば、分離
回収反応の進行度を定量的に推定できる。すなわち1.
還元容器の重量変化を測定すれば、還元容器内に残留す
る残留物質の残留量が測定でき、凝縮容器の重量変化を
測定すれば、上記残留物質の凝縮容器への回収量が測定
できる。
Furthermore, since the other container is supported via a weight sensor, when the residual substance in the reduction container is separated and recovered, if the weight sensor detects a change in the weight of the container, the progress of the separation and recovery reaction can be monitored. Can be estimated quantitatively. That is, 1.
By measuring the change in the weight of the reduction container, the amount of the residual substance remaining in the reduction container can be measured, and by measuring the change in the weight of the condensation container, the amount of the residual substance recovered into the condensation container can be measured.

本発明の製造方法は、重量センサで支持された側の容器
の重量変化を分離回収中に検出することにより、分離回
収反応の進行度を定量的に推定するものであり、これに
より正値な回収処理時間の設定を可能にする。
The manufacturing method of the present invention quantitatively estimates the progress of the separation and recovery reaction by detecting changes in the weight of the container supported by a weight sensor during separation and recovery. Allows collection processing time to be set.

本発明の製造装置および方法では、還元容器もしくは凝
縮容器の一方が熱膨張吸収のために可動とされるが、実
操業上は凝縮容器の側を可動とするのが望ましい。これ
は分離回収工程では内容物の重量が凝縮容器の方で軽く
、容器移動が容易なこと、還元容器が移動するとその加
熱状態が変化するおそれがあることなどが理由である。
In the manufacturing apparatus and method of the present invention, either the reduction vessel or the condensation vessel is movable to absorb thermal expansion, but in actual operation it is desirable that the condensation vessel side is movable. This is because, in the separation and recovery process, the weight of the contents in the condensation container is lighter than that in the condensation container, making it easier to move the container, and the heating state of the reduction container may change if it is moved.

容器を可動とするための具体的手段としては容器を流体
スプリングで直接的又は間接的に支持するのが望ましい
。流体スプリングで容器を支持した場合には容器が僅か
の外力で移動し、導管に加わる応力が一層緩和されると
共に、回収処理が進行して容器の重量が変化しても、流
体圧を調整することにより容器を一定の高さに簡単に保
つことができる。
As a specific means for making the container movable, it is desirable to directly or indirectly support the container with a fluid spring. When the container is supported by a fluid spring, the container moves with a slight external force, further relieving stress on the conduit, and even if the weight of the container changes as the recovery process progresses, the fluid pressure can be adjusted. This makes it easy to keep the container at a constant height.

重量センサとしては、ロードセル、ストレインゲージ等
の電気的手段の他、容器の重量変化を直接秤量する機械
的手段等を挙げることができる。
Examples of the weight sensor include electrical means such as load cells and strain gauges, as well as mechanical means that directly measure changes in the weight of the container.

〔実施例〕〔Example〕

以下に本発明の実施例をTiの製造について詳細に説明
する。
Examples of the present invention will be described in detail below regarding the production of Ti.

第1図は本発明を実施した製造装置の一例を示す断面図
である。
FIG. 1 is a sectional view showing an example of a manufacturing apparatus embodying the present invention.

還元容器10は加熱炉20に収容されている。The reduction container 10 is housed in a heating furnace 20.

還元容器10の上方口部にはTicl、aの導入管11
が接続されており、底部には副産物の排出管11が接続
されている。そして、還元容器lOを加熱炉20内に支
持するフランジ部15の下面と加熱炉20の上面との間
には、重量センサとしてのロードセル16が介設されて
いる。
At the upper opening of the reduction container 10 is an inlet pipe 11 for Ticl, a.
is connected, and a by-product discharge pipe 11 is connected to the bottom. A load cell 16 as a weight sensor is interposed between the lower surface of the flange portion 15 that supports the reduction container IO in the heating furnace 20 and the upper surface of the heating furnace 20.

