JPH03139141A - Method and apparatus for controlling magnetic bearing - Google Patents

Method and apparatus for controlling magnetic bearing

Info

Publication number
JPH03139141A
JPH03139141A JP27277789A JP27277789A JPH03139141A JP H03139141 A JPH03139141 A JP H03139141A JP 27277789 A JP27277789 A JP 27277789A JP 27277789 A JP27277789 A JP 27277789A JP H03139141 A JPH03139141 A JP H03139141A
Authority
JP
Japan
Prior art keywords
electromagnet
rotating shaft
electromagnetic force
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27277789A
Other languages
Japanese (ja)
Other versions
JPH07118883B2 (en
Inventor
Toshiro Higuchi
俊郎 樋口
Takeshi Mizuno
毅 水野
Manabu Ootsuka
まなぶ 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Original Assignee
Seiko Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK filed Critical Seiko Seiki KK
Priority to JP1272777A priority Critical patent/JPH07118883B2/en
Publication of JPH03139141A publication Critical patent/JPH03139141A/en
Publication of JPH07118883B2 publication Critical patent/JPH07118883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To accurately control a magnetic bearing by reducing to input a compensating value output from a reverse transfer function circuit at a compensation signal input point. CONSTITUTION:A compensating value corresponding to a deviation between a rotating axis at the angular position of a rotational shaft 1 output from a reverse transfer function circuit 21 and a geometrical center line is input to a subtracter 24 at a compensation signal input point, the value is subtracted to be input to a control signal in a signal path from a point of inputting a reference position signal for bringing the rotating axis of the shaft 1 into coincidence with a geometrical center line to the input points of electromagnet excited power amplifiers 4, 5 to become a correction control signal. As a result, an exciting current controlled according to the correction control signal is supplied to electromagnets 2, 3, and the shaft 1 is rotatably supported by a magnetic bearing for not generating an electromagnetic force of a vibrating period for suppressing the vibration of the shaft 1 by the influence of a resonance without bringing the rotating axis into coincidence with the geometrical center line.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気軸受の制御方法と制御装置、特に各種
外乱が加わる回転軸の回転に対する磁気軸受の制御方法
と制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and device for controlling a magnetic bearing, and more particularly to a method and device for controlling a magnetic bearing with respect to rotation of a rotating shaft subjected to various disturbances.

〔従来の技術] 磁気軸受においては、通常2回転軸は、電磁石に対応す
る回転軸の外周面の幾何学中心線(以下幾何学中心線と
いう)が回転軸線に一致するように制御される。
[Prior Art] In a magnetic bearing, two rotating shafts are usually controlled so that the geometric center line (hereinafter referred to as the geometric center line) of the outer peripheral surface of the rotating shaft corresponding to the electromagnet coincides with the rotation axis.

しかし、その場合、例えば回転軸に取付けた回転体に不
釣合があると、回転軸の幾何学中心線、即ち回転軸線が
慣性中心線とは一致しないので、好ましくない振動が生
じる。
However, in this case, if the rotating body attached to the rotating shaft is unbalanced, for example, the geometrical center line of the rotating shaft, that is, the axis of rotation, does not coincide with the center line of inertia, resulting in undesirable vibrations.

そこで、慣性中心線口りに回転軸を回転するように回転
軸を支承する磁気軸受を制御することにより上記の問題
は解決される。
Therefore, the above problem can be solved by controlling the magnetic bearing that supports the rotating shaft so as to rotate the rotating shaft around the center line of inertia.

磁気軸受における回転軸線を慣性中心線に一致させる従
来の技術(特公昭60−14929号公報参照)におい
ては、回転軸の半径方向の位置を検出する変位検出器と
角速度を検出する角速度検出器を設け、前者の変位信号
と後者の角速度信号からの正弦・余弦信号(sinωt
、 cosωt)とで演算して、変位信号中に含まれる
ωを周期成分を除去するのである。
In the conventional technology (see Japanese Patent Publication No. 60-14929) for aligning the axis of rotation in a magnetic bearing with the center line of inertia, a displacement detector for detecting the radial position of the rotation axis and an angular velocity detector for detecting the angular velocity are used. sine and cosine signals (sinωt) from the former displacement signal and the latter angular velocity signal.
, cosωt) to remove the periodic component of ω contained in the displacement signal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

磁気軸受における回転軸線を慣性中心線に一致させる上
記の従来の技術は、非常に高精度なアナログ制御技術が
必要である。即ち、非常に高精度な検出器及び正確な三
角関数を創成し、更に正確な演算を行うために非常に高
精度な(電圧変動・温度変動に対し安定度が高く、演算
に際して広範囲電圧に亘って誤差が小さい)電子回路が
必要である。
The above-mentioned conventional technique for aligning the axis of rotation in a magnetic bearing with the center line of inertia requires a highly accurate analog control technique. In other words, we created extremely high-precision detectors and accurate trigonometric functions, and in order to perform even more accurate calculations, we created extremely high-precision detectors (highly stable against voltage fluctuations and temperature fluctuations, and used over a wide range of voltage during calculations). electronic circuit (with small error) is required.

しかも、安定性を得るための補償回路は非常に複雑とな
り、信頼性にも限界がある。
Moreover, the compensation circuit for achieving stability is extremely complex and has a limited reliability.

従って、上記の従来の技術は、信頼性上でも、構成的・
価格的にも実用性に乏しい。
Therefore, the above conventional technology has problems in terms of reliability and configuration.
Price wise, it is also impractical.

この発明は、慣性中心線回りに回転軸を回転するように
回転軸を支承するように磁気軸受を制御する技術におい
て、上記のような従来の技術が具備する諸問題を解消し
、磁気軸受を高精度に制御する実用的な制御技術を提供
するものである。
This invention solves the problems of the above-mentioned conventional techniques in the technology of controlling a magnetic bearing to support a rotating shaft so that it rotates around the center line of inertia. This provides practical control technology that provides highly accurate control.

更に、回転体が取付けられた回転軸、流体機器の回転軸
の回転において、従来の制御方式で回転軸線が幾何学中
心線に維持されようとする回転軸は、回転体を含む回転
軸の共振周波数や流体作動空間における共振周波数によ
る振動によりそのまま振動を受でしまう。
Furthermore, in the rotation of a rotating shaft to which a rotating body is attached, or a rotating shaft of a fluidic device, the rotational axis is maintained at the geometric center line using conventional control methods. Vibration due to frequency or resonance frequency in the fluid working space can be directly received.

この発明は、各種の条件を持つ回転軸を支承するように
磁気軸受を制御する技術において、上記のような従来の
技術が具備する諸問題を解消し、磁気軸受を高精度に制
御する実用的な制御技術を提供するものである。
This invention solves the problems of the above-mentioned conventional techniques in the technology of controlling magnetic bearings to support rotating shafts with various conditions, and provides a practical method for controlling magnetic bearings with high precision. This technology provides advanced control technology.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による磁気軸受の制御方法は、電磁石に対応す
る回転軸の外周面の幾何学中心線を回転軸線に一致させ
る基準位置信号に基づいて励磁電流を制御する磁気軸受
において、回転体を取付けた回転軸の回転角度位置と励
磁電流、軸受隙間の磁束密度、又は電磁石の電磁力とを
検出し、励磁電流、軸受隙間の磁束密度、又は電磁石の
電磁力の変動成分中の回転角速度周波数成分、回転体を
含む回転軸の共振周波数成分若しくは流体機器の回転軸
の場合の流体作動空間の共振周波数成分、又は並列的な
それらの適宜の組合せのみを取出し、励磁電流、軸受隙
間の磁束密度、又は電磁石の電磁力の変動成分中の前記
周波数成分を補償信号入力点から励磁電流、軸受隙間の
磁束密度、又は電磁石の電磁力の検出信号検出点までの
閉ループ伝達関数の逆伝達関数回路を通して演算し、そ
の出力を回転角位置に同期させ、補償信号入力点へ減算
入力して励磁電流を制御するのである。
A magnetic bearing control method according to the present invention is a magnetic bearing in which an excitation current is controlled based on a reference position signal that aligns the geometric center line of the outer circumferential surface of a rotating shaft corresponding to an electromagnet with the rotational axis. The rotational angular position of the rotating shaft, the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet are detected, and the rotational angular velocity frequency component in the fluctuating component of the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet, Extract only the resonant frequency component of a rotating shaft including a rotating body, the resonant frequency component of a fluid working space in the case of a rotating shaft of a fluid device, or an appropriate combination thereof in parallel, and extract the exciting current, magnetic flux density of the bearing gap, or The frequency component in the fluctuation component of the electromagnetic force of the electromagnet is calculated through an inverse transfer function circuit of a closed loop transfer function from the compensation signal input point to the excitation current, the magnetic flux density of the bearing gap, or the detection signal detection point of the electromagnetic force of the electromagnet. , the output is synchronized with the rotational angular position and subtracted into the compensation signal input point to control the excitation current.

