JPH0314011B2 - - Google Patents

Info

Publication number
JPH0314011B2
JPH0314011B2 JP56150132A JP15013281A JPH0314011B2 JP H0314011 B2 JPH0314011 B2 JP H0314011B2 JP 56150132 A JP56150132 A JP 56150132A JP 15013281 A JP15013281 A JP 15013281A JP H0314011 B2 JPH0314011 B2 JP H0314011B2
Authority
JP
Japan
Prior art keywords
acid
dichlorostyrene
cathode
anode
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56150132A
Other languages
Japanese (ja)
Other versions
JPS5852236A (en
Inventor
Tatsuya Shono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHONO TAMIE
Original Assignee
SHONO TAMIE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHONO TAMIE filed Critical SHONO TAMIE
Priority to JP56150132A priority Critical patent/JPS5852236A/en
Priority to US06/352,546 priority patent/US4544766A/en
Priority to GB8205956A priority patent/GB2098597B/en
Priority to DE3207506A priority patent/DE3207506C2/en
Priority to CH1326/82A priority patent/CH650763A5/en
Priority to FR8203699A priority patent/FR2522651B1/fr
Publication of JPS5852236A publication Critical patent/JPS5852236A/en
Publication of JPH0314011B2 publication Critical patent/JPH0314011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は新規なジクロルスチレン誘導体及びそ
の製造法に関する。 本発明のジクロルスチレン誘導体は文献未載の
新規化合物であつて、下記式で示される。 4−ヒドロキシ−β,β−ジクロルスチレン
は、これを加水分解することによつて医薬の中間
体として重要なp−ヒドロキシフエニル酢酸、p
−ヒドロキシフエニル酢酸アミド等に容易に導く
ことができる。それ故4−ヒドロキシ−β,β−
ジクロルスチレンはp−ヒドロキシフエニル酢
酸、p−ヒドロキシフエニル酢酸アミド等の合成
原料として極めて価値が高い。 フエニルトリクロルメチルカルビノール誘導体
からβ,β−ジクロルスチレン誘導体へ変換する
唯一の文献としてAngew.Chem・Int.Ed,Engl.,
16,57〜58(1977)がある。しかしこの文献では
ベンゼン核上に化学的に活性な置換基を有する化
合物は全く検討されていない。而して化学的に活
性な水酸基を有する4−ヒドロキシフエニルトリ
クロルメチルカルビノールがどのように反応する
かにつき予測することは極めて困難である。しか
も上記文献の方法は、電極に公害、毒性の点で現
在問題化し、使用中止される方向にある水銀を用
いる必要があること、電流効率が著しく悪く経済
的に使用し得ないこと、目的化合物の実質収率が
80%程度であること等製造面においても欠点を有
している。これに対して本発明の方法によれば、
種々の原料、製法から容易に得られる4−ヒドロ
キシフエニルトリクロルメチルカルビノールを電
解還元することによつて、安全に容易にしかも高
収率で4−ヒドロキシ−β,β−ジクロルスチレ
ンを製造することができる。 本発明において出発原料として用いられる4−
ヒドロキシフエニルトリクロルメチルカルビノー
ルは公知の化合物であり、例えばフエノールへの
クロラールの付加反応によつて、或いはp−ヒド
ロキシベンズアルデヒドとクロロホルムとから相
間移動触媒又は電解方法によつて容易に得ること
ができる。 本発明の電解還元反応は有機溶媒又は水−有機
溶媒中、酸性条件下にて行われる。有機溶媒とし
てはメタノール、エタノール等のアルコール類、
ジオキサン、メチルセロソルブ等のエーテル類、
アセトニトリル、ジメチルホルムアミド等、水を
ある程度溶解し、電解中、不活性である溶媒が使
用される。酸性条件を維持するためには、例えば
あらゆる種類の無機酸、有機酸を用いることがで
きるが、通常は塩酸、硫酸等の鉱酸、ベンゼンス
ルホン酸、トルエンスルホン酸等の有機酸が好ま
しい。 本発明においては支持電解質としては、特に制
限されず、酸性を維持するために使用される酸を
支持電解質としても使用出来るし、或いはテトラ
エチルアンモニウムクロライド、テトラメチルア
ンモニウムクロライド等の第3級アミンの塩酸
塩、硫酸塩などの塩類、パラトルエンスルホン酸
テトラエチルアンモニウム塩、パラトルエンスル
ホン酸テトラメチルアンモニウム塩、過塩素酸テ
トラメチルアンモニウム塩等の第4級アンモニウ
ム塩、ホウフツ化水素酸ナトリウム、ホウフツ化
水素酸テトラメチルアンモニウム塩等のホウフツ
化水素酸塩、ベンゼンスルホン酸、トルエンスル
ホン酸等のアルカリ金属塩、その他アルカリ金
属、アルカリ土類金属の塩類等の通常の支持電解
質を使用することが出来る。支持電解質の使用量
は広い範囲から選択できるが、好ましくは原料1
モルに対し約0.01〜10モルの範囲で良い。電極材
料としては炭素、白金、チタン、鉄、ステンレ
ス、ニツケル、鉛等の通常の電極を使用すること
が出来る。経済性も考慮に入れて好ましい例とし
ては陰極に鉛、陽極に炭素の使用を挙げることが
できる。電極は定電流電解でも定電位電解でもよ
い。本発明では隔膜を必ずしも必要としないが、
隔膜を使用する場合には隔膜としては、高分子隔
膜、イオン交換膜、ガラスフイルター、素焼板等
の隔膜を用いることが出来る。反応温度として
は、10〜70℃の範囲が好ましいが、それ以外の温
度でも可能である。更に好ましいのは、20〜60℃
の範囲である。電流密度としては、特に限定され
ないが、生産効率、反応時間、収率等の点から50
〜500mA/cm2、好ましくは50〜300mA/cm2であ
る。 本発明の目的化合物は、例えば抽出、濃縮、蒸
留、再結晶、カラムクロマトグラフイー等の通常
の方法によつて反応混合物から容易に分離、精製
することが出来る。 以下実施例により本発明を説明する。 実施例 1 濃塩酸10ml、パラトルエンスルホン酸テトラエ
チルアンモニウム塩2.5g及びトリエチルアンモ
ニウムクロライド5.5gをエタノール60mlに溶解
し、この溶液を隔膜で隔てた陽極室と陰極室に入
れる。陰極室にパラヒドロキシフエニルトリクロ
ルメチルカルビノール10ミリモルを加え、陰極に
鉛、陽極に炭素を用いて定電流電解を行つた。
5F/モル通電後、陰極液を水200mlに加え、50ml
のヘキサンで4回抽出を行つた後、ヘキサン抽出
液を無水硫酸マグネシウムで乾燥する。溶媒を留
去した後シリカゲルカラムで残渣を分離、精製す
るとパラヒドロキシ−β,β−ジクロルスチレン
1.80gを得る。収率95.2%、mp90〜91℃。 IR(cm-1)3370,1604,1500,1442,1375,
1235,1180,1109,909,873,821,682 実施例 2 3%の硫酸を含有するメタノール50mlを隔膜で
隔てた陽極室、陰極室に入れる。更に陰極室にパ
ラヒドロキシフエニルトリクロルメチルカルビノ
ール2.415gを加える。陽極、陰極に鉛を用いて
定電流電解を行つた。反応温度を45〜50℃に保
ち、3F/モル通電後、実施例1と同様の処理を
行うと、目的物1.83g(収率96.8%)を得る。 実施例 3 3%の硫酸、20%の水を含有するメタノール溶
液50mlを隔膜で隔てた陽極室、陰極室に入れ、更
にパラヒドロキシフエニルトリクロルメチルカル
ビノール2.415gを陰極室に加える。陽極及び陰
極に鉛を用いて定電流電解を行つた。反応温度を
