JPH03138559A - Oxygen sensor and production thereof - Google Patents

Oxygen sensor and production thereof

Info

Publication number
JPH03138559A
JPH03138559A JP1277824A JP27782489A JPH03138559A JP H03138559 A JPH03138559 A JP H03138559A JP 1277824 A JP1277824 A JP 1277824A JP 27782489 A JP27782489 A JP 27782489A JP H03138559 A JPH03138559 A JP H03138559A
Authority
JP
Japan
Prior art keywords
solid electrolyte
groove
electrolyte layer
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1277824A
Other languages
Japanese (ja)
Other versions
JP2769494B2 (en
Inventor
Satoshi Tanaka
智 田中
Tsuyoshi Nomura
野村 強
Gentaro Kaji
源太郎 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1277824A priority Critical patent/JP2769494B2/en
Publication of JPH03138559A publication Critical patent/JPH03138559A/en
Application granted granted Critical
Publication of JP2769494B2 publication Critical patent/JP2769494B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To obtain the sensor which is small in the thickness of a solid electrolyte layer and is small in heat capacity by providing a groove communicating with the hollow part of a heater body via a through-hole on the outer peripheral surface corresponding to the exothermic part of a heater body. CONSTITUTION:The sensor is constituted of the hollow heater body 1 which contains the exothermic part 11 near the inside surface at the front end and is sealed at the front end, the groove 2 which is formed on the outer peripheral surface corresponding to the exothermic part 11 of the body 1 and communicates via the through-hole 21 with the hollow part 10 of the body 1 and the solid electrolyte layer 5 which is provided with a pair of porous cell electrodes 3, 4 to face each other on both surfaces, is so formed as to cross the aperture 20 of the groove 2 and has 20 to 200mum thickness. Since a protective layer 7 is formed on the surface of the electrode 4, the electrode comes into contact with an exhaust gas via this protective layer. Since the electrode 3 has a supporting layer 6, the electrode comes into contact with the outdoor air infiltering the inside of the groove 2 via this supporting layer 6. The depression of the solid electrolyte layer 5 into the groove 2 is prevented by such supporting layer 6 and protective layer 7. The deterioration of the solid electrolyte layer 5 and the cell electrode 4 formed on the surface thereof by the sticking of the mists in the exhaust gas thereto is thus prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば自動車の排気ガス管路中に設置して排
気ガス中の酸素濃度を検出する為の酸素センサ及びその
有効な製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oxygen sensor for detecting the oxygen concentration in exhaust gas by installing it in the exhaust gas pipe of an automobile, for example, and an effective manufacturing method thereof. .

(従来の技術) 自動車の排気ガス中の酸素濃度を測定することは、エン
ジンの空燃比を調整する上で極めて重要である。斯かる
酸素濃度の検出手段としては、ジルコニア等の固体電解
質の基材両面に2個のセル電極を対設し、一方のセル電
極は排気ガスに接するよう、また他方のセル電極は外気
に接するようにし、両セル電極間での起電力(排気ガス
と外気との酸素濃度比に比例する)を測定することによ
り排気ガス中の酸素濃度を検出するようにした酸素セン
サが主に使用されている。そして、上記起電力は温度に
も影響を受け、しかも排気ガス側は高温に晒される為、
正確な酸素濃度を検出するには測定部位が排気ガス温度
の影響を受けないよう出来るだけ一定温度に保たれる必
要があり、その為ヒータも並設された構造とされる。
(Prior Art) Measuring the oxygen concentration in automobile exhaust gas is extremely important in adjusting the air-fuel ratio of the engine. As a means for detecting such oxygen concentration, two cell electrodes are placed oppositely on both sides of a solid electrolyte base material such as zirconia, and one cell electrode is placed in contact with the exhaust gas, and the other cell electrode is placed in contact with the outside air. Oxygen sensors that detect the oxygen concentration in exhaust gas by measuring the electromotive force (proportional to the oxygen concentration ratio between exhaust gas and outside air) between both cell electrodes are mainly used. There is. The electromotive force mentioned above is also affected by temperature, and since the exhaust gas side is exposed to high temperatures,
In order to accurately detect oxygen concentration, it is necessary to keep the temperature of the measurement site as constant as possible so that it is not affected by the exhaust gas temperature, and for this reason, a heater is also installed in parallel.