切形の方法としては、電磁石に対応する回転軸の外周面
の幾何学中心線を回転軸線に一致させる基準位置信号に
基づいて励磁電流を制御する磁気軸受において、回転体
を取付けた回転軸の回転角度位置と励磁電流、軸受隙間
の磁束密度、又は電磁石の電磁力とを検出し、励磁電流
、軸受隙間の磁束密度、又は電磁石の電磁力の変動成分
中の回転角速度周波数成分、回転体を含む回転軸の共振
周波数成分若しくは流体機器の回転軸の場合の流体作動
空間の共振周波数成分、又は並列的なそれらの適宜の組
合せのみを除外した変動成分を補償信号入力点から励磁
電流、軸受隙間の磁束密度、又は電磁石の電磁力の検出
信号検出点までの閉ループ伝達関数の逆伝達関数回路を
通して演算し、その出力を回転角位置に同期させ、補償
信号入力点へ加算入力して励磁電流を制御するのである
The cutting method is for magnetic bearings in which the excitation current is controlled based on a reference position signal that aligns the geometric center line of the outer circumferential surface of the rotating shaft corresponding to the electromagnet with the rotational axis. The rotational angular position, the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet are detected, and the rotating angular velocity frequency component in the varying component of the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet, and the rotating body are detected. Compensate for fluctuation components that exclude only the resonant frequency components of the rotating shaft, the resonant frequency components of the fluid working space in the case of the rotary shaft of fluid equipment, or appropriate combinations thereof in parallel. The magnetic flux density of the electromagnet or the electromagnetic force of the electromagnetic force is calculated through an inverse transfer function circuit of the closed loop transfer function up to the detection point, the output is synchronized with the rotation angle position, and the excitation current is added and input to the compensation signal input point. It's about controlling.

そうして、この発明による磁気軸受の制御方法を行なう
磁気軸受の制御装置は、回転軸の外周面に対向して設け
られた電磁石と、回転軸の回転角度位置を検出する第1
検出器と、励磁電流、軸受隙間の磁束密度、又は電磁石
の電磁力を検出する第2検出器と1両検出器の検出信号
に基づいて回転軸の回転角に応じた励磁電流、軸受隙間
の磁束密度、又は電磁石の電磁力の変動成分中の回転角
速度周波数成分、回転体を含む回転軸の共振周波数成分
若しくは流体機器の回転軸の場合の流体作動空間の共振
周波数成分、又は並列的なそれらの適宜の組合せのみを
取出すフィルタと、フィルタの出力である励磁電流、軸
受隙間の磁束密度、又は電磁石の電磁力の変動成分中の
前記周波数成分を入力して補償値を得る補償信号入力点
から励磁電流、軸受隙間の磁束密度、又は電磁石の電磁
力の検出信号検出点までの閉ループ伝達関数の逆伝達関
数回路と、前記電磁石の励磁電流を制御して電磁石に対
応する回転軸の外周面の幾何学中心線を回転軸線に一致
させる制御回路と、前記制御回路に入力される電磁石に
対応する回転軸の外周面の幾何学中心線を回転軸線に一
致させる基準位置信号の入力点から励磁電流指令値入力
点までの信号経路中の任意の点に設けられた補償信号入
力点において前記逆伝達関数回路から出力された補償値
を減算入力する減算器とから構成されている。
The magnetic bearing control device that performs the magnetic bearing control method according to the present invention includes an electromagnet provided facing the outer peripheral surface of the rotating shaft, and a first magnet that detects the rotational angular position of the rotating shaft.
A detector, a second detector that detects the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet; Magnetic flux density, or rotational angular velocity frequency component in the fluctuation component of electromagnetic force of an electromagnet, resonance frequency component of a rotating shaft including a rotating body, or resonance frequency component of a fluid working space in the case of a rotating shaft of a fluid device, or those in parallel. A filter that extracts only an appropriate combination of An inverse transfer function circuit of a closed loop transfer function up to the detection point of the excitation current, magnetic flux density of the bearing gap, or electromagnetic force of the electromagnet, and an inverse transfer function circuit of the closed loop transfer function to the detection point of the excitation current of the electromagnet, and A control circuit that aligns a geometrical centerline with the rotational axis; and an excitation current from the input point of a reference position signal that aligns the geometrical centerline of the outer peripheral surface of the rotating shaft corresponding to the electromagnet input to the control circuit with the rotational axis. and a subtracter that inputs and subtracts the compensation value output from the inverse transfer function circuit at a compensation signal input point provided at an arbitrary point on the signal path up to the command value input point.

この発明による切形の磁気軸受の制御方法を行なう磁気
軸受の制御装置は5回転軸の外周面に対向して設けられ
た電磁石と、回転軸の回転角度位置を検出する第1検出
器と、励磁電流、軸受隙間の磁束密度、又は電磁石の電
磁力を検出する第2検圧器と、両検出器の検出信号に基
づいて回転軸の回転角に応じた励磁電流、軸受隙間の磁
束密度、又は電磁石の電磁力の変動成分中の回転角速度
周波数成分、回転体を含む回転軸の共振周波数成分若し
くは流体機器の回転軸の場合の流体生動空間の共振周波
数成分、又は並列的なそれらの適宜の組合せのみを除外
するフィルタと、フィルタの出力である励磁電流、軸受
隙間の磁束密度、又は電磁石の電磁力の除外後の変動成
分を入力して補償値を得る補償信号入力点から励磁電流
、軸受隙間の磁束密度、又は電磁石の電磁力の検出信号
検出点までの閉ループ伝達関数の逆伝達関数回路と、前
記電磁石の励磁電流を制御して電磁石に対応する回転軸
の外周面の幾何学中心線を回転軸線に−致させる制御回
路と、前記制御回路に入力される電磁石に対応する回転
軸の外周面の幾何学中心線を回転軸線に一致させる基準
位置信号の入力点から励磁電流指令値入力点までの信号
経路中の任意の点に設けられた補償信号入力点において
前記逆伝達関数回路から出力された補償値を加算入力す
る加算器とから構成されている。
A magnetic bearing control device for carrying out the method for controlling a cut-shaped magnetic bearing according to the present invention includes: an electromagnet provided facing the outer circumferential surface of a rotating shaft; a first detector for detecting the rotational angular position of the rotating shaft; a second pressure detector that detects the excitation current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet; and the excitation current, the magnetic flux density of the bearing gap, or A rotational angular velocity frequency component in a fluctuating component of electromagnetic force of an electromagnet, a resonant frequency component of a rotating shaft including a rotating body, a resonant frequency component of a fluid living space in the case of a rotating shaft of a fluid device, or an appropriate combination thereof in parallel. A compensation value is obtained by inputting the excitation current that is the output of the filter, the magnetic flux density of the bearing gap, or the fluctuation component after excluding the electromagnetic force of the electromagnet. A magnetic flux density or an inverse transfer function circuit of a closed loop transfer function up to the detection point of the electromagnetic force of the electromagnet, and a geometric center line of the outer peripheral surface of the rotating shaft corresponding to the electromagnet by controlling the excitation current of the electromagnet. A control circuit that aligns the rotational axis with a reference position signal input point that aligns the geometric center line of the outer peripheral surface of the rotational shaft corresponding to the electromagnet input to the control circuit with the rotational axis, and an excitation current command value input point. and an adder that adds and inputs the compensation value output from the inverse transfer function circuit at a compensation signal input point provided at an arbitrary point on the signal path up to.

〔作  用〕[For production]

上記の磁気軸受の制御装置の操作・作用について述べる
The operation and function of the magnetic bearing control device described above will be described.

