JPH03139168A - Series resonance converter - Google Patents

Series resonance converter

Info

Publication number
JPH03139168A
JPH03139168A JP27624589A JP27624589A JPH03139168A JP H03139168 A JPH03139168 A JP H03139168A JP 27624589 A JP27624589 A JP 27624589A JP 27624589 A JP27624589 A JP 27624589A JP H03139168 A JPH03139168 A JP H03139168A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
inductor
current
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27624589A
Other languages
Japanese (ja)
Inventor
Toru Abe
徹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP27624589A priority Critical patent/JPH03139168A/en
Publication of JPH03139168A publication Critical patent/JPH03139168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To suppress resonance current, even when output voltage drops through overcurrent protective operation, by setting switch ON interval approximately same as half of resonance period of a resonance circuit. CONSTITUTION:Since a second inductor 9 functions not to clamp a capacitor 5 at an input voltage or zero voltage, ON interval of first and second switches 6, 7 matches with half of the resonance period of a resonance circuit comprising a first inductor 8 and the capacitor 5, and thereby the characteristic impedance of the resonance circuit is set optimally. When the output voltage drops through overcurrent protective operation, voltage across a primary winding 12 decreases to cause increase of voltage Vcr across the capacitor 5, but since feedback current iH also increases voltage Vor drops to some constant level upon turn OFF of the switches 6, 7. Consequently, charging voltage and discharging voltage of the capacitor 5, controlled respectively through the switches 6 and 7, are suppressed resulting in suppression of current iR.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、定電圧電源装置に用いられる直列共振形コン
バータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a series resonant converter used in a constant voltage power supply.

〔従来の技術〕[Conventional technology]

直列共振コンバータは、直列共振回路によりスイッチを
流れる電流波形が正弦波状となり、スイッチのオン時、
オフ時の電流、電圧の重なりを著しく低減できる。その
ため、高効率、低雑音の特徴をもち、駆動周波数の高周
波化により、小型化が可能である。このようなコンバー
タは、1983年4月のPCIlorlandoで、R
、tl 、 Bakerによって発表されたlligh
 Frequency Power Conversi
on With  FET−Controlled  
Re5onant  Charge  Transfe
rに見られる。この報告によるコンバータの基本回路図
を第5図に、各部の動作波形を第6図に示す。
In a series resonant converter, the waveform of the current flowing through the switch is sinusoidal due to the series resonant circuit, and when the switch is turned on,
The overlap of current and voltage when off can be significantly reduced. Therefore, it has the characteristics of high efficiency and low noise, and can be miniaturized by increasing the driving frequency. Such a converter was introduced in PCIlorlando in April 1983 by R
, tl, lligh published by Baker
Frequency Power Conversi
on With FET-Controlled
Re5onant Charge Transfer
Seen in r. The basic circuit diagram of the converter according to this report is shown in FIG. 5, and the operating waveforms of each part are shown in FIG.

以下、Bakerのコンバータの動作を説明する。The operation of Baker's converter will be explained below.

制御回路18からの駆動電圧■g、により、スイッチ6
がオンとなり、直流電源1→スイッチ6→インダクタ8
→1次巻線12→キャパシタ5→直流電源1のループと
、キャパシタ4→スイッチ6→インダクタ8→1次巻線
12→キャパシタ4のループに電流が流れ、インダクタ
8とキャパシタ4.5の共振により正弦波状電流となる
。この期間が1.であるキャパシタ5の電圧Verが入
力電圧v1に達すると、ダイオード2が導通1、インダ
クタ8→1次巻Ia12→ダイオード2→スイッチ6の
ループに電流が流れ、直線的に減少する。
Due to the driving voltage g from the control circuit 18, the switch 6
turns on, and DC power supply 1 → switch 6 → inductor 8
→ Primary winding 12 → Capacitor 5 → DC power supply 1 loop, and capacitor 4 → Switch 6 → Inductor 8 → Primary winding 12 → Capacitor 4 loop, current flows, and resonance between inductor 8 and capacitor 4.5 This results in a sinusoidal current. This period is 1. When the voltage Ver of the capacitor 5 reaches the input voltage v1, the diode 2 becomes conductive 1, and a current flows through the loop of the inductor 8 -> the primary winding Ia12 -> the diode 2 -> the switch 6, and decreases linearly.