(発明が解決しようとする課題) 上記酸素センサは、一般に、ヒータ基材、ヒータ電極、
固体電解質及びセル電極等を積層しこれらを一括して焼
成する方法によって作製される。
(Problems to be Solved by the Invention) The above oxygen sensor generally includes a heater base material, a heater electrode,
It is manufactured by a method in which a solid electrolyte, cell electrodes, etc. are laminated and fired all at once.

しかし、上記方法による場合、固体電解質層は中空部へ
の焼成ダレを防止する為又は強度を保つ為少なくとも2
00μm以上の厚みを必要とする。
However, in the case of the above method, the solid electrolyte layer has at least two
It requires a thickness of 00 μm or more.

また、セル電極は主に白金が、固体電解質層としては主
にジルコニアが使用されるが、これらを−括焼成する場
合酸素雰囲気中で行なう必要があり、その為ヒータ電極
としてタングステン等の卑金属を用いることが出来ず、
白金等の貴金属を用いざるを得ない為それたけコスト高
となる。而して、センサ部とヒータ部とを別個に焼成し
、その後両者を一体とすることも可能であるが、各々に
ついて強度をもたせなければならない為に厚みを厚くす
る必要があり、それだけ熱容量が大となり、消費電力が
多くなる。
In addition, platinum is mainly used for cell electrodes, and zirconia is mainly used for solid electrolyte layers, but when firing these, it is necessary to do so in an oxygen atmosphere, so base metals such as tungsten are used as heater electrodes. cannot be used,
Since precious metals such as platinum have to be used, the cost increases accordingly. Therefore, it is possible to fire the sensor part and the heater part separately and then integrate them, but since each part must have strength, it is necessary to increase the thickness, which increases the heat capacity. This increases the power consumption.

(発明の目的) 本発明は、上記に鑑みなされたもので、固体電解質層の
厚みが薄く、ヒータ電極として卑金属の使用が可能であ
り、且つ熱容量の小さい新規な酸素センサ並びにその有
効な製造法を提供せんとするものである。
(Purpose of the Invention) The present invention was made in view of the above, and provides a novel oxygen sensor that has a thin solid electrolyte layer, allows the use of base metals as a heater electrode, and has a small heat capacity, and an effective manufacturing method thereof. We aim to provide the following.

(課題を解決する為の手段) 3− 4− 上記目的を達成する本発明酸素センサ並びにその製造法
を添付図面に基づき説明する。第1図は本発明酸素セン
サの一例を示す斜視図、第2図は第1図のn−n線縦断
面図、第3図は第2図■線部の拡大図、第4図は本発明
方法の工程図である。
(Means for Solving the Problems) 3-4- The oxygen sensor of the present invention that achieves the above object and its manufacturing method will be explained based on the accompanying drawings. Fig. 1 is a perspective view showing an example of the oxygen sensor of the present invention, Fig. 2 is a longitudinal cross-sectional view taken along the line nn in Fig. 1, Fig. 3 is an enlarged view of the section marked with ■ in Fig. 2, and Fig. 4 is a main It is a process diagram of the invention method.

即ち、本発明の酸素センサは、先側の内面寄りに発熱部
11を内蔵し且つ先端が封止された中空ヒータ本体1と
、該ヒータ本体1の上記発熱部11対応外周面に形成さ
れ且つ透孔21を介してヒータ本体1の中空部10に連
通する溝2と、両面に一対の多孔質セル電極3.4を被
着対設具備し上記溝2の開口部20に跨架するよう薄膜
手法により形成された厚み20〜200μmの固体電解
質層5とより成ることを特徴とする。
That is, the oxygen sensor of the present invention includes a hollow heater body 1 which has a built-in heat generating part 11 near the inner surface on the tip side and whose tip is sealed, and a hollow heater body 1 formed on the outer circumferential surface of the heater body 1 corresponding to the heat generating part 11. A groove 2 communicating with the hollow part 10 of the heater main body 1 through a through hole 21, and a pair of porous cell electrodes 3.4 attached on both sides so as to straddle the opening 20 of the groove 2. It is characterized by comprising a solid electrolyte layer 5 with a thickness of 20 to 200 μm formed by a thin film method.

上記に於いて、固体電解質層5と溝開口部2゜との間に
多孔質の支持層6を介在させ且つ該固体電解質層5の表
面を多孔質の保護層7によって被覆することが望ましい
In the above, it is desirable to interpose a porous support layer 6 between the solid electrolyte layer 5 and the groove opening 2°, and to cover the surface of the solid electrolyte layer 5 with a porous protective layer 7.