不釣合をもつ回転軸の回転軸線を慣性中心線に一致させ
る場合の装置では、回転軸の幾何学中心線が回転軸線に
一致する位置、即ち中立位置に回転軸を位置するべき基
準位置信号に従って制御された励磁電流が電磁石に供給
され、電磁石の磁力が働き、回転軸は、回転軸の幾何学
中心線が回転軸線に一致する位置、即ち中立位置に回転
自在に支承される。
In a device that aligns the axis of rotation of an unbalanced rotating shaft with the center line of inertia, control is performed according to a reference position signal to position the rotating axis at a position where the geometric center line of the rotating shaft coincides with the axis of rotation, that is, at a neutral position. The excitation current is supplied to the electromagnet, the magnetic force of the electromagnet acts, and the rotating shaft is rotatably supported at a position where the geometric center line of the rotating shaft coincides with the rotating axis, that is, a neutral position.

回転軸は1回転始動され、加速された上、定常回転状態
となる。
The rotating shaft is started one rotation, accelerated, and then enters a steady rotation state.

その際、回転中の回転軸の回転角度位置が第1検出器に
より検出され、一定角度位置毎の角度信号が記憶装置に
入力される。又、他方では、制御変動する電磁石への励
磁電流、軸受隙間の磁束密度、又は電磁石の電磁力は、
第2検出器により夫々検出され、その検出値が記憶装置
に入力されて。
At this time, the rotational angular position of the rotating shaft during rotation is detected by the first detector, and an angular signal for each fixed angular position is input to the storage device. On the other hand, the excitation current to the electromagnet that fluctuates under control, the magnetic flux density in the bearing gap, or the electromagnetic force of the electromagnet,
They are respectively detected by the second detector, and the detected values are input into the storage device.

回転軸が1回転すると、1回転分の角度位置毎の検出値
が記憶される。
When the rotating shaft rotates once, detected values for each angular position for one rotation are stored.

回転軸の1回転の間の記憶装置のデータ(内容)は、フ
ィルタに入力され、回転軸の1回転中の検出値の変動成
分中の回転角速度周波数成分以外が除去され、回転角速
度周波数成分のみが取出される。その周波数成分は、回
転軸の幾何学中心線の慣性中心線からの偏差によるもの
であって、逆伝達関数回路に入力され、それに相当する
補償信号入力点での信号次元に変換される。それは5回
転軸の各角度位置における幾何学中心線と慣性中心線と
の偏差に相当する補償値である。その補償値は、補償信
号入力点における減算器に入力される結果、回転軸の回
転軸線を幾何学中心線に一致させる基準位置信号を入力
する点から電磁石励磁電力増幅器の入力点までの信号経
路中の制御信号に補償値が減算入力されて補正制御信号
となる。
The data (contents) of the storage device during one rotation of the rotating shaft is input to a filter, and all but the rotational angular velocity frequency component among the fluctuation components of the detected values during one rotation of the rotating shaft are removed, and only the rotational angular velocity frequency component is removed. is taken out. The frequency component is due to the deviation of the geometrical centerline of the rotational axis from the inertial centerline and is input to an inverse transfer function circuit and converted to the signal dimension at the corresponding compensation signal input point. It is a compensation value corresponding to the deviation between the geometric center line and the inertial center line at each angular position of the five rotation axes. The compensation value is input to the subtracter at the compensation signal input point, and as a result, the signal path from the input point of the reference position signal that aligns the rotation axis of the rotating shaft with the geometric center line to the input point of the electromagnet excitation power amplifier The compensation value is subtracted and input to the control signal in the middle to obtain a corrected control signal.

その結果、その補正制御信号に従って制御された励磁電
流が電磁石に供給され、回転軸は、その回転軸線が幾何
学中心線に一致する位置ではなく慣性中心線に一致する
位置にこの磁気軸受により回転自在に支承される。
As a result, an excitation current controlled according to the correction control signal is supplied to the electromagnet, and the rotating shaft is rotated by this magnetic bearing to a position where its axis of rotation coincides with the center line of inertia instead of the position where it coincides with the geometric center line. Supported freely.

回転体が取付けられた回転軸、又は流体機器の回転軸の
回転において、回転体を含む回転軸の共振周波数や流体
作動空間における共振周波数により振動する回転軸の回
転軸線を幾何学中心線に−致しさせる場合では、回転軸
の1回転の間の記憶装置のデータ(内容)は、フィルタ
に入力され、回転軸の1回転中の検出値の変動成分中の
回転体を含む回転軸の共振周波数成分、又は流体機器の
流体作動空間における共振周波数成分が除去され、回転
体を含む回転軸の共振周波数成分、又は流体機器の流体
作動空間における共振周波数成分のみが取出される。そ
の周波数成分は、回転軸の回転軸線の幾何学中心線から
の偏差によるものであって、逆伝達関数回路に入力され
、それに相当する補償信号入力点での信号次元に変換さ
れる。それは、回転軸の各角度位置における回転軸線と
幾何学中心線との偏差に相当する補償値である。その補
償値は、補償信号入力点における減算器に入力される結
果、回転軸の回転軸線を幾何学中心線に一致させる基準
位置信号を入力する点から電磁石励磁電力増幅器の入力
点までの信号経路中の制御信号に補償値が減算入力され
て補正制御信号となる。
In the rotation of a rotating shaft to which a rotating body is attached or a rotating shaft of a fluid device, the axis of rotation of the rotating shaft that vibrates due to the resonance frequency of the rotating shaft including the rotating body or the resonance frequency of the fluid working space is set to the geometric center line. In the case where the data (contents) of the storage device during one revolution of the rotating shaft are input to a filter, the resonance frequency of the rotating shaft including the rotating body in the fluctuation component of the detected value during one revolution of the rotating shaft is input to the filter. component or a resonant frequency component in the fluid working space of the fluid device is removed, and only the resonant frequency component of a rotating shaft including a rotating body or the resonant frequency component in the fluid working space of the fluid device is extracted. The frequency component, which is due to the deviation of the rotational axis of the rotational axis from the geometrical centerline, is input to the inverse transfer function circuit and converted into the signal dimension at the corresponding compensation signal input point. It is a compensation value corresponding to the deviation between the axis of rotation and the geometric center line at each angular position of the axis of rotation. The compensation value is input to the subtracter at the compensation signal input point, and as a result, the signal path from the input point of the reference position signal that aligns the rotation axis of the rotating shaft with the geometric center line to the input point of the electromagnet excitation power amplifier The compensation value is subtracted and input to the control signal in the middle to obtain a corrected control signal.

その結果、その補正制御信号に従って制御された励磁電
流が電磁石に供給され、回転軸は、その回転軸線が幾何
学中心線に一致する位置ではなく共振現象の影響で回転
軸が振動するのを抑制する振動周期の電磁力を発生させ
ない磁気軸受により回転自在に支承される。
As a result, an excitation current controlled according to the corrected control signal is supplied to the electromagnet, and the rotating shaft is suppressed from vibrating due to the resonance phenomenon rather than the position where its rotating axis coincides with the geometric center line. It is rotatably supported by a magnetic bearing that does not generate electromagnetic force with a vibration period of

切形の装置においては、上記の各場合、特定周波数成分
が取出されているが、特定周波数成分が除去された上、
補償値が加算入力されて補正制御信号とされる場合にも
、上記と同様の作用が行われる。
In the cut-shaped device, in each of the above cases, a specific frequency component is extracted, but after the specific frequency component is removed,
The same effect as described above is also performed when the compensation value is added and inputted to form a correction control signal.

〔実 施 例〕〔Example〕

この発明の磁気軸受の制御方法を行う装置の実施例を図
面に従って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an apparatus for carrying out the magnetic bearing control method of the present invention will be described with reference to the drawings.

磁気軸受は、通常、複数軸線制御、例えば5軸制律され
る。しかし、図面は、回転軸1の軸線方向の1箇所にお
ける1方向(図示の例では上下方向)制御の磁気軸受を
もって代表し、回転軸1を支承する磁気軸受を概略的に
示している。
Magnetic bearings are typically multi-axis controlled, for example five-axis controlled. However, the drawing schematically shows a magnetic bearing that supports the rotating shaft 1, representing a magnetic bearing that is controlled in one direction (up and down in the illustrated example) at one location in the axial direction of the rotating shaft 1.