この期間がL8である。スイッチ6がオフ、スイッチ7
がオンの状態でも同様な動作となる。Bakerのコン
バータの出力電力Poは次式で与える。
This period is L8. Switch 6 is off, switch 7
The same operation occurs even when is on. The output power Po of Baker's converter is given by the following equation.

Po=Vi”XCrXfsvMXy7 ここで、Crは共振キャパシタンス、fswは駆動周波
数、ηは効率である。
Po=Vi''XCrXfsvMXy7 Here, Cr is resonance capacitance, fsw is drive frequency, and η is efficiency.

駆動周波数が制限されても、共振キャパシタンスを大き
くすれば出力電力を増加させることができる。
Even if the driving frequency is limited, the output power can be increased by increasing the resonant capacitance.

特開昭61−185070号公報「直列共振回路を有す
る電力変換装置」では、共振電流を検出して、零電流時
にスイッチをオン及びオフに切り換えることにより、ス
イッチの導通期間を最適に調節する方法が記載されてい
る。
JP-A-61-185070 ``Power converter with series resonant circuit'' discloses a method for optimally adjusting the conduction period of a switch by detecting a resonant current and switching the switch on and off when the current is zero. is listed.

〔発明が解決しようとする課題] 前記のBakerのコンバータの場合、tlとし、の和
がスイッチのオン期間tonであるが、入力電圧■1が
上昇すると期間t、が増加するため、導通期間tonは
最大入力電圧を考慮して設定しなければならない。この
ため、オン期間tonは共振回路の共振半周期よりかな
り長くなるため、コンバータの最高駆動周波数は制限さ
れてしまう間居点がある。
[Problem to be Solved by the Invention] In the case of the Baker's converter described above, the sum of tl and t is the on-period ton of the switch, but as the input voltage 1 increases, the period t increases, so the conduction period ton must be set taking into account the maximum input voltage. Therefore, since the on-period ton is considerably longer than the resonant half cycle of the resonant circuit, there is a point where the maximum driving frequency of the converter is limited.

更に、高力短縮等の過負荷時に過電流保護回路で出力電
圧を低下させた場合、共振電流が増大し、パワー素子の
負担が増加する問題点がある(電子情報通信学会技術報
告Vo1.87  No。169  pp23〜28直
列共振形コンバータを用いた整流器参照)。
Furthermore, if the output voltage is reduced by an overcurrent protection circuit during an overload such as a high-power shortening, there is a problem that the resonance current increases and the load on the power element increases (IEICE Technical Report Vol. 1.87) No. 169 pp23-28 (Refer to rectifier using series resonant converter).

また、前記特開昭61−185070号公報記載のもの
では、電流検出器及びいくつかの論理回路が必要となる
ため、制御回路が複雑となり、高コストである。
Furthermore, the method described in Japanese Patent Application Laid-open No. 185070/1983 requires a current detector and several logic circuits, making the control circuit complicated and expensive.

従って、本発明の日的は、共振回路の特性インピーダン
スを最適にするため、スイッチのオンと共振回路の共振
半周期をほぼ等しく設定可能であり、過電流保護動作に
よる出力電圧低下時でも共振電流の増大を抑制できる直
列共振形コンバータを提供す−ることにある。
Therefore, the main feature of the present invention is that in order to optimize the characteristic impedance of the resonant circuit, it is possible to set the switch on and the resonant half period of the resonant circuit to be approximately equal, and even when the output voltage drops due to overcurrent protection, the resonant current It is an object of the present invention to provide a series resonant converter that can suppress an increase in .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、直流入力電源と一端が互いに接続され他端が
それぞれ前記直流入力電源の両端に接続された第1及び
第2のスイッチ素子と、一端が互いに接続され他端がそ
れぞれ前記直流入力電源の両端に接続された第1及び第
2のダイオードと、前記第1及び第2のスイッチ素子の
接続点と1前記第1及び第2のダイオードの接続点との
間に直列に接続挿入された第1及び第2のインダクタと
1次巻線を有するトランスと、前記直流入力電源の負極
端に一端を他端を前記トランスの一次巻線と第2のイン
ダクタの接続点に接続したキャパシタと、前記第1及び
第2のスイッチ素子を負荷によって決定される動作周波
数で駆動させる制御手回路と、前記トランスの2次巻線
に整流回路と平滑回路を備えた直列共振形コンバータで
ある。
The present invention provides first and second switching elements having one end connected to each other and the other ends connected to both ends of the DC input power source, and a second switch element having one end connected to each other and the other end connected to the DC input power source. A first and a second diode connected to both ends of the first and second diodes are inserted in series between a connection point of the first and second switch elements and a connection point of the first and second diodes. a transformer having first and second inductors and a primary winding; a capacitor having one end connected to the negative terminal of the DC input power source and the other end connected to a connection point between the transformer primary winding and the second inductor; The converter is a series resonant converter that includes a control circuit that drives the first and second switching elements at an operating frequency determined by the load, and a rectifier circuit and a smoothing circuit in the secondary winding of the transformer.