凝縮容器30は冷却炉40に収容され、還元容器10と
は同一の構造で互換的に使用される。冷却炉40は、加
熱炉20に並設された円筒状の架台50上にエアースプ
リング60を介してフローティング状態に支持されてお
り、更にレベル計を備えている。エアースプリング6o
は環状のエアバックで、図示されないエアー供給装置に
接続されている。エアー供給装置はレベル計の出力に基
づいてエアースプリング60に加えるエアー圧を調整し
て、冷却炉40の高さを一定に保つようになっている。
The condensation vessel 30 is housed in the cooling furnace 40 and has the same structure as the reduction vessel 10 and is used interchangeably. The cooling furnace 40 is supported in a floating state via an air spring 60 on a cylindrical pedestal 50 arranged in parallel with the heating furnace 20, and further includes a level gauge. air spring 6o
is an annular air bag connected to an air supply device (not shown). The air supply device adjusts the air pressure applied to the air spring 60 based on the output of the level meter to keep the height of the cooling furnace 40 constant.

還元容器10の上方口部と凝縮容器30の上方口部とは
、水平な導管70で接続されている。導管70は上記両
口部に着脱可能に結合され、外周面をヒータ71で被覆
されている。導管70と上記両開口部との間はバルブ7
2.73にて開閉される。
The upper opening of the reduction vessel 10 and the upper opening of the condensation vessel 30 are connected by a horizontal conduit 70. The conduit 70 is removably connected to both openings, and its outer peripheral surface is covered with a heater 71. A valve 7 is provided between the conduit 70 and both openings.
It will be opened and closed at 2.73.

このような製造装置でTiを製造するには、還元容器l
Oをロードセル16を介して加熱炉20にセットすると
共に、凝縮容器30を冷却炉40にセットして冷却炉4
0ごと架台50上にエアースプリング60により支持す
る。この時、凝縮容器30および冷却炉40は導管70
が熱膨張した状態でエアースプリング60の中立点に位
置するようにセットされる。そして、凝縮容器30およ
び冷却炉40を導管70の膨張に見合う量だけ還元容器
10の側に引き寄せて、還元容器10と凝縮容器30と
を導管70で接続する。
In order to produce Ti using such production equipment, a reduction vessel l
O is set in the heating furnace 20 via the load cell 16, and the condensing vessel 30 is set in the cooling furnace 40.
0 is supported on a pedestal 50 by an air spring 60. At this time, the condensing vessel 30 and the cooling furnace 40 are connected to the conduit 70.
is set to be located at the neutral point of the air spring 60 in a thermally expanded state. Then, the condensation vessel 30 and the cooling furnace 40 are drawn toward the reduction vessel 10 by an amount corresponding to the expansion of the conduit 70, and the reduction vessel 10 and the condensation vessel 30 are connected by the conduit 70.

次いで、バルブ72.73を閉じた状態で加熱炉20を
作動させて還元容器lO内に溶融Mgを保持し、導入管
11よりTiC1,を導入する。
Next, the heating furnace 20 is operated with the valves 72 and 73 closed to maintain molten Mg in the reduction vessel IO, and TiC1 is introduced from the introduction pipe 11.

これにより、還元容器10内にTiおよびMgCN□が
生成される。生成したMg(l□は適宜排出管12より
外部に排出される。そして、最終的には未反応Mgおよ
びMgC1tを含むスポンジ状Tiが得られる。
As a result, Ti and MgCN□ are generated within the reduction container 10. The generated Mg(l□) is appropriately discharged to the outside from the discharge pipe 12. Finally, spongy Ti containing unreacted Mg and MgClt is obtained.