図示しない回転体が取付けられ、水平に置かれた回転軸
1の外周面に上下夫々で叉状に形成された電磁石2.3
が対向して設けられ、各電磁石2゜3のソレノイドは夫
々の電力増幅器4,5に接続され、電力増幅器4.5か
ら励磁電流が供給されるようになって磁気軸受が構成さ
れており、回転軸1は、励磁された電磁石2,3により
回転自在に支承され、図示しない駆動源により回転駆動
されるようになっている。
Electromagnets 2.3 are formed in a forked shape on the upper and lower sides of the outer peripheral surface of the horizontally placed rotating shaft 1 to which a rotating body (not shown) is attached.
are provided facing each other, the solenoids of each electromagnet 2.3 are connected to respective power amplifiers 4, 5, and excitation current is supplied from the power amplifiers 4.5, thereby forming a magnetic bearing. The rotating shaft 1 is rotatably supported by excited electromagnets 2 and 3, and is rotationally driven by a drive source (not shown).

上記の磁気軸受の制御装置における基本制御回路は、次
のように構成されている。
The basic control circuit in the magnetic bearing control device described above is configured as follows.

正常状態における中立位置に回転軸1を位置するべき励
磁電流の基準信号源にPID動作部(比例積分微分動作
部)7が接続され、各電力増幅器4.5は、位相反転器
6を介してPIDID動作部接続されて制御されるよう
になっている。各電磁石2.3の股部には、変位センサ
8,9が回転軸1の外周面に非接触状態で対向して設け
られ、変位センサ8,9には、センサ信号調整器lOが
接続され、各変位センサ8,9による変位センサ信号が
センサ信号調整器lOを介して励磁電流の基準信号源か
らPIDID動作部の基準位置信号にフィードバックさ
れるようになっている。
A PID operating unit (proportional-integral-differential operating unit) 7 is connected to a reference signal source of an excitation current that should position the rotating shaft 1 at a neutral position in a normal state, and each power amplifier 4.5 It is connected to the PIDID operating section and controlled. Displacement sensors 8 and 9 are provided at the crotch of each electromagnet 2.3 to face the outer circumferential surface of the rotating shaft 1 in a non-contact state, and a sensor signal regulator IO is connected to the displacement sensors 8 and 9. , displacement sensor signals from the respective displacement sensors 8 and 9 are fed back to the reference position signal of the PIDID operation section from the reference signal source of the excitation current via the sensor signal regulator IO.

上記の基本制御回路に下記のような補償値変換回路が接
続されている。
A compensation value conversion circuit as described below is connected to the above basic control circuit.

回転軸1には、角度目盛円盤11が取付けられており、
角度目盛円盤11に対向して角度信号発生器11aが固
定側に設けられ、角度信号発生器11aは、第1記憶装
置12及び第3記憶装置13に接続され、回転する角度
目盛円盤11の目盛を読み取り、角度目盛円盤11、即
ち回転軸10角度信号を第1記憶装置12及び第3記憶
装置13に入力するようになっている。
An angle scale disk 11 is attached to the rotating shaft 1.
An angle signal generator 11a is provided on the fixed side facing the angle scale disc 11, and the angle signal generator 11a is connected to the first storage device 12 and the third storage device 13, and is connected to the scale of the rotating angle scale disc 11. is read, and the angle signal of the angle scale disk 11, that is, the rotating shaft 10, is input into the first storage device 12 and the third storage device 13.

角度目盛円盤11の代わりに磁気円盤を用いてそれに応
じた角度信号発生器により角度位置を検出してもよく、
又は、1回転毎の信号とパルス信号との発生器により回
転軸1の角度位置を検出するようにしてもよく、ロータ
リエンコーダやレゾルバを用いてパルス信号を発生させ
て、角度位置を検出するようにしてもよい。
Instead of the angle scale disk 11, a magnetic disk may be used to detect the angular position with a corresponding angle signal generator.
Alternatively, the angular position of the rotating shaft 1 may be detected by a generator that generates a signal for each rotation and a pulse signal, or a rotary encoder or resolver may be used to generate a pulse signal to detect the angular position. You can also do this.

検出対象を励磁電流とした例について以下に説明する。An example in which the detection target is an excitation current will be described below.

各電磁石2.3のソレノイドへの電力増幅器4゜5から
の励磁電流を検出する電流センサ14,15が設けられ
ており、電流センサ14.15からの検出電流値信号が
差動演算された上、A/D変換器16を介して、第1記
憶装置12に入力されるように夫々は接続されている。
Current sensors 14 and 15 are provided to detect the excitation current from the power amplifier 4.5 to the solenoid of each electromagnet 2.3, and the detected current value signals from the current sensors 14.15 are differentially calculated. , are connected to be input to the first storage device 12 via the A/D converter 16.

第1記憶装置12には第2記憶装置17が、更に第2記
憶装置17には定常状態判別器18が夫々対応して接続
並設されている。又、第2記憶装置17は、第1接点1
9及びフィルタ20を介して補償信号入力点(この場合
の入力信号は変位量)から信号検出点(この場合の検出
信号は電流値)までの基本制御回路の閉ループ伝達関数
の逆伝達関数を持つ逆伝達関数回路21に接続され、逆
伝達関数回路21は、減算器22を介して第3記憶装置
13に接続されている。
A second storage device 17 is connected to the first storage device 12, and a steady state discriminator 18 is connected to the second storage device 17, respectively. Further, the second storage device 17 has the first contact point 1
9 and filter 20 from the compensation signal input point (in this case, the input signal is the displacement amount) to the signal detection point (in this case, the detection signal is the current value). It is connected to an inverse transfer function circuit 21 , and the inverse transfer function circuit 21 is connected to the third storage device 13 via a subtracter 22 .

第3記憶装置13は、その出力がD/A変換器23を介
して励磁電流の基準信号源からPID動作部7への基準
位置信号に減算入力されるように減算器(又は加算器)
24に接続されていると共に、出力側が第2接点25を
介して加算器22に接続され、第1接点19及び第2接
点25は、定常状態判別器18に接続された接点駆動回
路26の出力信号により開閉作動するように接続されて
いる。
The third storage device 13 is a subtracter (or an adder) so that its output is subtracted and inputted to the reference position signal from the reference signal source of the excitation current to the PID operation unit 7 via the D/A converter 23.
24, and the output side is connected to the adder 22 via the second contact 25, and the first contact 19 and the second contact 25 are the output of the contact drive circuit 26 connected to the steady state discriminator 18. It is connected so that it can be opened and closed by a signal.

回転軸の幾何学中心線、即ち回転軸線を慣性中心線に一
致させる制御の場合、フィルタ20は、回転軸1の回転
角速度周波数成分のみを通過して取り出し得るものであ
る。
In the case of control in which the geometric center line of the rotation axis, that is, the rotation axis line, is made to coincide with the inertial center line, the filter 20 can pass and extract only the rotational angular velocity frequency component of the rotation axis 1.

取付られた回転体を含む回転軸の共振周波数の振動や流
体機器における流体作動空間の共振周波数の振動を吸収
するように回転軸の幾何学中心線、即ち回転軸線を運動
させる場合、フィルタ20は、回転体を含む回転軸の共
振周波数成分や流体作動空間の共振周波数成分のみを通
過して取り出し得るものである。
When moving the geometric center line of the rotating shaft, that is, the rotating axis, so as to absorb vibrations at the resonant frequency of the rotating shaft including the attached rotating body or vibrations at the resonant frequency of the fluid working space in the fluid device, the filter 20 , it is possible to pass through and extract only the resonant frequency components of the rotating shaft including the rotating body and the resonant frequency components of the fluid working space.

この発明の磁気軸受の制御方法の実施例を上記の磁気軸
受の制御装置の操作・作用に従って説明する。
Embodiments of the magnetic bearing control method of the present invention will be described in accordance with the operations and effects of the above magnetic bearing control device.

励磁電流の基準信号源から正常状態である中立位置に回
転軸1を位置するべき基準位置信号が電力増幅器4,5
に入力され、その基準位置信号に応じた励磁電流が電力
増幅器4,5から電磁石2゜3のソレノイドに供給され
、上下の電磁石2,3の磁力が働き、回転軸1は、回転
軸1の幾何学中心線が回転軸線に一致する位置、即ち中
立位置に回転自在に支承される。
A reference position signal for positioning the rotating shaft 1 at the neutral position, which is a normal state, is transmitted from the reference signal source of the excitation current to the power amplifiers 4 and 5.
The excitation current corresponding to the reference position signal is supplied from the power amplifiers 4 and 5 to the solenoid of the electromagnet 2 and 3, and the magnetic force of the upper and lower electromagnets 2 and 3 acts, and the rotating shaft 1 It is rotatably supported at a position where the geometric center line coincides with the rotational axis, that is, at a neutral position.