本発明において、第1のインダクタ8とトランスの1次
巻線12は直列に接続され、直列スイッチ6.7の接続
点とキャパシタ5の接続点との間に挿入されている。第
2のインダクタ9は、キャパシタ5の接続点と直列ダイ
オード2.3の接続点との間に挿入されている。更に負
荷により決定される駆動周波数でスイッチをオン・オフ
する制御回路18を含む。第2のインダクタ9の作用に
より、キャパシタ5は入力電圧Vi及びゼロでクランプ
されないため、第1及び第2のスイッチのオン期間は、
第1のインダクタ8とキャパシタ5による共振の共振半
周期と一致でき共振回路の特性インピーダンスを最適に
設定できる。しかも、3Iji電流保電流保護上る出力
電圧低下時でも、第2のインダクタ9とキャパシタ5の
共振により、第1及び第2のスイッチ6.7がオンする
前のキャパシタ5の電圧が調節されるため、共振電流の
増大を抑制することができる。
In the present invention, the first inductor 8 and the primary winding 12 of the transformer are connected in series and inserted between the connection point of the series switch 6.7 and the connection point of the capacitor 5. A second inductor 9 is inserted between the connection point of the capacitor 5 and the connection point of the series diode 2.3. It further includes a control circuit 18 that turns the switch on and off at a drive frequency determined by the load. Due to the action of the second inductor 9, the capacitor 5 is not clamped at the input voltage Vi and zero, so the on-periods of the first and second switches are
This can match the resonance half period of the resonance caused by the first inductor 8 and capacitor 5, and the characteristic impedance of the resonant circuit can be optimally set. Moreover, even when the output voltage drops due to current holding current protection, the resonance between the second inductor 9 and the capacitor 5 adjusts the voltage of the capacitor 5 before the first and second switches 6.7 are turned on. , it is possible to suppress an increase in resonance current.

また、駆動回路を簡素化するため、第1のスイッチ6の
ターンオフ後直ちに第2のスイッチ7がオンとなる回路
では、共振電流の正と負をバランスさせるため、別のキ
ャパシタを第2のインダクタ9に直列に接続するとよい
In addition, in order to simplify the drive circuit, in a circuit where the second switch 7 is turned on immediately after the first switch 6 is turned off, another capacitor is connected to the second inductor in order to balance the positive and negative resonance currents. 9 in series.

以下、本発明を実施例によって具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例〕〔Example〕

(実施例1) 第1図は本発明の実施例、第2図は第1図の実施例の通
常の動作を説明するための各部波形図、第3図は第1図
の実施例の出力短絡時の動作を説明するための各部波形
図である。以下、本発明の詳細な説明する。
(Example 1) Fig. 1 is an embodiment of the present invention, Fig. 2 is a waveform diagram of each part for explaining the normal operation of the embodiment of Fig. 1, and Fig. 3 is an output of the embodiment of Fig. 1. FIG. 4 is a waveform diagram of each part for explaining the operation at the time of a short circuit. The present invention will be explained in detail below.