亦、上記酸素センサの製造法は、先側の内面寄りに発熱
部11を内蔵し且つ先端が封止された中空ヒータ本体1
の該発熱部11対応外周面に透孔21を介して該ヒータ
本体1の中空部10に連通する溝2を形成する工程(1
)と、該溝2に樹脂rを充填する工程(II)と、この
充填樹脂rの表面に多孔質の支持層6を上記溝2の開口
部20を跨架するよう形成する工程(II[)と、該支
持層6上に一方の多孔質セル電極3を形成する工程(I
V)と、前記樹脂rを焼失・除去する工程(V)と、上
記セル電極3上に固体電解質層5を薄膜手法により形成
する工程(VI)と、該固体電解質層5の表面に他方の
多孔質セル電極4を形成する工程(■)と、表面側のセ
ル電極4を含んで固体電解質層5を保護層7にて被覆す
る工程(■)とより成ることを要旨とする。
In addition, the method for manufacturing the oxygen sensor described above includes a hollow heater body 1 which has a built-in heat generating part 11 near the inner surface on the tip side and whose tip is sealed.
Step (1) of forming a groove 2 communicating with the hollow part 10 of the heater main body 1 through the through hole 21 on the outer circumferential surface corresponding to the heat generating part 11.
), a step (II) of filling the groove 2 with resin r, and a step (II) of forming a porous support layer 6 on the surface of the filled resin r so as to straddle the opening 20 of the groove 2 ) and the step of forming one porous cell electrode 3 on the support layer 6 (I
V), a step (V) of burning off and removing the resin r, a step (VI) of forming a solid electrolyte layer 5 on the cell electrode 3 by a thin film method, and a step (VI) of forming the solid electrolyte layer 5 on the surface of the solid electrolyte layer 5. The gist is that it consists of a step (■) of forming a porous cell electrode 4 and a step (■) of covering the solid electrolyte layer 5 including the cell electrode 4 on the front side with a protective layer 7.

上記ヒータ本体1に内蔵される発熱部11を、白金その
他の貴金属電極により形成することはもとより可能であ
るが、価格等の点でタングステン等の卑金属電極により
形成することが望ましい。
Although it is of course possible to form the heat generating part 11 built into the heater body 1 with an electrode of a noble metal such as platinum, it is preferable to form it with an electrode of a base metal such as tungsten in terms of cost and the like.

ヒータ本体1は、アルミナセラミック等の耐熱性且つ絶
縁性の材料により成形され、上記発熱部11−とじての
電熱線1.1 aをその先側内面寄りに埋設具備し、且
つ該電熱線11aからの電極線1]b、i l bを該
本体1の厚み内を経て基端部に導出させたものであり、
該電極線11b、llbの基端部は不図示の外部電源に
結線される。また、該ヒータ本体]−の外周面にはその
基端部にまで延びる一対のセル用電極線31.41が被
着形成されている。該セル用電極線31.41はその先
端部でセル電極3.4に夫々電気的に結合せれ、その基
端部は不図示の起電力測定器に接続される。
The heater body 1 is molded from a heat-resistant and insulating material such as alumina ceramic, and has a heating wire 1.1a, which serves as the heat generating portion 11-, buried near the inner surface on the front side thereof, and the heating wire 11a. The electrode wires 1] b, i l b are led out through the thickness of the main body 1 to the base end,
The base ends of the electrode wires 11b and llb are connected to an external power source (not shown). Further, a pair of cell electrode wires 31 and 41 are formed on the outer peripheral surface of the heater body and extend to the base end thereof. The cell electrode wires 31.41 are electrically connected to the cell electrodes 3.4 at their tips, and their base ends are connected to an electromotive force measuring device (not shown).

固体電解質層5は、ジルコニア等により蒸着或いはCV
D法等の薄膜手法をして形成されるものである。その厚
みを20〜200μmとしたのは、20μm未満の場合
、使用中に加わる熱応力に抗し切れずセル電極3.4が
破壊されてしまい、方200μmを超えてもその機能に
変わりがなく加工コス1〜が高くなるに過ぎないからで
ある。
The solid electrolyte layer 5 is made of zirconia or the like by vapor deposition or CV
It is formed using a thin film method such as the D method. The reason for setting the thickness to 20 to 200 μm is that if it is less than 20 μm, the cell electrode 3.4 will not be able to withstand the thermal stress applied during use, and will be destroyed, whereas if it exceeds 200 μm, its function will not change. This is because the processing cost 1~ only increases.