回転軸1は、図示しない駆動源により回転始動され、加
速された上、定常回転状態となる。
The rotation shaft 1 is started to rotate by a drive source (not shown), is accelerated, and then enters a steady rotation state.

回転中の回転軸1の軸線方向1箇所の半径方向の位置(
図示の例では上下方向の位置をもって代表している)は
、変位センサ8,9によりその先端と回転軸1の外周面
と間隙値として検出され、その検出出力は、センサ信号
調整器10に入力され、センサ信号調整器10により変
位センサ信号の単位電気量と変位との関係が基準位置信
号の単位電気量と変位との関係に一致され、更にセンサ
信号調整器10から軸位置信号が基準位置信号にフィー
ドバックされるが、回転軸1が中立位置から上方。
The radial position of one point in the axial direction of the rotating shaft 1 during rotation (
(in the illustrated example, the vertical position is representative) is detected by the displacement sensors 8 and 9 as a gap value between the tip and the outer peripheral surface of the rotating shaft 1, and the detection output is input to the sensor signal adjuster 10. The sensor signal adjuster 10 matches the relationship between the unit electric quantity and displacement of the displacement sensor signal with the relationship between the unit electric quantity and displacement of the reference position signal, and furthermore, the shaft position signal from the sensor signal adjuster 10 is adjusted to the reference position. It is fed back to the signal, but the rotation axis 1 is upward from the neutral position.

又は下方に偏位すると、基準位置信号と軸位置信号との
間に正、又は負の偏差が生じる。その偏差は、PID動
作部7に入力され、リセット・レート動作を受け、電力
増幅器4.5に入力される。
Or, if it deviates downward, a positive or negative deviation occurs between the reference position signal and the shaft position signal. The deviation is input to the PID operation unit 7, subjected to a reset rate operation, and input to the power amplifier 4.5.

その結果、電力増幅器4,5から供給される励磁電流は
、上記の偏差を零にするような磁力を電磁石2.3に生
じさせるように制御される。
As a result, the excitation currents supplied from the power amplifiers 4 and 5 are controlled so as to generate a magnetic force in the electromagnet 2.3 that makes the above deviation zero.

その際、第1記憶装置12、第2記憶装置17及び第3
記憶装置13はリセットされ、データ(内容)は初期零
化されており、回転中の回転軸1の回転角度位置が回転
軸1と一体的に回転する角度目盛円盤11を角度信号発
生器11aにより読取られることにより検出され、一定
角度毎の角度信号θiが第1記憶装置12に入力される
。又、他方では、制御変動する電磁石2.3への励磁電
流は、電流センサ14.15により夫々検出され、その
検出電流値1a。
At that time, the first storage device 12, the second storage device 17, and the third storage device 12,
The storage device 13 is reset and the data (contents) are initialized to zero, and the rotational angular position of the rotating shaft 1 during rotation is determined by the angle scale disk 11 that rotates integrally with the rotating shaft 1 by the angle signal generator 11a. The angle signal θi for each fixed angle is detected by being read and input to the first storage device 12. On the other hand, the excitation currents to the electromagnets 2.3 that vary under control are detected by current sensors 14.15, respectively, and their detected current values 1a.

ibを合算した電流値■がA/D変換器16を介して、
第1記憶装置12に入力される。
The current value ■ which is the sum of ib is passed through the A/D converter 16,
The data is input to the first storage device 12.

そこで、角度信号θiがゲート作用を行い、各角度信号
θlに対応した電流値・■、即ち回転軸1の角度位置(
θi)毎の電流値工(θi)が記憶される。
Therefore, the angle signal θi acts as a gate, and the current value ・■ corresponding to each angle signal θl, that is, the angular position of the rotating shaft 1 (
The current value (θi) for each θi) is stored.

そうして、回転軸1が1回転すると、1回転分の角度位
置(θi)毎の電流値II(θ1)が記憶され、それが
第2記憶装置17に転記されると共に、第1記憶装置1
2のデータ(内容)は零化され1次の1回転分の角度位
置(θl)毎の電流値I2(θi)が上記と同様に記憶
される。そうして、先の1回転の1回転分の角度位置(
θi)毎の電流値r+(θi)とその夫々に対応する次
の1回転分の角度位置(θ1)毎の電流値I2(θ1)
との差信号I+(θ1)−iz(θl)が定常状態判別
器18に入力される。
Then, when the rotating shaft 1 makes one rotation, the current value II (θ1) for each angular position (θi) for one rotation is stored, and is transferred to the second storage device 17, and the first storage device 1
The data (contents) of No. 2 are zeroed, and the current value I2 (θi) for each angular position (θl) for one primary rotation is stored in the same manner as above. Then, the angular position for one rotation of the previous one rotation (
Current value r+(θi) for each θi) and current value I2(θ1) for each angular position (θ1) for the next one rotation corresponding to each of them
The difference signal I+(θ1)−iz(θl) is input to the steady state discriminator 18.

定常状態判別器18においては、差信号工+(θ1)I
2(θi)は、標準値Sと比較判別され、回転軸1の回
転が安定状態にあるか否かが判別される。
In the steady state discriminator 18, the difference signal + (θ1) I
2(θi) is compared and determined with the standard value S, and it is determined whether the rotation of the rotating shaft 1 is in a stable state.

即ち、工+(θi)  I2(θi)≦Sであると回転
軸1の回転が一応、加減速のない安定状態であると考え
られる。
That is, if I2(θi)≦S, the rotation of the rotating shaft 1 is considered to be in a stable state with no acceleration or deceleration.

そこで、■+(θ1)−I2(θi)≦Sになると、接
点駆動回路26に作動信号が入力され、接点駆動回路2
6により第1接点19及び第2接点25が閉じられる。
Therefore, when ■+(θ1)-I2(θi)≦S, an activation signal is input to the contact drive circuit 26, and the contact drive circuit 2
6, the first contact 19 and the second contact 25 are closed.

第1接点19が閉じられると、回転軸1の1回転の間の
第2記憶装置17のデータ(内容)I2(θi)(又は
、第1記憶装置1zのデータ(内容)■、(θi))は
、フィルタ20に入力される。
When the first contact 19 is closed, the data (content) I2 (θi) of the second storage device 17 during one rotation of the rotating shaft 1 (or the data (content) ■, (θi) of the first storage device 1z) ) is input to the filter 20.

ここで、先ず、回転軸1の幾何学中心線、即ち回転軸線
を慣性中心線に一致させる制御の場合には、フィルタ2
0において、回転軸1の1回転中のI2(θi)の変動
分のθ=ωを成分以外が除去され、その結果であるI3
#I2(ωt)は、回転軸1の幾何学中心線の慣性中心
線からの偏差によるものであり、逆伝達関数回路21に
入力される。
Here, first, in the case of control to match the geometric center line of the rotation axis 1, that is, the rotation axis line, with the inertial center line, the filter 2
0, components other than the component θ=ω of the variation of I2(θi) during one rotation of the rotating shaft 1 are removed, and the resultant I3
#I2(ωt) is due to the deviation of the geometric center line of the rotating shaft 1 from the inertial center line, and is input to the inverse transfer function circuit 21.

そうして、工3は、逆伝達関数回路21により、それに
応じた変位センナ8.9の先端と回転軸1の外周面との
間隙が均一である幾何学的中立位置からの偏りに相当す
る偏位値δに変換され、第3記憶装置13に入力されて
、各角度信号θiに対応した偏位値δ、即ち回転軸1の
角度位置(θi)毎の偏位値δ(θi)が記憶される。
Then, the inverse transfer function circuit 21 corresponds to the deviation from the geometrical neutral position where the gap between the tip of the displacement sensor 8.9 and the outer peripheral surface of the rotating shaft 1 is uniform. It is converted into a deviation value δ and input into the third storage device 13, and the deviation value δ corresponding to each angle signal θi, that is, the deviation value δ(θi) for each angular position (θi) of the rotating shaft 1 is be remembered.