40〜45℃に保ち、3F/モル通電後実施例1と同
様の処理を行うと目的物1.79g(収率94.7%)を
得る。 実施例 4 3%の硫酸を含有するアセトニトリル50mlをイ
オン交換膜で隔てた陽極室、陰極室に入れ、更に
パラヒドロキシフエニルトリクロルメチルカルビ
ノール2.415gを陰極室に加える。陽極及び陰極
に鉛を用いて50〜55℃の温度で定電流電解を行
い、3F/モルの通電後実施例1と同様の処理を
行うと目的物1.84g(収率97.4%)を得る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel dichlorostyrene derivative and a method for producing the same. The dichlorostyrene derivative of the present invention is a novel compound that has not been described in any literature, and is represented by the following formula. 4-Hydroxy-β,β-dichlorostyrene can be hydrolyzed to produce p-hydroxyphenylacetic acid, p-hydroxyphenylacetic acid, which is important as a pharmaceutical intermediate.
-Hydroxyphenylacetamide etc. can be easily derived. Therefore 4-hydroxy-β,β-
Dichlorostyrene is extremely valuable as a raw material for the synthesis of p-hydroxyphenylacetic acid, p-hydroxyphenylacetic acid amide, and the like. The only literature on converting phenyltrichloromethylcarbinol derivatives to β,β-dichlorostyrene derivatives is Angew.Chem・Int.Ed, Engl.
16, 57-58 (1977). However, this document does not consider any compounds having chemically active substituents on the benzene nucleus. Therefore, it is extremely difficult to predict how 4-hydroxyphenyltrichloromethylcarbinol, which has a chemically active hydroxyl group, will react. Moreover, the method described in the above document requires the use of mercury in the electrode, which is currently causing problems in terms of pollution and toxicity, and whose use is on the verge of being discontinued; the current efficiency is extremely poor and it cannot be used economically; The real yield of
It also has drawbacks in terms of manufacturing, such as being about 80%. In contrast, according to the method of the present invention,
4-Hydroxy-β,β-dichlorostyrene can be produced safely, easily, and in high yield by electrolytically reducing 4-hydroxyphenyltrichloromethylcarbinol, which can be easily obtained from various raw materials and manufacturing methods. can do. 4- used as starting material in the present invention
Hydroxyphenyltrichloromethylcarbinol is a known compound and can be easily obtained, for example, by addition reaction of chloral to phenol, or from p-hydroxybenzaldehyde and chloroform by phase transfer catalyst or electrolytic method. . The electrolytic reduction reaction of the present invention is carried out in an organic solvent or a water-organic solvent under acidic conditions. Organic solvents include alcohols such as methanol and ethanol,
Ethers such as dioxane and methyl cellosolve,
Solvents that dissolve water to some extent and are inert during electrolysis are used, such as acetonitrile and dimethylformamide. In order to maintain acidic conditions, for example, all kinds of inorganic acids and organic acids can be used, but mineral acids such as hydrochloric acid and sulfuric acid, and organic acids such as benzenesulfonic acid and toluenesulfonic acid are usually preferred. In the present invention, the supporting electrolyte is not particularly limited, and any acid used to maintain acidity can be used as the supporting electrolyte, or hydrochloric acid of a tertiary amine such as tetraethylammonium chloride, tetramethylammonium chloride, etc. Salts, salts such as sulfates, quaternary ammonium salts such as para-toluenesulfonic acid tetraethylammonium salt, para-toluenesulfonic acid tetramethylammonium salt, perchloric acid tetramethylammonium salt, sodium hydroborofluoride, hydroborofluoric acid Usual supporting electrolytes such as hydroborofluoride salts such as tetramethylammonium salts, alkali metal salts such as benzenesulfonic acid and toluenesulfonic acid, and salts of other alkali metals and alkaline earth metals can be used. The amount of supporting electrolyte to be used can be selected from a wide range, but preferably the amount of raw material 1