還元工程が終了すると、バルブ72.73を開放した後
、加熱炉20を1000°C以上に昇温し、導管70を
MgおよびMgC1,が凝縮しない温度までヒータ71
にて加熱する。また、凝縮容器30を冷却炉40内で冷
却しつつ排出管32を利用して凝縮容器30内を真空引
きする。これにより、還元容器lO内のスポンジ状Ti
に含まれる未反応MgおよびMgCff1.は蒸発し、
導管70を経由して凝縮容器30内に補集される。
When the reduction process is completed, after opening the valves 72 and 73, the temperature of the heating furnace 20 is raised to 1000°C or higher, and the conduit 70 is heated with the heater 71 to a temperature at which Mg and MgCl do not condense.
Heat it up. Furthermore, while cooling the condensing vessel 30 within the cooling furnace 40, the inside of the condensing vessel 30 is evacuated using the exhaust pipe 32. As a result, the spongy Ti in the reduction container IO
Unreacted Mg and MgCff1. evaporates,
It is collected via conduit 70 into condensation vessel 30 .

この分離回収工程においては、導管70がヒータ71に
よる加熱で膨張して軸方向に伸びる。しかし、その伸び
に伴って凝縮容器30が冷却炉40と共に還元容器10
から離反し、その移動量が予め加熱炉20の側へ引き寄
せた量と相殺されることにより、凝縮容器30および冷
却炉40はエアースプリング60の中立点に復帰する。
In this separation and recovery step, the conduit 70 is expanded by heating by the heater 71 and extends in the axial direction. However, as the condensation vessel 30 expands, the reduction vessel 10 along with the cooling furnace 40
The condensing vessel 30 and the cooling furnace 40 return to the neutral point of the air spring 60 by moving away from the air spring 60 and by canceling out the amount of movement that was drawn toward the heating furnace 20 in advance.

従って、導管70や導管70と容器との接続部に問題と
なる応力は生じない。
Therefore, no problematic stress occurs in the conduit 70 or the connection between the conduit 70 and the container.

また、凝縮容器30内にMgおよびMgCCが補集・さ
れるに従って凝縮容器30の重量が増加し、エアースプ
リング60に加わる荷重が増大するが、凝縮容器30の
高さが一定に保たれるようにエアースプリング60のエ
アー圧が増加するので、還元容器lOと凝縮容器30と
は常に同じレヘルに保たれる。従って、導管70の傾斜
に起因する応力発生も防止される。
Further, as Mg and MgCC are collected and collected in the condensation vessel 30, the weight of the condensation vessel 30 increases, and the load applied to the air spring 60 increases, but the height of the condensation vessel 30 is kept constant. Since the air pressure of the air spring 60 increases, the reduction vessel lO and the condensation vessel 30 are always kept at the same level. Therefore, stress generation due to the inclination of the conduit 70 is also prevented.

本発明の製造方法は、このようなTi製造の分離回収工
程において、ロードセル16により還元容器lOの重量
変化を測定するものである。還元容器10の重量は、そ
の内部のスポンジ状Tiから逸散するMg量およびMg
C12tTに応じて減少する。従って、還元容器lOの
重量変化を測定することにより、MgおよびMgCjl
!zの原発回収量が定量的に検出される。そして、この
蒸発回収量の変化と従来からの使用電力量の変化等とか
ら、還元容器lO内のスポンジ状Tiに含まれる未反応
MgttおよびMg(12量の推移が明らかになり、最
適な分離回収処理時間を求めることができる。その結果
、スポンジTi中に残留するMg量およびM g Cl
 を量が十分に減少し、なおかつ無駄な処理時間が減少
して電力使用量の節減が図られる。
In the production method of the present invention, the change in weight of the reduction vessel IO is measured by the load cell 16 in such a separation and recovery step of Ti production. The weight of the reduction container 10 is determined by the amount of Mg escaping from the spongy Ti inside it and the amount of Mg
It decreases according to C12tT. Therefore, by measuring the weight change of the reduction container IO, Mg and MgCjl
! The amount of recovered nuclear power plant z is detected quantitatively. From this change in the amount of evaporation recovery and the change in the amount of electricity used compared to the conventional amount, the trends in the amount of unreacted Mgtt and Mg (12) contained in the spongy Ti in the reduction vessel IO were clarified, and the optimal separation was determined. The recovery processing time can be determined.As a result, the amount of Mg remaining in the Ti sponge and the amount of MgCl
The amount of processing is sufficiently reduced, and wasteful processing time is also reduced, leading to savings in power consumption.