スイッチ6.7は制御回路18により、負荷によって決
まる駆動周波数でオン−オフする。各スイッチのオン時
間は制御回路18の内部で固定に設定され、両方のスイ
ッチがオフしている期間を可変して出力電圧を制御して
いる。制御回路18は専用ICが市販されている。まず
、スイッチ6がオンすると、直流電源1→スイッチ6→
インダグタ8→1次巻線12→キャパシタ5→直流電源
1のループに電流iRが流れ、インダクタ8とキャパシ
タ5の共振により、正弦波状の電流となる。
The switch 6.7 is turned on and off by the control circuit 18 at a drive frequency determined by the load. The on-time of each switch is fixed within the control circuit 18, and the output voltage is controlled by varying the off-time period of both switches. A dedicated IC for the control circuit 18 is commercially available. First, when switch 6 is turned on, DC power supply 1 → switch 6 →
A current iR flows through the loop of inductor 8 → primary winding 12 → capacitor 5 → DC power supply 1, and due to the resonance of inductor 8 and capacitor 5, the current becomes a sinusoidal current.

キャパシタ5の電圧Verが入力電圧Viに達するとダ
イオード2が導通1、キャパシタ5→インダクタ9→ダ
イオード2→直流電源1→キヤパシタ5のループに帰還
電流iHが流れ、キャパシタ5とインダクタ9の共振に
より、正弦波状の電流どなる。スイッチ6は電流iRが
零となるインダクタ8とキャパシタ5の共振の半周期以
後にオフにする。
When the voltage Ver of the capacitor 5 reaches the input voltage Vi, the diode 2 becomes conductive 1, and a feedback current iH flows through the loop of the capacitor 5 → inductor 9 → diode 2 → DC power supply 1 → capacitor 5, and due to the resonance of the capacitor 5 and inductor 9. , a sinusoidal current roars. The switch 6 is turned off after the half period of resonance between the inductor 8 and the capacitor 5 when the current iR becomes zero.

次にスイッチ7がオンすると、キャパシタ5→1次巻線
12→インダクタ8→スイッチ7→キャパシタ5のルー
プに電流iRが流れる。キャパシタ5の電圧Verがゼ
ロに達すると、ダイオード3が導通し、キャパシタ5→
ダイオード3が導通し、キャパシタ5のループに電流i
Hが流れる。
Next, when switch 7 is turned on, current iR flows through the loop of capacitor 5 → primary winding 12 → inductor 8 → switch 7 → capacitor 5. When the voltage Ver of the capacitor 5 reaches zero, the diode 3 becomes conductive and the capacitor 5→
Diode 3 conducts and current i flows through the loop of capacitor 5.
H flows.

スイッチ7は電流iRが零となるタイミング以後にオフ
にする。
The switch 7 is turned off after the timing when the current iR becomes zero.

出力短絡時は過電流保護回路により、駆動周波数は抑制
されるが、1次巻線間の電圧はほぼゼロとなるためスイ
ッチを流れる電流は増大しようとする。しかし、インダ
クタ9とキャパシタ5の共振により、スイッチがオンす
る前のキャパシタ5の充電電圧が高くなるため、スイッ
チを流れる電流の増大は抑制される。
When the output is short-circuited, the drive frequency is suppressed by the overcurrent protection circuit, but since the voltage across the primary winding becomes almost zero, the current flowing through the switch tends to increase. However, due to the resonance between the inductor 9 and the capacitor 5, the charging voltage of the capacitor 5 before the switch is turned on increases, so that an increase in the current flowing through the switch is suppressed.

第4図は、スイッチ6のターンオフ後直ちにスイッチ7
がオンとなる回路であるが、共振電流iRの正と負をバ
ランスさせるため、インダクタ9に直列に第2のキャパ
シタ1oを接続している。
FIG. 4 shows that switch 7 is immediately turned off after switch 6 is turned off.
is turned on, and a second capacitor 1o is connected in series with the inductor 9 in order to balance the positive and negative sides of the resonant current iR.

この場合には第2図の■g8.■gsで見られるような
休止期間はない。その為に回路の非対称性によって帰還
電流LH,共振電流iRの波形が正と負で異なるピーク
値を呈する現象を生じる。この現象は共振電流iRの第
1のキャパシタ5への充電期間と放電期間とでVerが
異なることに起因する。
In this case, ■g8 in Figure 2. ■There is no downtime like there is in GS. Therefore, due to the asymmetry of the circuit, a phenomenon occurs in which the waveforms of the feedback current LH and the resonant current iR exhibit different peak values for positive and negative waves. This phenomenon is caused by the difference in Ver between the charging period and the discharging period of the resonant current iR to the first capacitor 5.