セル電極3.4は、白金を主成分とする多孔質の電極で
あり、転写或いはプリント印刷或いは蒸着等その他の薄
膜手法により形成される。この形成時に、予めヒータ本
体1の外周面に形成された前記セル用電極線31.41
とセル電極3.4とが電気的に結合されるが、該セル用
電極線3]、41は白金に限らずタングステン等の卑金
属も使用可能である。このセル電極3.4のうち外面側
のセル電極4は、前記排気ガス中の酸素濃度を測定する
時には直接若しくは保護層7を介して排気ガスに接し、
一方向面側のセル電極3は、ヒータ本体1の中空部10
及び透孔21を経て溝2内に浸入した外気と直接若しく
は支持層6を介して接する。
The cell electrode 3.4 is a porous electrode containing platinum as a main component, and is formed by other thin film techniques such as transfer, printing, or vapor deposition. At the time of this formation, the cell electrode wires 31 and 41 previously formed on the outer peripheral surface of the heater main body 1
The cell electrode wires 3 and 41 are electrically coupled to each other, and the cell electrode wires 3 and 41 are not limited to platinum, but base metals such as tungsten can also be used. Among these cell electrodes 3.4, the cell electrode 4 on the outer surface side is in contact with the exhaust gas directly or through the protective layer 7 when measuring the oxygen concentration in the exhaust gas,
The cell electrode 3 on one side is connected to the hollow part 10 of the heater main body 1
and comes into contact with the outside air that has entered the groove 2 through the through hole 21 either directly or via the support layer 6.

支持層6及び保護層7は、いずれも酸素(イオン)の透
過を許容すべく多孔質であることが必要であり、望まし
くはスピネル構造物質の溶射により形成される。支持層
6はその上に形成されたセル電極3.4を含む固体電解
質層5の溝2内への陥没を防止すべくこれらを支持する
ものである。
Both the support layer 6 and the protective layer 7 need to be porous to allow the permeation of oxygen (ions), and are preferably formed by spraying a spinel structure material. The support layer 6 supports the solid electrolyte layer 5 including the cell electrodes 3.4 formed thereon to prevent it from sinking into the groove 2.

一方、保護層7はセル電極4及び固体電解質層5の傷付
等を防止すべくこれらを保護するものであるが、スピネ
ル構造物質の溶射による場合は拡散8− 律速層としも機能し、これにより当該酸素センサを限界
電流式センサとしての応用をも可能となる。
On the other hand, the protective layer 7 protects the cell electrodes 4 and the solid electrolyte layer 5 to prevent them from being damaged, but when sprayed with a spinel structure material, it also functions as a diffusion rate controlling layer, This makes it possible to apply the oxygen sensor as a limiting current type sensor.

(作用) 上記構成の酸素センサは、例えば、自動車の排気ガス管
路にガス流に直交するよう配設される。
(Function) The oxygen sensor configured as described above is disposed, for example, in the exhaust gas pipe of an automobile so as to be perpendicular to the gas flow.

この状態では、セル電極4は、保護層7が形成されてい
る場合該保護層7を介して、排気ガスに接し、セル電極
3は、支持層6が形成されている場合該支持層6を介し
て、溝2内に浸入した外気と接する。そして、ヒータ本
体1の電熱線11. aに導電されると発熱部11が発
熱し、その近傍が一定温度に加温され、両セル電極3.
4は略同温度に維持されることになる。両セル電極3.
4の電極線31.41を起電力測定器に接続すると、面
測定部位の酸素濃度の相違に基づく両電極間の化学ポテ
ンシャルの差に応じて、両セル電極3.4間に起電力が
生じこれが検出される。」上記支持層6及び保護層7が
形成されている場合、固体電解質層5の溝2内への陥没
が防止され、また該固体電解質層5及びその表面に形成
されたセル電極4の排気ガス中のミストの付着による劣
化が防止される。
In this state, the cell electrode 4 is in contact with the exhaust gas through the protective layer 7 if it is formed, and the cell electrode 3 is in contact with the exhaust gas through the support layer 6 if it is formed. It comes into contact with the outside air that has entered the groove 2 through the groove. Then, the heating wire 11 of the heater main body 1. When conductive to the cell electrode 3.a, the heat generating portion 11 generates heat, and the vicinity thereof is heated to a constant temperature, and both cell electrodes 3.
4 will be maintained at approximately the same temperature. Both cell electrodes3.
When the electrode wires 31.41 of 4 are connected to an electromotive force measuring device, an electromotive force is generated between both cell electrodes 3.4 according to the difference in chemical potential between the two electrodes based on the difference in oxygen concentration at the surface measurement site. This is detected. ” When the support layer 6 and the protective layer 7 are formed, the solid electrolyte layer 5 is prevented from sinking into the groove 2, and the exhaust gas from the solid electrolyte layer 5 and the cell electrode 4 formed on its surface is prevented. Deterioration due to adhesion of mist inside is prevented.