The amount may range from about 0.01 to 10 moles. As the electrode material, ordinary electrodes such as carbon, platinum, titanium, iron, stainless steel, nickel, and lead can be used. Taking economic efficiency into consideration, a preferable example is to use lead for the cathode and carbon for the anode. The electrode may be a constant current electrolyzer or a constant potential electrolyzer. Although the present invention does not necessarily require a diaphragm,
When a diaphragm is used, a polymer diaphragm, an ion exchange membrane, a glass filter, a clay plate, or the like can be used as the diaphragm. The reaction temperature is preferably in the range of 10 to 70°C, but other temperatures are also possible. More preferably 20~60℃
is within the range of The current density is not particularly limited, but from the viewpoint of production efficiency, reaction time, yield, etc.
-500 mA/ cm2 , preferably 50-300 mA/ cm2 . The target compound of the present invention can be easily separated and purified from the reaction mixture by conventional methods such as extraction, concentration, distillation, recrystallization, and column chromatography. The present invention will be explained below with reference to Examples. Example 1 10 ml of concentrated hydrochloric acid, 2.5 g of paratoluenesulfonic acid tetraethylammonium salt, and 5.5 g of triethylammonium chloride are dissolved in 60 ml of ethanol, and this solution is placed in an anode chamber and a cathode chamber separated by a diaphragm. 10 mmol of parahydroxyphenyltrichloromethylcarbinol was added to the cathode chamber, and constant current electrolysis was performed using lead as the cathode and carbon as the anode.
After energizing 5F/mol, add catholyte to 200ml of water and add 50ml
After extraction was performed four times with hexane, the hexane extract was dried over anhydrous magnesium sulfate. After distilling off the solvent, the residue is separated and purified using a silica gel column, resulting in parahydroxy-β,β-dichlorostyrene.
Obtain 1.80g. Yield 95.2%, mp90~91℃. IR (cm -1 ) 3370, 1604, 1500, 1442, 1375,
1235, 1180, 1109, 909, 873, 821, 682 Example 2 50 ml of methanol containing 3% sulfuric acid is placed in an anode chamber and a cathode chamber separated by a diaphragm. Furthermore, 2.415 g of parahydroxyphenyltrichloromethylcarbinol is added to the cathode chamber. Constant current electrolysis was performed using lead as the anode and cathode. The reaction temperature was maintained at 45 to 50° C., and the same treatment as in Example 1 was performed after applying a current of 3 F/mol, to obtain 1.83 g (yield: 96.8%) of the target product. Example 3 50 ml of a methanol solution containing 3% sulfuric acid and 20% water is placed in an anode chamber and a cathode chamber separated by a diaphragm, and 2.415 g of parahydroxyphenyltrichloromethylcarbinol is added to the cathode chamber. Constant current electrolysis was performed using lead as the anode and cathode. reaction temperature
The mixture was maintained at 40 to 45° C., and the same treatment as in Example 1 was performed after applying a current of 3F/mol to obtain 1.79 g (yield: 94.7%) of the desired product. Example 4 50 ml of acetonitrile containing 3% sulfuric acid is placed in an anode chamber and a cathode chamber separated by an ion exchange membrane, and 2.415 g of parahydroxyphenyltrichloromethylcarbinol is added to the cathode chamber. Constant current electrolysis is performed at a temperature of 50 to 55° C. using lead as an anode and a cathode, and after applying a current of 3 F/mol, the same treatment as in Example 1 is performed to obtain 1.84 g (yield: 97.4%) of the target product.