即ち、偏位値δ(θl)は、回転軸1の各角度位置にお
ける幾何学中心線と慣性中心線との偏差(不釣合による
偏重心距離)により生じる遠心力を支持する力をこの基
本制御回路の電磁石に発生させるのに必要な変位信号入
力値に相当する補償値である。
In other words, the deviation value δ (θl) is the force that supports the centrifugal force generated by the deviation between the geometric center line and the inertial center line at each angular position of the rotating shaft 1 (the eccentric center of gravity distance due to unbalance). This is a compensation value corresponding to the displacement signal input value required to generate the electromagnet.

その際、回転中の回転軸1の角度信号θiが上記と同様
に第3記憶装置13に入力される。そこで、角度信号θ
lがゲート作用を行い、回転軸1の各角度位置(θ1)
毎の偏位値δ(θl)がD/A変換器z3を介して減算
器24に入力され、回転軸1の回転軸線が幾何学中心線
に一致する位置である基準位置信号は、偏位値δ(θi
)、即ち補償値が減算される補正基準位置信号となる。
At this time, the angle signal θi of the rotating shaft 1 during rotation is input to the third storage device 13 in the same manner as described above. Therefore, the angle signal θ
l performs a gate action, and each angular position (θ1) of the rotation axis 1
The deviation value δ(θl) for each is input to the subtracter 24 via the D/A converter z3, and the reference position signal, which is the position where the rotational axis of the rotational shaft 1 coincides with the geometric center line, is determined by the deviation The value δ(θi
), that is, it becomes a corrected reference position signal from which the compensation value is subtracted.

その結果、PID動作部7に入力される回転軸1の各角
度位置(θl)毎の補正基準位置信号は、回転軸1の回
転軸線が幾何学中心線に一致する幾何学的中立位置に支
持するために必要な電磁石の電磁力から遠心力を支持す
るための電磁力が差弓かれる形で、基本制御回路を動作
させるから、補償値変換回路によって回転軸1は、幾何
学的中立位置から偏位値δ(θl)だけ変位して振れ回
るように制御されるが、その回転軸線は、慣性中心線に
一致するように制御されるものである。
As a result, the correction reference position signal for each angular position (θl) of the rotary shaft 1 input to the PID operation unit 7 is supported at the geometric neutral position where the rotational axis of the rotary shaft 1 coincides with the geometric center line. Since the basic control circuit is operated in such a way that the electromagnetic force of the electromagnet required to support the centrifugal force is separated from the electromagnetic force of the electromagnet necessary for It is controlled so that it is displaced by the deviation value δ (θl) and swings around, but its axis of rotation is controlled so that it coincides with the center line of inertia.

次に回転体が取付けられている回転軸1における回転体
を含む回転軸の共振周波数の振動や流体機器の回転軸で
ある回転軸1における流体機器の流体作動空間の共振周
波数の振動を吸収する場合には、フィルタ20において
、回転軸1の1回転中のI2(θl)の変動分の共振周
波数成分以外が除去され、その結果であるI:+#Iz
(ωt)は、回転軸1の幾何学中心線の回転軸線からの
偏差によるものであり、逆伝達関数回路21に入力され
る。
Next, it absorbs vibrations at the resonant frequency of the rotating shaft including the rotating body at the rotating shaft 1 to which the rotating body is attached, and vibrations at the resonant frequency of the fluid working space of the fluid equipment at the rotating shaft 1 which is the rotating axis of the fluid equipment. In this case, the filter 20 removes components other than the resonance frequency component of the fluctuation of I2(θl) during one rotation of the rotating shaft 1, and the result is I:+#Iz
(ωt) is due to the deviation of the geometric center line of the rotation axis 1 from the rotation axis, and is input to the inverse transfer function circuit 21.

以下、上記の場合と同様の制御プロセスを経て回転軸1
は、回転軸1の回転軸線が振動変位の上下方向成分を解
消するだけ偏位して回転自在に支承される。
Hereafter, the rotating shaft 1 is processed through the same control process as in the above case.
The rotary shaft 1 is rotatably supported with its axis of rotation deviated enough to eliminate the vertical component of vibrational displacement.

上記のいずれの場合にも、第3記憶装置I3から補償値
信号が出力されると、第3記憶装置13のデータ゛(内
容)は保持される。
In any of the above cases, when the compensation value signal is output from the third storage device I3, the data (content) of the third storage device 13 is held.

しかし、現在の電気回路素子で完全な逆伝達関数回路を
構成することは困難であり、実際には、近似的な回路で
代用する。従って、上記の1回転分における調整制御だ
けでは1回転軸1の回転軸線の位置を完全に所定の位置
に一致させることは困難である。そこで、1回目の補償
動作による過渡的な時間が経過しても、回転軸線と慣性
中心線との不一致が残り、その偏差により上記と同様に
して各角度信号θiに対応した偏位値δ、即ち回転軸1
の角度位置(θi)毎の偏位値δ(θi)が第3記憶装
置に入力されるのであるが、その際、前回の回転軸1の
角度位置(θ1〕毎の優位値δ(θ1)が加算器22で
加算された値が新たな補償値として入力され、記憶され
る。そうして、上記と同様の回転軸1の位置の調整制御
が反復して行われる。
However, it is difficult to construct a complete inverse transfer function circuit using current electric circuit elements, and in reality, an approximate circuit is used instead. Therefore, it is difficult to completely align the position of the rotational axis of the rotational shaft 1 with a predetermined position using only the above-mentioned adjustment control for one rotation. Therefore, even after the transient time due to the first compensation operation has passed, there remains a mismatch between the axis of rotation and the center of inertia, and due to this deviation, the deviation value δ corresponding to each angle signal θi is changed in the same way as above. That is, rotation axis 1
The deviation value δ(θi) for each angular position (θi) of is input to the third storage device. The value added by the adder 22 is input as a new compensation value and stored.Then, the same adjustment control of the position of the rotating shaft 1 as described above is performed repeatedly.

このような回転軸1の位置の調整制御の反復が回を重ね
ることにより、回転軸1の回転軸線は上下方向成分で可
能な限り所定の位置に調整される。
By repeating such adjustment control of the position of the rotary shaft 1 many times, the rotational axis of the rotary shaft 1 is adjusted to a predetermined position as much as possible in the vertical direction component.

上記の図示の例は、回転軸1の軸線方向の1箇所におけ
る上下方向制御の1対の電磁石の磁気軸受が示されてい
るので、回転軸1の回転軸線の位置調整は上下方向成分
で説明したが、磁気軸受は、回転軸1の軸線方向の1箇
所では2次元的に少なくとも上下左右の2対の電磁石を
備え、更に軸線方向にも少なくとも2箇所において電磁
石が設けられ、所謂5軸制御がされるのであるから、各
対の電磁石の励磁電流を上記と同様に制御することによ
り回転軸1の回転軸線が所定の位置に一致するように調
整制御されることは容易に理解されよう。
The illustrated example above shows a magnetic bearing for a pair of electromagnets for vertical control at one location in the axial direction of the rotating shaft 1, so the position adjustment of the rotating axis of the rotating shaft 1 will be explained in terms of the vertical component. However, the magnetic bearing is two-dimensionally equipped with at least two pairs of electromagnets (top, bottom, left, and right) at one location in the axial direction of the rotating shaft 1, and furthermore, electromagnets are provided at at least two locations in the axial direction, allowing for so-called five-axis control. It is easy to understand that by controlling the excitation current of each pair of electromagnets in the same manner as described above, the rotational axis of the rotating shaft 1 is adjusted and controlled so as to coincide with a predetermined position.

上記の実施例においては、補償値を減算入力する補償信
号入力点(減算器24の設置点)が基本制御回路閉ルー
プの上流側に設置されているが、それより下流側で位相
反転器27までの適宜の箇所、例えば、れそPIDID
動作部位相反転器6との間の励磁電流指令値部位に設置
してもよい。その場合には、逆伝達関数回路21の内容
は、励磁電流指令から励磁電流までの基本制御回路閉ル
ープ伝達関数の逆伝達関数で構成する。
In the above embodiment, the compensation signal input point for subtracting and inputting the compensation value (the installation point of the subtracter 24) is installed on the upstream side of the basic control circuit closed loop. appropriate part of, for example, resoPIDID
It may be installed at the excitation current command value region between the operating region and the phase inverter 6. In that case, the content of the inverse transfer function circuit 21 is composed of an inverse transfer function of the basic control circuit closed loop transfer function from the excitation current command to the excitation current.