亦、第4図に示す製造法に於いて、工程(1)では、発
熱線11a及びその電極線11b、llbを所定部位に
埋設して形成されたヒータ本体1に、溝2及び透孔21
が切削により或いは溝・透孔が形成されたシートを巻回
して形成される。そして工程(II)に於いて、該溝2
に樹脂rが充填され、この充填樹脂r上に支持層6及び
セル電極3を形成した〔工程(III)及び工程(■)
〕後、該樹脂rを焼失・除去する〔工程(■)〕と、溝
2はヒータ本体1の中空部10に透孔21を介して連通
ずる空間部となり、その開口部20に支持層6及びセル
電極3が跨架するように残存する。従ってこの上に固体
電解質層5及びセル電極4を形成する〔工程(VI)及
び工程(■)〕と、支持層6、セル電極3、固体電解質
層5及びセル電極4が溝2を覆蓋するよう積層一体に形
成される。固体電解質層5は、上述の如く薄膜手法によ
り形成され、しかも支持層6によって支持されるから、
その厚みを必要以上に厚くする必要がなく、全体の熱容
量が小さくなる。またヒータ本体1は酸素雰囲気中で焼
成処理されることはないので、ヒータ本体1に内蔵され
る発熱部11としてタングステン等の安価な卑金属電極
が採用可能とされる。更に、工程(■)に於いて保護層
7を形成すると、上記固体電解質層5上に形成されたセ
ル電極4の排気ガス中に含まれるp、s、pb等のミス
トの付着による劣化が防止され、この保護層7をスピネ
ル構造物質の溶射により形成した場合、これが拡散律速
層としても機能し、限界電流式センサとしての応用が可
能となる。
In addition, in the manufacturing method shown in FIG. 4, in step (1), grooves 2 and through holes 21 are formed in the heater body 1, which is formed by embedding the heating wire 11a and its electrode wires 11b and llb in predetermined locations.
is formed by cutting or by winding a sheet with grooves and holes formed therein. In step (II), the groove 2
was filled with resin r, and a support layer 6 and a cell electrode 3 were formed on this filled resin r [Step (III) and Step (■)
] After that, when the resin r is burnt out and removed [step (■)], the groove 2 becomes a space that communicates with the hollow part 10 of the heater main body 1 through the through hole 21, and the support layer 6 is inserted into the opening 20. and the cell electrode 3 remains so as to straddle it. Therefore, when the solid electrolyte layer 5 and the cell electrode 4 are formed on this [step (VI) and step (■)], the support layer 6, the cell electrode 3, the solid electrolyte layer 5, and the cell electrode 4 cover the groove 2. It is formed into a single layered structure. Since the solid electrolyte layer 5 is formed by the thin film method as described above and is supported by the support layer 6,
There is no need to increase the thickness more than necessary, and the overall heat capacity is reduced. Further, since the heater body 1 is not subjected to firing treatment in an oxygen atmosphere, an inexpensive base metal electrode such as tungsten can be used as the heat generating portion 11 built into the heater body 1. Furthermore, forming the protective layer 7 in step (■) prevents the cell electrode 4 formed on the solid electrolyte layer 5 from deteriorating due to adhesion of mist such as p, s, and pb contained in the exhaust gas. When this protective layer 7 is formed by thermal spraying of a spinel structure material, it also functions as a diffusion control layer and can be applied as a limiting current type sensor.

(実施例) 次に実施例について述べる。(Example) Next, examples will be described.

第1図乃至第3図に於いて、ヒータ本体1は先端部が封
止され基端部が開放された円筒状であり、その先側内周
面寄りに周方向に沿って発熱部11としての発熱線11
aが埋設され、またその電極線11b、llbが本体1
の長手方向に沿ってその厚み内に一体的に封蔵されて基
端部に導出されている。この導出端には電源(不図示)
が連結される。
In FIGS. 1 to 3, the heater body 1 has a cylindrical shape with a sealed distal end and an open proximal end, and a heat generating section 11 is formed along the circumferential direction near the inner circumferential surface of the distal end. heating wire 11
a is buried, and its electrode wires 11b and llb are buried in the main body 1.
It is integrally enclosed within its thickness along its longitudinal direction and is led out to the proximal end. This lead-out end has a power supply (not shown)
are concatenated.