そこで第2のキャパシタ10を接続すると、その蓄積電
荷の作用によって帰還電流iH1共振電流IRの正負の
アンバランスを補償できる。
Therefore, when the second capacitor 10 is connected, the positive/negative imbalance of the feedback current iH1 resonant current IR can be compensated for by the action of its accumulated charge.

第4図の実施例のコンバータでは、入力電圧DC200
〜350■、出力DC24V、12.5Aの仕様で、効
率は最高の92,5%に達する。
In the converter of the embodiment shown in FIG. 4, the input voltage DC200
~350cm, output DC24V, 12.5A specifications, efficiency reaches the highest 92.5%.

これは前述のBakerのコンバータによる最高80%
に比べても、また、現在量も一般的な矩形波形コンバー
タに比べても、極めて高効率である。
This is up to 80% by the Baker converter mentioned above.
It has extremely high efficiency compared to the current quantity and general rectangular waveform converter.

〔発明・考案の効果〕[Effects of inventions and ideas]

従来のコンバータでは、入力範囲が広い場合、共振回路
の特性インピーダンスを低くしなければならないため、
低効串であったが、本発明により、特性インピーダンス
を最適に設定できるため、効率を著しく向上できる。ま
た、過電流保護動作による出力電圧低下時の共振電流の
増大を抑制して、スイッチ素子の負担を軽減できる。
In conventional converters, when the input range is wide, the characteristic impedance of the resonant circuit must be low.
Although the efficiency of the skewer was low, according to the present invention, the characteristic impedance can be set optimally, so the efficiency can be significantly improved. Further, it is possible to suppress an increase in resonance current when the output voltage drops due to overcurrent protection operation, and to reduce the load on the switch element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す回路図、第2図は
第1図の実施例の通常の動作を説明するための各部波形
図、第3図は第1図の実施例の出力短絡時の動作を説明
するための各部波形図、第4図は本発明の第2の実施例
を示す回路図、第5図は従来方式を示す回路図、第6図
は第5図の従来方式の動作を説明するため各部波形図で
ある。 第 図 第4 図 図面の浄書(内容に変更なし) 第1図 第2 第6図 手続補正書防式、 手続補正書(1類 し 1、事件の表示 平成 1年特許願第276245号 2、発明の名称 直列共振形コンバータ 3、補正をする者 事件との関係   特 許 出願大 佐 所   東京都千代田区丸の内二丁目1番2号平成
 こる、2g
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, FIG. 2 is a waveform diagram of each part to explain the normal operation of the embodiment of FIG. 1, and FIG. 3 is an example of the embodiment of FIG. 1. 4 is a circuit diagram showing the second embodiment of the present invention, FIG. 5 is a circuit diagram showing the conventional method, and FIG. FIG. 3 is a waveform diagram of each part for explaining the operation of the conventional method. Figure 4 Figure 4 Engraving of drawings (no changes in content) Figure 1 Figure 2 Figure 6 Procedural amendment form, Procedural amendment form (Category 1, 1, Indication of case, 1999 Patent Application No. 276245 2, Title of the invention: Series resonant converter 3, relationship with the case of the person making the amendments Patent applicant office: 2-1-2 Marunouchi, Chiyoda-ku, Tokyo Heisei Koru, 2g

Claims (3)