更に、上記の実施例においては、電磁石の磁力の検出を
励磁電流の検出をもって当てているが、励磁電流に替え
て軸受隙間の磁束密度を用い、軸受隙間の磁束密度の検
出器、例えばホール素子などを磁極表面に埋設したり、
又は電磁石の磁力を用い、電磁石を支持する構造体との
間にロードセルなどの力検出器を挾み込むなどする。上
記のような各種検出器の検出信号を第1記憶装置12に
入力して処理するようにしても上記の実施例と同様の作
用・効果を得ることができる。
Furthermore, in the above embodiment, the magnetic force of the electromagnet is detected by detecting the excitation current, but instead of the excitation current, the magnetic flux density in the bearing gap is used, and a detector for the magnetic flux density in the bearing gap, such as a Hall element, is used. etc. are buried in the magnetic pole surface,
Alternatively, the magnetic force of the electromagnet is used, and a force detector such as a load cell is inserted between the structure supporting the electromagnet. Even if the detection signals of the various detectors described above are input to the first storage device 12 and processed, the same operations and effects as in the above embodiment can be obtained.

上記の補償値変換回路中の夫々のフィルタ周波数のフィ
ルタ20を並列に設けることにより該当する原因による
回転装置の振動を全て減少することも可能となる。
By providing the filters 20 of the respective filter frequencies in the compensation value conversion circuit in parallel, it is also possible to reduce all the vibrations of the rotating device due to the corresponding causes.

更に上記の各実施例の共通の切形式として、次のような
実施例がある。
Furthermore, the following embodiments are common to the above-mentioned embodiments.

フィルタとして上記のような特定周波数通過フィルタで
なく、特定周波数遮断フィルタを使用し、第3記憶装置
13の出力を基準位置信号に減算入力する減算器24を
、加算入力する加算器24に置換するのである。それに
よっても回転軸1に対しては、上記の各実施例と同一の
作用が加えられる。
A specific frequency cutoff filter is used instead of the specific frequency pass filter as described above, and the subtracter 24 that subtracts and inputs the output of the third storage device 13 from the reference position signal is replaced with an adder 24 that adds and inputs the output. It is. Even in this case, the same effect as in each of the above embodiments is applied to the rotating shaft 1.

〔発明の効果] この発明の磁気軸受の制御よれば、回転体の不釣合、回
転体の共援周波数、流体機器における流体作動空間の共
振周波数などによる回転軸の振動を解消するように回転
軸を支承するべく磁気軸受を制御する技術において、高
精度なアナログ演算回路を必要とせず、電圧変動・温度
変動により誤差が生じることもなく磁気軸受を高精度に
制御することができる。しかもその装置は、従来の技術
の制御装置に比し、安価で実用的である。
[Effects of the Invention] According to the control of the magnetic bearing of the present invention, the rotating shaft is controlled so as to eliminate vibrations of the rotating shaft due to unbalance of the rotating body, resonance frequency of the rotating body, resonance frequency of the fluid working space in fluid equipment, etc. In the technology for controlling magnetic bearings for support, it is possible to control magnetic bearings with high precision without requiring a high-precision analog calculation circuit and without causing errors due to voltage fluctuations or temperature fluctuations. Moreover, the device is cheaper and more practical than conventional control devices.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の実施例における磁気軸受の制御装置
の概略構成図である。
The drawing is a schematic configuration diagram of a magnetic bearing control device in an embodiment of the present invention.

Claims (6)