ヒータ本体1の上記発熱部11に対応する外周面には周
方向に沿った溝2が掘設され、更に該溝2に直交する枝
溝2′が本体1の長手方向に沿って形成され、該枝溝2
′の底部に本体1の中空部に通じる透孔21が穿設され
ている。このように枝溝2′を形成した理由は、透孔2
1の穿設位置を発熱部11から外す為である。
A groove 2 along the circumferential direction is dug in the outer circumferential surface of the heater body 1 corresponding to the heat generating part 11, and a branch groove 2' orthogonal to the groove 2 is further formed along the longitudinal direction of the main body 1, The branch groove 2
A through hole 21 communicating with the hollow part of the main body 1 is bored at the bottom of the main body 1. The reason for forming the branch grooves 2' in this way is that the through holes 2'
This is to remove the drilling position No. 1 from the heat generating part 11.

上記溝2及び枝溝2′の開口部20.20’ には、上
述の如く支持層6、セル電極3、固体電解質層6及びセ
ル電極4が積層一体に跨架形成され、更にこれらを保護
層7が覆っている。この積層構造にあっては、各セル電
極3.4が、ヒータ本体1の外周面に被着形成された電
極線31.41に電気的に結合していることは云うまで
もない。
As described above, the support layer 6, the cell electrode 3, the solid electrolyte layer 6, and the cell electrode 4 are integrally stacked and formed in the openings 20 and 20' of the groove 2 and the branch groove 2', and further protect them. Covered by layer 7. In this laminated structure, it goes without saying that each cell electrode 3.4 is electrically coupled to an electrode wire 31.41 formed on the outer peripheral surface of the heater main body 1.

ヒータ本体1の途中周体にはボス部12が形成され、実
際の使用の際には排気ガス管路の測定口にこのボス部1
2が当接するよう挿入される。酸素濃度の測定要領は上
記の通りであるので、ここ1− 2− ではその説明を割愛する。
A boss portion 12 is formed in the middle of the heater body 1, and in actual use, this boss portion 1 is attached to the measurement port of the exhaust gas pipe.
2 are inserted so that they are in contact with each other. Since the procedure for measuring oxygen concentration is as described above, its explanation will be omitted here in 1-2-.

尚、回倒ではヒータ本体1として円筒状のものを例示し
たが、中空体であればこれに限らず積層タイプのものも
採用可能である。また、セル電極3.4の電極線31.
41がヒータ本体1の外周面に露出状に形成されている
が、これを絶縁材料により被覆することが望ましいこと
は云うまでもない。
Incidentally, in the case of rotation, a cylindrical heater body 1 is illustrated as an example, but the heater body 1 is not limited to this, and a laminated type can also be adopted as long as it is a hollow body. Also, the electrode wire 31. of the cell electrode 3.4.
41 is formed in an exposed manner on the outer peripheral surface of the heater main body 1, but it goes without saying that it is desirable to cover this with an insulating material.

(発明の効果) 叙上の如く、本発明の酸素センサは、固体電解質層が2
0〜200μmと極めて薄いので、全体の熱容量が小さ
く、消費電力が少なくなる。また、該固体電解質層及び
セル電極が薄膜手法により形成されるから、ヒータ本体
が酸素雰囲気中での焼成に供せられることがなく、従っ
て該本体に内蔵される発熱部として安価な卑金属電極を
用いることが出来る。更に、支持層を設けた場合、セン
サ主体たる固体電解質層及びその両面に被着対設された
セル電極は、該支持層によって支持されるから、固体電
解質層の厚みが薄いにも拘らず溝内に陥没する懸念がな
い。またこれらセンサ主体を保護層によって被覆した場
合、排気ガス中のP;S、pb等のミストによる劣化も
防止される。
(Effect of the invention) As described above, the oxygen sensor of the present invention has two solid electrolyte layers.
Since it is extremely thin at 0 to 200 μm, the overall heat capacity is small and power consumption is reduced. Furthermore, since the solid electrolyte layer and cell electrodes are formed by a thin film method, the heater body is not subjected to firing in an oxygen atmosphere, and therefore an inexpensive base metal electrode is used as the heat generating part built into the body. It can be used. Furthermore, when a support layer is provided, the solid electrolyte layer, which is the main body of the sensor, and the cell electrodes attached to both sides of the solid electrolyte layer are supported by the support layer. There is no fear of falling inside. Furthermore, when the main body of these sensors is covered with a protective layer, deterioration due to mist of P;S, PB, etc. in the exhaust gas is also prevented.