Claims (1)

【特許請求の範囲】 1 式 で示される4−ヒドロキシ−β,β−ジクロルス
チレン。 2 式 で示される4−ヒドロキシフエニルトリクロルメ
チルカルビノールを電解還元することを特徴とす
る4−ヒドロキシ−β,β−ジクロルスチレンの
製造法。 3 酸性条件下に電解還元を行う特許請求の範囲
第2項記載の方法。 4 電解還元を10〜70℃にて行う特許請求の範囲
第2項又は第3項に記載の方法。
[Claims] 1 formula 4-hydroxy-β,β-dichlorostyrene represented by 2 formulas 1. A method for producing 4-hydroxy-β,β-dichlorostyrene, which comprises electrolytically reducing 4-hydroxyphenyltrichloromethylcarbinol. 3. The method according to claim 2, wherein the electrolytic reduction is carried out under acidic conditions. 4. The method according to claim 2 or 3, wherein the electrolytic reduction is carried out at 10 to 70°C.
JP56150132A 1981-03-06 1981-09-21 Dichlorostyrene derivative and its preparation Granted JPS5852236A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56150132A JPS5852236A (en) 1981-09-21 1981-09-21 Dichlorostyrene derivative and its preparation
US06/352,546 US4544766A (en) 1981-03-06 1982-02-26 Process for preparing aryl acetic acid derivatives
GB8205956A GB2098597B (en) 1981-03-06 1982-03-01 Process for preparing aryl acetic acid derivatives
DE3207506A DE3207506C2 (en) 1981-03-06 1982-03-02 Process for the preparation of arylacetic acid derivatives
CH1326/82A CH650763A5 (en) 1981-03-06 1982-03-04 METHOD FOR PRODUCING ARYL ACETIC DERIVATIVES.
FR8203699A FR2522651B1 (en) 1981-03-06 1982-03-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150132A JPS5852236A (en) 1981-09-21 1981-09-21 Dichlorostyrene derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS5852236A JPS5852236A (en) 1983-03-28
JPH0314011B2 true JPH0314011B2 (en) 1991-02-25

Family

ID=15490176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150132A Granted JPS5852236A (en) 1981-03-06 1981-09-21 Dichlorostyrene derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS5852236A (en)

Also Published As

Publication number Publication date
JPS5852236A (en) 1983-03-28

Similar Documents

Publication Publication Date Title
JP6843120B2 (en) (4S) -4- (4-Cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthalene-3-carboxamide preparation method and electrochemical method Recovery of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthalidine-3-carboxamide
JPH0314011B2 (en)
JPS6342713B2 (en)
US4988416A (en) Process for the electrosynthesis of aldehydes
US4115216A (en) Process for the electrochemical dihydrogenation of naphthyl ethers
JPS60234987A (en) Manufacture of m-hydroxybenzyl alcohol
JPH01312094A (en) Production of hydroxycarboxylic ester
Hutchins et al. Reduction of tertiary halides to hydrocarbons with sodium borohydride in sulfolane
JPH02179890A (en) Preparation of dihydroxydione
CN113789527B (en) Electrochemical synthesis method of aromatic amine
US4475992A (en) Cyclohexadiene derivatives and process for preparing the same
JPH0116916B2 (en)
JPH0116917B2 (en)
JP4683216B2 (en) Sulfooxyalkylthiophene compound and process for producing the same
JPS6112886A (en) Manufacture of phthalaldehyde acetal
JP2632832B2 (en) Method for producing polyfluorobenzyl alcohol
CN117512616A (en) Method for synthesizing homoallylic alcohol
CN117822001A (en) Method for preparing benzyl alcohol and derivatives thereof through electrochemical catalysis
JP2622115B2 (en) Method for producing benzyl alcohols
JPS58144487A (en) Preparation of dichloroethenyl compound
JPH0569812B2 (en)
JPH01157924A (en) Production of bromofluoromethane
JPS6319594B2 (en)
JPS632249B2 (en)
JPH04218688A (en) Production of quinone derivative