【特許請求の範囲】[Claims] (1)直流入力電源と、一端が互いに接続され他端がそ
れぞれ前記直流入力電源の両端に接続された第1及び第
2スイッチ素子と、一端が互いに接続され他端がそれぞ
れ前記直流入力電源の両端に接続された第1及び第2の
ダイオードと、前記第1及び第2のスイッチ素子の接続
点と前記第1及び第2のダイオードの接続点との間に直
列に接続挿入された第1及び第2のインダクタとトラン
スの1次巻線と、前記直流入力電源の負極端に一端を他
端を前記トランスの一次巻線と第2のインダクタの接続
点に接続したキャパシタと、前記第1及び第2のスイッ
チ素子を負荷によって決定される動作周波数で駆動させ
る制御回路と、前記トランスの2次巻線に整流回路と平
滑回路を備えた直列共振形コンバータ。
(1) A DC input power source, first and second switch elements each having one end connected to each other and the other end connected to both ends of the DC input power source; a first and a second diode connected to both ends; a first and second diodes connected in series between a connection point of the first and second switch elements and a connection point of the first and second diodes; and a second inductor, a primary winding of the transformer, a capacitor having one end connected to the negative terminal of the DC input power supply and the other end connected to a connection point between the primary winding of the transformer and the second inductor, and the first and a control circuit for driving a second switching element at an operating frequency determined by the load, and a series resonant converter comprising a rectifier circuit and a smoothing circuit in the secondary winding of the transformer.
(2)前記第1のインダクタを前記トランスの漏れイン
ダクタンスで代用する請求項1に記載の直列共振形コン
バータ。
(2) The series resonant converter according to claim 1, wherein the first inductor is replaced by a leakage inductance of the transformer.
(3)前記第2のインダクタと前記キャパシタの他端の
接続点との間に第2のキャパシタを直列に接続挿入した
請求項1に記載の直列共振形コンバータ。
(3) The series resonant converter according to claim 1, wherein a second capacitor is connected and inserted in series between the second inductor and a connection point at the other end of the capacitor.
JP27624589A 1989-10-24 1989-10-24 Series resonance converter Pending JPH03139168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27624589A JPH03139168A (en) 1989-10-24 1989-10-24 Series resonance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27624589A JPH03139168A (en) 1989-10-24 1989-10-24 Series resonance converter

Publications (1)

Publication Number Publication Date
JPH03139168A true JPH03139168A (en) 1991-06-13

Family

ID=17566727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27624589A Pending JPH03139168A (en) 1989-10-24 1989-10-24 Series resonance converter

Country Status (1)

Country Link
JP (1) JPH03139168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035745A1 (en) * 2010-09-16 2012-03-22 株式会社アドバンテスト Wireless energy transfer device and wireless energy transfer system
US8791601B2 (en) 2010-04-02 2014-07-29 Advantest Corporation Wireless power receiving apparatus and wireless power supply system
CN104917364A (en) * 2015-06-23 2015-09-16 杭州中恒派威电源有限公司 Novel LLC overcurrent protection circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791601B2 (en) 2010-04-02 2014-07-29 Advantest Corporation Wireless power receiving apparatus and wireless power supply system
WO2012035745A1 (en) * 2010-09-16 2012-03-22 株式会社アドバンテスト Wireless energy transfer device and wireless energy transfer system
CN103141008A (en) * 2010-09-16 2013-06-05 株式会社爱德万测试 Wireless energy transfer device and wireless energy transfer system
JPWO2012035745A1 (en) * 2010-09-16 2014-01-20 株式会社アドバンテスト Wireless power supply apparatus and wireless power supply system
CN104917364A (en) * 2015-06-23 2015-09-16 杭州中恒派威电源有限公司 Novel LLC overcurrent protection circuit

Similar Documents

Publication Publication Date Title
US6788556B2 (en) Switching power source device
US4845605A (en) High-frequency DC-DC power converter with zero-voltage switching of single primary-side power device
US7295449B2 (en) Simple switched-mode power supply with current and voltage limitation
JPH0197169A (en) High-frequency resonance type power converter
KR20110094162A (en) Dc-dc converter circuit
US11139734B2 (en) DC/DC power converter
JPH1189232A (en) Switching electric power supply equipment
US5172308A (en) DC-DC converter with transformer having a single secondary winding
US5640318A (en) Forward converter for off-line applications
US5986898A (en) Switched-mode power supply with power factor correction
US6625042B2 (en) Power supply arrangement comprising a DC/DC converter with primary-side control loop
JPH07123717A (en) Switching power unit
US6252782B1 (en) Switching power supply utilizing magnetically coupled series inductors
EP1001514A2 (en) Switched power converter with hold-up time and harmonics reduction
EP0058399B1 (en) High frequency switching circuit
EP1220435A2 (en) Switched power converter
JPH03139168A (en) Series resonance converter
JP3159261B2 (en) Snubber circuit and switching power supply using the same
JP3175388B2 (en) Switching power supply
EP1341144B1 (en) Power circuit for a plasma display
EP0949751A2 (en) Generator for arc welding machines with forward topology and active clamp
CA3062530C (en) Dc/dc power converter
EP1172922B1 (en) Universal switched power converter
JP2656625B2 (en) Resonant converter
KR100202024B1 (en) Circuit for protecting power loss in a smps