第1表は電力使用量およびスポンジTi中の残留物質量
を従来法と本発明法とについて示している。従来の電力
使用量を100とした場合、本発明法では電力使用量が
90に減少し、スポンジTiの塩素含有量のばらつきも
大巾に減少する。
Table 1 shows the amount of power used and the amount of residual substances in the Ti sponge for the conventional method and the method of the present invention. When the conventional power usage is set to 100, the power usage is reduced to 90 in the method of the present invention, and the variation in the chlorine content of the Ti sponge is also greatly reduced.

第1表 面間である。Table 1 It is between men.

図中、lO:還元容器、16;重量センサ、20:加熱
炉、30;凝縮容器、40:冷却炉、50:架台、60
:エアースプリング、70:導管。
In the figure, 1O: reduction container, 16: weight sensor, 20: heating furnace, 30: condensation container, 40: cooling furnace, 50: frame, 60
: Air spring, 70: Conduit.

出 願 人 大阪チタニウム製造株式会社〔発明の効果
〕 本発明の製造装置および方法は、還元容器と凝縮容器と
を並置一体化した場合に問題となる導管の熱膨張を確実
に吸収し、導管およびその接続部分の亀裂損傷を防止し
て装置寿命の延長をVる。
Applicant: Osaka Titanium Manufacturing Co., Ltd. [Effects of the Invention] The manufacturing apparatus and method of the present invention reliably absorb thermal expansion of the conduit, which becomes a problem when a reduction vessel and a condensation vessel are placed side by side and integrated. This prevents cracks and damage to the connecting parts and extends the life of the device.

また、導管全体を一体化でき、導管途中にパツキン類を
介在させる必要がないので、導管の構造が簡素化され、
その加熱が容易になると共に、接続部を起点とする導管
の詰まりが防止される。更に、残留物質の分離回収時間
の適正化を図り、電力使用量の節減と製品品質の向上と
を達成する。
In addition, the entire conduit can be integrated, and there is no need to interpose gaskets in the middle of the conduit, so the structure of the conduit is simplified.
Its heating is facilitated and clogging of the conduit starting from the connection is prevented. Furthermore, the separation and collection time of residual substances is optimized, thereby achieving reductions in power consumption and improvement in product quality.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (2)

【特許請求の範囲】[Claims] (1)製造すべき高融点高靭性金属の塩化物を活性金属
で還元して高融点高靭性のスポンジ状金属を生成する還
元容器と、該還元容器内に生成したスポンジ状金属に残
留する未反応活性金属およびその塩化物を真空分離によ
り回収する凝縮容器とを備えており、該凝縮容器が前記
還元容器の側方に並設され、両者が導管にて一体的に連
結されると共に、還元容器もしくは凝縮容器の一方が、
前記導管の熱膨張に伴って従動し得るように支持され、
他方が重量センサを介して支持されていることを特徴と
する高融点高靭性金属の製造装置。
(1) A reduction vessel in which the chloride of the high-melting-point, high-toughness metal to be produced is reduced with an active metal to produce a high-melting-point, high-toughness sponge-like metal, and any residue remaining in the sponge-like metal produced in the reduction vessel. It is equipped with a condensation container for recovering reactive metals and their chlorides by vacuum separation, and the condensation container is arranged side by side with the reduction container, and both are integrally connected by a conduit. Either the vessel or the condensing vessel is
supported so as to be able to follow thermal expansion of the conduit;
A high melting point high toughness metal manufacturing apparatus characterized in that the other side is supported via a weight sensor.
(2)前記還元容器内に生成したスポンジ状金属に残留
する未反応活性金属およびその塩化物を真空分離により
前記凝縮容器内に回収する際に、重量センサを介して支
持された容器の重量変化を前記重量センサにより検出し
、検出された容器の重量変化より分離回収反応の進行度
を推定することを特徴とする高融点靭性金属の製造方法
(2) When the unreacted active metal and its chloride remaining in the spongy metal generated in the reduction container are recovered into the condensation container by vacuum separation, the weight of the container supported via the weight sensor changes. is detected by the weight sensor, and the progress of the separation and recovery reaction is estimated from the detected weight change of the container.
JP27943689A 1989-10-26 1989-10-26 Apparatus and method for producing high melting point high toughness metal Expired - Lifetime JP2761485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27943689A JP2761485B2 (en) 1989-10-26 1989-10-26 Apparatus and method for producing high melting point high toughness metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27943689A JP2761485B2 (en) 1989-10-26 1989-10-26 Apparatus and method for producing high melting point high toughness metal