【特許請求の範囲】[Claims] (1)回転体を取付けた回転軸の電磁石に対応する外周
面の幾何学中心線を回転軸線に一致させる基準位置信号
に基づいて励磁電流を制御する磁気軸受において、回転
軸の回転角度位置と励磁電流、軸受隙間の磁束密度、又
は電磁石の電磁力とを検出し、励磁電流、軸受隙間の磁
束密度、又は電磁石の電磁力の変動成分中の特定周波数
成分のみを取出し、励磁電流、軸受隙間の磁束密度、又
は電磁石の電磁力の変動成分中の前記周波数成分を補償
信号入力点から励磁電流、軸受隙間の磁束密度、又は電
磁石の電磁力の検出信号検出点までの閉ループ伝達関数
の逆伝達関数回路を通して演算し、その出力を回転角位
置に同期させ、補償信号入力点へ減算入力して励磁電流
を制御する磁気軸受の制御方法
(1) In a magnetic bearing that controls the excitation current based on a reference position signal that aligns the geometric center line of the outer peripheral surface corresponding to the electromagnet of the rotating shaft to which the rotating body is attached with the rotational axis, the rotational angular position of the rotating shaft and Detects the excitation current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet, extracts only the specific frequency component of the fluctuation component of the excitation current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet, and detects the excitation current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet. Compensation for the frequency component in the magnetic flux density of the electromagnet or the fluctuation component of the electromagnetic force of the electromagnet Inverse transfer of the closed loop transfer function from the signal input point to the detection signal detection point of the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet A magnetic bearing control method that calculates through a function circuit, synchronizes its output with the rotation angle position, and subtracts it into the compensation signal input point to control the excitation current.
(2)回転体を取付けた回転軸の外周面に対向して設け
られた電磁石と、回転軸の回転角度位置を検出する第1
検出器と、励磁電流、軸受隙間の磁束密度、又は電磁石
の電磁力を検出する第2検出器と、両検出器の検出信号
に基づいて回転軸の回転角に応じた励磁電流、軸受隙間
の磁束密度、又は電磁石の電磁力の変動成分中の特定周
波数成分のみを取出すフィルタと、フィルタの出力であ
る励磁電流、軸受隙間の磁束密度、又は電磁石の電磁力
の変動成分中の前記周波数成分を入力して補償値を得る
補償信号入力点から励磁電流、軸受隙間の磁束密度、又
は電磁石の電磁力の検出信号検出点までの閉ループ伝達
関数の逆伝達関数回路と、前記電磁石の励磁電流を制御
して電磁石に対応する回転軸の外周面の幾何学中心線を
回転軸線に一致させる制御回路と、前記制御回路に入力
される電磁石に対応する回転軸の外周面の幾何学中心線
を回転軸線に一致させる基準位置信号の入力点から励磁
電流指令値入力点までの信号経路中の任意の点に設けら
れた補償信号入力点において前記逆伝達関数回路から出
力された補償値を減算入力する減算器とから構成された
磁気軸受の制御装置
(2) An electromagnet provided facing the outer peripheral surface of the rotating shaft to which the rotating body is attached, and a first magnet that detects the rotational angular position of the rotating shaft.
a second detector that detects the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet; and a second detector that detects the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet; A filter that extracts only a specific frequency component in the fluctuation component of the magnetic flux density or the electromagnetic force of the electromagnet, and the excitation current that is the output of the filter, the magnetic flux density of the bearing gap, or the frequency component in the fluctuation component of the electromagnetic force of the electromagnet. A reverse transfer function circuit of a closed loop transfer function from the compensation signal input point to the detection signal detection point of the excitation current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet, and the excitation current of the electromagnet is controlled. a control circuit that aligns the geometric center line of the outer peripheral surface of the rotating shaft corresponding to the electromagnet with the rotation axis; and a control circuit that aligns the geometric center line of the outer peripheral surface of the rotating shaft corresponding to the electromagnet with the rotation axis, Subtraction in which the compensation value output from the inverse transfer function circuit is subtracted and input at a compensation signal input point provided at an arbitrary point in the signal path from the input point of the reference position signal to the excitation current command value input point. A magnetic bearing control device consisting of a
(3)回転体を取付けた回転軸の電磁石に対応する外周
面の幾何学中心線を回転軸線に一致させる基準位置信号
に基づいて励磁電流を制御する磁気軸受において、回転
軸の回転角度位置と励磁電流、軸受隙間の磁束密度、又
は電磁石の電磁力とを検出し、励磁電流、軸受隙間の磁
束密度、又は電磁石の電磁力の変動成分中の特定周波数
成分のみを除去し、励磁電流、軸受隙間の磁束密度、又
は電磁石の電磁力の前記周波数成分を除去した変動成分
を補償信号入力点から励磁電流、軸受隙間の磁束密度、
又は電磁石の電磁力の検出信号検出点までの閉ループ伝
達関数の逆伝達関数回路を通して演算し、その出力を回
転角位置に同期させ、補償信号入力点へ加算入力して励
磁電流を制御する磁気軸受の制御方法
(3) In a magnetic bearing that controls the excitation current based on a reference position signal that aligns the geometric center line of the outer circumferential surface corresponding to the electromagnet of the rotating shaft to which the rotating body is attached with the rotational axis, the rotational angular position of the rotating shaft and Detects the excitation current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet, and removes only the specific frequency component of the fluctuation component of the excitation current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet. Compensate the magnetic flux density of the gap, or the fluctuation component of the electromagnetic force of the electromagnet with the frequency component removed, from the signal input point to the excitation current, the magnetic flux density of the bearing gap,
Or a magnetic bearing that calculates the electromagnetic force of an electromagnetic force through an inverse transfer function circuit of the closed loop transfer function up to the detection point, synchronizes the output with the rotation angle position, and controls the excitation current by adding and inputting it to the compensation signal input point. control method
(4)回転体を取付けた回転軸の外周面に対向して設け
られた電磁石と、回転軸の回転角度位置を検出する第1
検出器と、励磁電流、軸受隙間の磁束密度、又は電磁石
の電磁力を検出する第2検出器と、両検出器の検出信号
に基づいて回転軸の回転角に応じた励磁電流、軸受隙間
の磁束密度、又は電磁石の電磁力の変動成分中の特定周
波数成分のみを除去するフィルタと、フィルタの出力で
ある励磁電流、軸受隙間の磁束密度、又は電磁石の電磁
力の前記周波数成分を除去した変動成分中から補償値を
得る補償信号入力点から励磁電流、軸受隙間の磁束密度
、又は電磁石の電磁力の検出信号検出点までの閉ループ
伝達関数の逆伝達関数回路と、前記電磁石の励磁電流を
制御して電磁石に対応する回転軸の外周面の幾何学中心
線を回転軸線に一致させる制御回路と、前記制御回路に
入力される電磁石に対応する回転軸の外周面の幾何学中
心線を回転軸線に一致させる基準位置信号の入力点から
励磁電流指令値入力点までの信号経路中の任意の点に設
けられた補償信号入力点において前記逆伝達関数回路か
ら出力された補償値を加算入力する加算器とから構成さ
れた磁気軸受の制御装置
(4) An electromagnet provided opposite to the outer peripheral surface of the rotating shaft to which the rotating body is attached, and a first magnet for detecting the rotational angular position of the rotating shaft.
a second detector that detects the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet; and a second detector that detects the exciting current, the magnetic flux density of the bearing gap, or the electromagnetic force of the electromagnet; A filter that removes only a specific frequency component in the fluctuation component of the magnetic flux density or the electromagnetic force of an electromagnet, and the excitation current that is the output of the filter, the magnetic flux density of the bearing gap, or the fluctuation that removes the frequency component of the electromagnetic force of the electromagnet. An inverse transfer function circuit of a closed loop transfer function from a compensation signal input point that obtains a compensation value from a component to a detection signal detection point of an excitation current, a magnetic flux density in a bearing gap, or an electromagnet's electromagnetic force, and controls the excitation current of the electromagnet. a control circuit that aligns the geometric center line of the outer peripheral surface of the rotating shaft corresponding to the electromagnet with the rotation axis; and a control circuit that aligns the geometric center line of the outer peripheral surface of the rotating shaft corresponding to the electromagnet with the rotation axis, Addition of the compensation value output from the inverse transfer function circuit at a compensation signal input point provided at any point in the signal path from the input point of the reference position signal to the input point of the excitation current command value. A magnetic bearing control device consisting of a
(5)特定周波数が回転軸の回転角速度周波数成分、回
転体を含む回転軸の共振周波数成分、若しくは流体機器
の回転軸の場合の流体作動空間の共振周波数成分、又は
並列的なそれらの適宜の組合せである請求項(1)又は
(3)の磁気軸受の制御方法
(5) When the specific frequency is a rotational angular velocity frequency component of a rotating shaft, a resonant frequency component of a rotating shaft including a rotating body, a resonant frequency component of a fluid working space when the specific frequency is a rotating shaft of a fluid device, or an appropriate combination thereof in parallel. A method for controlling a magnetic bearing according to claim (1) or (3), which is a combination.
(6)特定周波数が回転軸の回転角速度周波数成分、回
転体を含む回転軸の共振周波数成分、若しくは流体機器
の回転軸の場合の流体作動空間の共振周波数成分、又は
並列的なそれらの適宜の組合せである請求項(2)又は
(4)の磁気軸受の制御装置
(6) When the specific frequency is a rotational angular velocity frequency component of a rotating shaft, a resonant frequency component of a rotating shaft including a rotating body, or a resonant frequency component of a fluid working space when the specific frequency is a rotating shaft of a fluid device, or an appropriate combination thereof in parallel. The magnetic bearing control device according to claim (2) or (4), which is a combination.
JP1272777A 1989-10-21 1989-10-21 Magnetic bearing control method and control device Expired - Lifetime JPH07118883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272777A JPH07118883B2 (en) 1989-10-21 1989-10-21 Magnetic bearing control method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272777A JPH07118883B2 (en) 1989-10-21 1989-10-21 Magnetic bearing control method and control device

Publications (2)

Publication Number Publication Date
JPH03139141A true JPH03139141A (en) 1991-06-13
JPH07118883B2 JPH07118883B2 (en) 1995-12-18

Family

ID=17518604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272777A Expired - Lifetime JPH07118883B2 (en) 1989-10-21 1989-10-21 Magnetic bearing control method and control device

Country Status (1)

Country Link
JP (1) JPH07118883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772564A (en) * 1996-07-16 1998-06-30 Koyo Seiko Co., Ltd. Magnetic bearing spindle device for machine tools

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412124A (en) * 1987-07-02 1989-01-17 Yaskawa Denki Seisakusho Kk Control device for magnetic bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412124A (en) * 1987-07-02 1989-01-17 Yaskawa Denki Seisakusho Kk Control device for magnetic bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772564A (en) * 1996-07-16 1998-06-30 Koyo Seiko Co., Ltd. Magnetic bearing spindle device for machine tools

Also Published As

Publication number Publication date
JPH07118883B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
JP3425475B2 (en) Magnetic bearing device
US4839550A (en) Controlled type magnetic bearing device
JP4554204B2 (en) Apparatus and method used for automatic compensation of synchronous disturbances
US4121143A (en) Device for compensating synchronous disturbances in the magnetic suspension of a rotor
US7370524B2 (en) Adaptive vibration control using synchronous demodulation with machine tool controller motor commutation
JPH0572177B2 (en)
US6806606B2 (en) Magnetic bearing device with vibration restraining function, magnetic bearing device with vibration estimating function, and pump device with the magnetic bearing devices mounted thereto
JPH0228011B2 (en)
GB2374683A (en) Servocontrol device
EP0446816B1 (en) Imbalance correcting apparatus for a rotor
Liu et al. Autobalancing control for MSCMG based on sliding-mode observer and adaptive compensation
CN114326409B (en) Magnetic suspension rotor direct vibration force suppression method based on double-channel harmonic reconstruction
CN109424646A (en) Magnetic bearing control device and vacuum pump
CN114371622B (en) Magnetic suspension rotor harmonic vibration force suppression method based on multi-harmonic inverse Park transformation
JPH03139141A (en) Method and apparatus for controlling magnetic bearing
JP6695554B2 (en) Magnetic bearing device and vacuum pump
Lee et al. Unbalance compensation on AMB system without a rotational sensor
JP2002188630A (en) Control device for magnetic bearing, and magnetic bearing spindle device using the same
JPH08326750A (en) Magnetic bearing controller, and control method
JP2000161358A (en) Magnetic bearing device
JPH09144756A (en) Controller for magnetic bearing
JP4300344B2 (en) Magnetic bearing control device and control method
Yabui et al. Control Performance Improvement of Excitation System with Active Magnetic Bearing for Measurement of Rotordynamic Forces
Ye et al. Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm
JPH05231428A (en) Control method and control device for magnetic bearing

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 14

EXPY Cancellation because of completion of term