亦、本発明の製造方法に於いては、爾後焼失・除去され
る樹脂を溝内に充填し、その上に固体電解質層等を形成
するようにしているから、各層が薄膜手法等によって形
成可能とされ、これによって全体の熱容量を小さくする
ことが出来ると共に安価な卑金属の電極を発熱部として
用いることが可能となり、製造コスト等の低減化に寄与
する。
In addition, in the manufacturing method of the present invention, the grooves are filled with resin that is later burnt out and removed, and a solid electrolyte layer is formed on top of the resin, so each layer can be formed by a thin film method or the like. As a result, the overall heat capacity can be reduced, and an inexpensive base metal electrode can be used as the heat generating portion, contributing to reductions in manufacturing costs and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明酸素センサの一例を示す斜視図、第2図
は第1図のn−n線縦断面図、第3図は第2図■線部の
拡大図、第4図は本発明方法の工程図である。 (符号の説明) 1・・・ヒータ本体。 熱部、 2・・・溝、 3.4・・・セル電極、 持層、 7・・・保護層。 10・・・中空部、 11・・・発 20・・・開口部、 21・・・透孔、5・・・固体電
解質層、6・・・支 特開平3 138559 (6)
Fig. 1 is a perspective view showing an example of the oxygen sensor of the present invention, Fig. 2 is a longitudinal cross-sectional view taken along the line nn in Fig. 1, Fig. 3 is an enlarged view of the section marked with ■ in Fig. 2, and Fig. 4 is a main It is a process diagram of the invention method. (Explanation of symbols) 1... Heater body. Hot part, 2... Groove, 3.4... Cell electrode, holding layer, 7... Protective layer. DESCRIPTION OF SYMBOLS 10...Hollow part, 11...Opening part, 21...Through hole, 5...Solid electrolyte layer, 6...Japanese Patent Application Laid-Open No. 3-138559 (6)

Claims (1)

【特許請求の範囲】 1、先側の内面寄りに発熱部を内蔵し且つ先端が封止さ
れた中空ヒータ本体と、該ヒータ本体の上記発熱部対応
外周面に形成され且つ透孔を介してヒータ本体の中空部
に連通する溝と、両面に一対の多孔質セル電極を被着対
設具備し上記溝の開口部に跨架するよう薄膜手法により
形成された厚み20〜200μmの固体電解質層とより
成る酸素センサ。 2、上記固体電解質層と溝開口部との間に多孔質の支持
層が介在され且つ該固体電解質層の表面が多孔質の保護
層によって被覆されている請求項1記載の酸素センサ。 3、上記発熱部が卑金属電極より成る請求項1又は2記
載の酸素センサ。 4、先側の内面寄りに発熱部を内蔵し且つ先端が封止さ
れた中空ヒータ本体の該発熱部対応外周面に透孔を介し
て該ヒータ本体の中空部に連通する溝を形成する工程と
、該溝に樹脂を充填する工程と、この充填樹脂の表面に
多孔質の支持層を上記溝の開口部を跨架するよう形成す
る工程と、該支持層上に一方の多孔質セル電極を形成す
る工程と、前記樹脂を焼失・除去する工程と、上記セル
電極上に固体電解質層を薄膜手法により形成する工程と
、該固体電解質層の表面に他方の多孔質セル電極を形成
する工程と、表面側のセル電極を含んで固体電解質層を
保護層にて被覆する工程とより成る酸素センサの製造法
。 5、上記発熱部が卑金属電極より成る請求項4記載の製
造法。
[Scope of Claims] 1. A hollow heater body with a built-in heat generating part near the inner surface on the tip side and a sealed tip, and a hollow heater body formed on the outer circumferential surface of the heater body corresponding to the heat generating part and formed through a through hole. A solid electrolyte layer with a thickness of 20 to 200 μm formed by a thin film method to span the opening of the groove, which has a groove communicating with the hollow part of the heater body and a pair of porous cell electrodes attached to both sides. An oxygen sensor consisting of 2. The oxygen sensor according to claim 1, wherein a porous support layer is interposed between the solid electrolyte layer and the groove opening, and the surface of the solid electrolyte layer is covered with a porous protective layer. 3. The oxygen sensor according to claim 1 or 2, wherein the heat generating portion is made of a base metal electrode. 4. Forming a groove that communicates with the hollow part of the heater body through a through hole on the outer circumferential surface of the hollow heater body, which has a heat generating part built-in near the inner surface on the tip side and whose tip is sealed, corresponding to the heat generating part. a step of filling the groove with resin; a step of forming a porous support layer on the surface of the filled resin so as to span the opening of the groove; and a step of forming one porous cell electrode on the support layer. a step of burning and removing the resin, a step of forming a solid electrolyte layer on the cell electrode by a thin film method, and a step of forming the other porous cell electrode on the surface of the solid electrolyte layer. A method for manufacturing an oxygen sensor comprising the steps of: and covering the solid electrolyte layer including the cell electrode on the surface side with a protective layer. 5. The manufacturing method according to claim 4, wherein the heat generating portion is made of a base metal electrode.
JP1277824A 1989-10-25 1989-10-25 Oxygen sensor and its manufacturing method Expired - Fee Related JP2769494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277824A JP2769494B2 (en) 1989-10-25 1989-10-25 Oxygen sensor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277824A JP2769494B2 (en) 1989-10-25 1989-10-25 Oxygen sensor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH03138559A true JPH03138559A (en) 1991-06-12
JP2769494B2 JP2769494B2 (en) 1998-06-25