Publications (2)

Publication Number Publication Date
JPH03140424A true JPH03140424A (en) 1991-06-14
JP2761485B2 JP2761485B2 (en) 1998-06-04

Family

ID=17611043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27943689A Expired - Lifetime JP2761485B2 (en) 1989-10-26 1989-10-26 Apparatus and method for producing high melting point high toughness metal

Country Status (1)

Country Link
JP (1) JP2761485B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210128A (en) * 1982-05-31 1983-12-07 Hiroshi Ishizuka Device and method for reduction and refining of metallic chloride
JPS5916928A (en) * 1982-07-21 1984-01-28 Mitsubishi Metal Corp Apparatus for manufacturing metal of high-m.p. and high toughness
JPS5980593A (en) * 1982-10-28 1984-05-10 石塚 博 Connecting constitution of high-temperature fluid conduit
JPS59133335A (en) * 1983-01-18 1984-07-31 Hiroshi Ishizuka Reduction refining device for metallic chloride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210128A (en) * 1982-05-31 1983-12-07 Hiroshi Ishizuka Device and method for reduction and refining of metallic chloride
JPS5916928A (en) * 1982-07-21 1984-01-28 Mitsubishi Metal Corp Apparatus for manufacturing metal of high-m.p. and high toughness
JPS5980593A (en) * 1982-10-28 1984-05-10 石塚 博 Connecting constitution of high-temperature fluid conduit
JPS59133335A (en) * 1983-01-18 1984-07-31 Hiroshi Ishizuka Reduction refining device for metallic chloride

Also Published As

Publication number Publication date
JP2761485B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
CN104152722A (en) Titanium sponge double-magnesium chloride tube reactor and production method of titanium sponge
CN101831562B (en) Double-magnesium chloride pipe reactor for production of sponge titanium and production method of sponge titanium
US4556420A (en) Process for combination metal reduction and distillation
CN101118211B (en) High-temperature steam oxidation test device
JP2013116879A (en) Apparatus and method for purifying organic material
CN105080427B (en) A kind of HTHP water-cooled can weigh reactor
US3684264A (en) Apparatus for reduction of titanium halides and subsequent vacuum separation of reduction products
CN201329273Y (en) Reactor for preparing iodine pentafluoride
JPH03140424A (en) Method and device for producing metal high in melting point and toughness
CN102660698A (en) Vacuum induction melting method for titanium-containing hydrogen storage alloy
JPH0347929A (en) Method and apparatus for producing refractory metal with high toughness
CN111249761B (en) Molten salt distillation purification method and equipment
CN107230506A (en) Fused salt distilling apparatus and method
JP2766802B2 (en) High melting point high toughness metal production equipment
CN206362178U (en) A kind of vacuum synthesis stove
CN111485113B (en) Alkali metal impurity pretreatment device
US2987462A (en) High temperature electrolytic cell
KR101155100B1 (en) Equipment for residual salt recovery from uranium metal reduced
US5290015A (en) Method of producing high-melting-point and high-toughness metal and apparatus for the same
CN212713626U (en) Round billet vacuum degassing device for forging
CN106766910A (en) High temperature corrosion resistant vacuum synthesis stove and its process
CN108704329A (en) A kind of metal caesium or the canned system and device of rubidium molecular distillation and technological process
Mc Creary High-purity calcium
WO2018186768A1 (en) Method and device for reducing metals in a spherical apparatus with an internal heater
CN206989757U (en) Water vapour reuse means

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12