Family

ID=17588775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277824A Expired - Fee Related JP2769494B2 (en) 1989-10-25 1989-10-25 Oxygen sensor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2769494B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289818A (en) * 2000-01-31 2001-10-19 Kyocera Corp Air/fuel ratio sensor element
JP2002195980A (en) * 2000-12-27 2002-07-10 Kyocera Corp Heater-embedded oxygen sensor device
JP2003130840A (en) * 2001-10-29 2003-05-08 Kyocera Corp Theoretical air fuel ratio sensor element
JP2005351740A (en) * 2004-06-10 2005-12-22 Hitachi Ltd Oxygen concentration detection element
DE102013204228A1 (en) 2012-03-16 2013-09-19 Denso Corporation Gas sensor element and its manufacturing method
US9594050B2 (en) 2013-04-12 2017-03-14 Denso Corporation A/F sensor element and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289818A (en) * 2000-01-31 2001-10-19 Kyocera Corp Air/fuel ratio sensor element
JP2002195980A (en) * 2000-12-27 2002-07-10 Kyocera Corp Heater-embedded oxygen sensor device
JP4530529B2 (en) * 2000-12-27 2010-08-25 京セラ株式会社 Heater integrated oxygen sensor element
JP2003130840A (en) * 2001-10-29 2003-05-08 Kyocera Corp Theoretical air fuel ratio sensor element
JP2005351740A (en) * 2004-06-10 2005-12-22 Hitachi Ltd Oxygen concentration detection element
DE102013204228A1 (en) 2012-03-16 2013-09-19 Denso Corporation Gas sensor element and its manufacturing method
US9540282B2 (en) 2012-03-16 2017-01-10 Denso Corporation Gas sensor element and its manufacturing method
US9594050B2 (en) 2013-04-12 2017-03-14 Denso Corporation A/F sensor element and method of manufacturing the same
US9804119B2 (en) 2013-04-12 2017-10-31 Denso Corporation A/F sensor element and method of manufacturing the same

Also Published As

Publication number Publication date
JP2769494B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US4294679A (en) Flat electrochemical sensor, and method of its manufacture
US4902400A (en) Gas sensing element
EP0309067B1 (en) Electrochemical device
JP3694377B2 (en) Oxygen sensor and air-fuel ratio detection method
EP0238278A1 (en) Electrochemical device
JPS6336461B2 (en)
JPS6329219B2 (en)
JP6998802B2 (en) Gas sensor
JPS6252450A (en) Electrochemical element and its manufacture
US4528086A (en) Oxygen sensor with heater
JP2002310988A (en) Gas sensor
EP0227257B1 (en) Electrochemical device
US4915815A (en) Sensor incorporating a heater
JPH03138559A (en) Oxygen sensor and production thereof
JP2013234896A (en) Gas sensor element and gas sensor
JPS62222159A (en) Oxygen sensor
JP2021124382A (en) Gas sensor
JPS60259952A (en) Electrochemical element
JP2851632B2 (en) Electrochemical element
JP7399771B2 (en) gas sensor
JPH01232252A (en) Oxygen sensor element
JPS6361160A (en) Oxygen concentration detector
US20060159315A1 (en) Method for manufacturing a sensor element for a gas sensor
JP7346349B2 (en) gas sensor
JP2788640B2 (en) Gas concentration detection sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees