JPH03138136A - Intermediate material for fiber reinforced composite material and fiber reinforced light-weight composite molded material manufactured from the same intermediate material - Google Patents

Intermediate material for fiber reinforced composite material and fiber reinforced light-weight composite molded material manufactured from the same intermediate material

Info

Publication number
JPH03138136A
JPH03138136A JP27738289A JP27738289A JPH03138136A JP H03138136 A JPH03138136 A JP H03138136A JP 27738289 A JP27738289 A JP 27738289A JP 27738289 A JP27738289 A JP 27738289A JP H03138136 A JPH03138136 A JP H03138136A
Authority
JP
Japan
Prior art keywords
layer
fiber
composite molded
thermoplastic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27738289A
Other languages
Japanese (ja)
Inventor
Yoshisane Takahashi
高橋 良誠
Toshiaki Kitahora
北洞 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP27738289A priority Critical patent/JPH03138136A/en
Publication of JPH03138136A publication Critical patent/JPH03138136A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a fiber reinforced composite molded material of light weight and sophisticated shape by providing a specified porous bulky sheet in an intermediate section without using a core material or the like. CONSTITUTION:A towel composed of composite yarns composed of reinforced fiber (a) and thermoplastic fiber (b) and having apparent density 0.4g/cm<3>-1.2g/cm<3> is made into a layer A, while a porous sheet composed of fibers (a) and (b) or fiber (a) and thermoplastic resin (c), or else fibers (a)-(c) and having apparent density 0.02g/cm<3>-0.4g/cm<3> is formed into another layer B. At least the layers A are disposed on outermost layers on both sides respectively, and a layer combining layers B composed of one layer or more, or a layer B composed of one layer or more and a layer A composed of one layer or more is disposed intermediately and laminated integrally. Thus, an intermediate material for fiber reinforced light-weight composite material with enhanced degree of freedom of molding and of light weight and comparatively high strength and also of superior torsional rigidity and also a composite molded material manufactured from said intermediate material can be manufactured without using a core material such as a foamed material or a honeycomb, a foaming agent or hollow glass beads.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、航空機、自動車等の補強部材、外板材、ある
いは建設用補強部材等に有用な繊維強化軽量複合成形体
用中間材及び、その中間材から得られる繊維強化軽量複
合成形体に関する物である。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to intermediate materials for fiber-reinforced lightweight composite moldings useful for reinforcing members for aircrafts, automobiles, etc., exterior panel materials, reinforcing members for construction, etc. This article relates to a fiber-reinforced lightweight composite molded product obtained from an intermediate material.

(従来の技術) 従来、補強繊維と熱可塑性繊維を複合した糸を用いた繊
維強化複合材料は特開昭80−209034号公報、特
開昭61−130345号公報等に開示されている。該
複合糸から得られる布帛をヒートプレス成形することも
開示されている。しかし、上記複合糸を用いて軽量化し
た繊維強化複合成形体に関する開示はない。また意図的
に軽量化した従来の繊維強化軽量複合成形体は、一般に
はマトリックスが熱硬化型がほとんどで、熱可塑性は非
常に少ない。この熱硬化型の場合、発泡体あるいはハニ
カムを芯材として、該芯材の周囲にプリプレグを配して
成形をするものである。熱可■性の場合は、ハニカムを
芯材とするものがある。
(Prior Art) Conventionally, fiber-reinforced composite materials using threads made of reinforcing fibers and thermoplastic fibers have been disclosed in Japanese Patent Laid-Open No. 80-209034, Japanese Patent Laid-Open No. 61-130345, and the like. Heat press forming of fabrics obtained from the composite yarns is also disclosed. However, there is no disclosure regarding a lightweight fiber-reinforced composite molded article using the above-mentioned composite yarn. In addition, in conventional fiber-reinforced lightweight composite molded articles that are intentionally lightweight, the matrix is generally thermosetting in most cases, and has very little thermoplasticity. In the case of this thermosetting type, molding is performed by using a foam or honeycomb as a core material and arranging prepreg around the core material. In the case of thermoplastic materials, some use honeycomb as the core material.

これらとは別に、樹脂中に発泡剤を入れ成形時に発泡さ
せる方法がある。同様に、樹脂中に中空のガラスピーズ
を入れることによって軽量化する方法がある。
Apart from these methods, there is a method in which a foaming agent is added to the resin and foamed during molding. Similarly, there is a method of reducing weight by inserting hollow glass beads into the resin.

従来の補強繊維と熱可塑性繊維を複合した糸から得られ
る布帛を、ヒートプレスした場合は得られた成形体は、
通常内部も、外層と同様均一状態であり、補強繊維間に
熱可塑性繊維が溶融して含浸しマトリックスを形成して
おり、これ以上の軽量化は望めない。熱硬化型に比べて
靭性の高い熱可塑型の繊維強化複合成形体を軽量化し、
かつ比強度が高く、ねじり剛性の高い繊維強化複合成形
体を得るために、芯材として発泡体を使用するならば、
該発泡体の融点が一般に低く、成形体を得る成形過程に
おいて、加熱されることにより発泡体の一部または全部
が溶融し、発泡体の本質的役割がなくなり成形できない
。これに対してハニカムを芯材として用いた場合は、該
ハニカムと周囲の熱可塑性物質が本質的に異なる場合が
多く、成形後の該ハニカムと周囲の該熱可塑性物質との
接着性が悪く、得られた繊維強化軽量複合成形体の強度
に問題がある。さらにこれら芯材は一般的には形状が限
定され、これにより繊維強化軽量複合成形体の形状も限
定され成形の自由度が低い。また、該芯材は一般には硬
いので、複雑な形状の金型に沿わせて、湾曲成形するこ
とができない。そのため、複雑な形状の成形をする場合
は、予め、該芯材を成形する形状に合うように賦形して
おかなければならず、非常に手間がかかる。特に繊維強
化複合成形体を部分的に嵩高さを変えて、凹凸を設けて
成形する場合には、嵩高くする白部分に該芯材を予め配
置して成形しなければならず非常に手間がかかる。また
、発泡剤を用いる場合には、該発泡剤の分散および、発
泡の程度をコントロールするのが困難であり、製品の品
質にバラツキを生じる問題がある。さらに、中空のガラ
スピーズを用いた場合は、該中空ガラスピーズがヒート
プレス成形時に圧縮により破壊し、軽量化の役割を果た
さなくなる問題がある。
When a fabric obtained from a conventional composite yarn of reinforcing fibers and thermoplastic fibers is heat-pressed, the resulting molded product is
Normally, the inside is in a uniform state as well as the outer layer, and thermoplastic fibers are melted and impregnated between reinforcing fibers to form a matrix, and further weight reduction cannot be expected. The weight of thermoplastic fiber-reinforced composite molded products, which have higher toughness than thermosetting ones, is reduced.
In order to obtain a fiber-reinforced composite molded product with high specific strength and high torsional rigidity, if a foam is used as the core material,
The foam generally has a low melting point, and during the molding process to obtain a molded object, part or all of the foam melts when heated, and the essential role of the foam is lost, making it impossible to mold. On the other hand, when a honeycomb is used as a core material, the honeycomb and the surrounding thermoplastic material are often essentially different, and the adhesion between the honeycomb and the surrounding thermoplastic material after molding is poor. There is a problem with the strength of the obtained fiber-reinforced lightweight composite molded product. Furthermore, the shape of these core materials is generally limited, which limits the shape of the fiber-reinforced lightweight composite molded product, resulting in a low degree of freedom in molding. Further, since the core material is generally hard, it cannot be curved to fit a mold having a complicated shape. Therefore, when molding a complex shape, the core material must be shaped in advance to match the shape to be molded, which is very time consuming. In particular, when molding a fiber-reinforced composite molded product by partially changing the bulk and providing unevenness, the core material must be placed in advance on the white part to be made bulky, which is very time-consuming. It takes. Furthermore, when a foaming agent is used, it is difficult to control the dispersion of the foaming agent and the degree of foaming, resulting in a problem of variations in product quality. Furthermore, when hollow glass beads are used, there is a problem that the hollow glass beads break due to compression during heat press molding, and do not play the role of weight reduction.

(発明が解決しようとする課題) そこで、本発明は軽量化のための発泡体、ハニカム等の
芯材や、発泡剤、中空ガラスピーズを用いず、さらに、
成形の自由度を大幅に向上した、軽くて比強度が高く、
かつねじれ剛性に優れた繊維強化軽量複合成形体用中間
材およびその中間材から得られる複合成形体を提供しよ
うとするものである。
(Problems to be Solved by the Invention) Therefore, the present invention does not use a core material such as a foam or honeycomb for weight reduction, a foaming agent, or hollow glass beads, and further,
It is lightweight and has high specific strength, which greatly improves the degree of freedom of molding.
It is an object of the present invention to provide an intermediate material for a fiber-reinforced lightweight composite molded article that has excellent torsional rigidity, and a composite molded article obtained from the intermediate material.

(課題を解決するための手段) 本発明は、(イ)補強繊維 (ロ)熱可塑性繊維および/または (ハ)樹脂を原材料とするものであり、前記(イ)と(
ロ)を複合した糸から成る見掛は密度0 、4 g /
 cl 〜1 、2 g / caの布帛を1つの履(
A)とし、前記(イ)と(ロ)または前記(イ)と(ハ
)または前記(イ)と(ロ)と(ハ)から成る見掛は密
度0.02g/cm3〜0.4g/clの多孔質のシー
トをもう1つの層(B)とし、少なくとも層(A)を両
側最外層にそれぞれ配し、1層以上の層(B)もしくは
1層以上の層CB)と1層以上の層(A)を組み合わせ
た層を中間に配して積層一体化したことを特徴とする繊
維強化複合成形体用中間材及び、上記中間材を前記(ロ
)と(ハ)が溶融する温度以上に加熱することにより、
層(A)中の(ロ)が溶融し層(A)中の前記(イ)間
に含浸してマトリックスを成形し、同時に層(B)中の
前記(ロ)もしくは(ハ)、または前記(ロ)と(ハ)
が溶融し、層(B)中の前記(イ)表面を濡らして、層
(B)が層(B)に隣接の他の層に前記(ロ)または(
ハ)または(ロ)と(ハ)により溶融接着して得た、中
間部に配した層(B)が嵩高くなっていることを特徴と
する軽量繊維強化複合成形体により上記課題を解決する
ものである。
(Means for Solving the Problems) The present invention uses (a) reinforcing fibers, (b) thermoplastic fibers, and/or (c) resins as raw materials, and the above (a) and (c)
(b) The apparent density of the composite yarn is 0.4 g/
cl ~1,2 g/ca fabric for one shoe (
A), and the apparent density of (a) and (b), or (a) and (c), or (a), (b), and (c) is 0.02 g/cm3 to 0.4 g/cm. A porous sheet of cl is another layer (B), and at least layer (A) is arranged on the outermost layer on both sides, and one or more layers (B) or one or more layers CB) and one or more layers. An intermediate material for a fiber-reinforced composite molded article, characterized in that a layer combining the layers (A) is placed in the middle and integrated, and the temperature at which the intermediate material is melted by the above (b) and (c). By heating above
(B) in the layer (A) is melted and impregnated between the above (A) in the layer (A) to form a matrix, and at the same time, the above (B) or (C) in the layer (B), or the above (b) and (c)
melts and wets the surface of (a) in layer (B), so that layer (B) melts and wets the surface of (b) or (a) in layer (B).
The above-mentioned problems are solved by a lightweight fiber-reinforced composite molded article obtained by melt bonding according to c) or (b) and (c), characterized in that the layer (B) arranged in the middle part is bulky. It is something.

すなわち、発泡体、ハニカム等の芯材を用いずに、(B
)層が嵩高く多孔質であることにより、軽量化を達成し
、(B)層中の熱可塑性繊維または熱可塑性物質が溶融
して隣接する他の層に接着することによって、接着性を
確保するものである。また、本発明の軽量繊維強化複合
成形体中間材は布帛と多孔質シートを組み合わせ積層し
たものであるから、柔軟であり複雑な金型にも沿いやす
く、成形の自由度に優れるものである。
That is, without using a core material such as foam or honeycomb, (B
) The layer is bulky and porous to achieve weight reduction, and (B) the thermoplastic fibers or thermoplastic material in the layer melts and adheres to other adjacent layers to ensure adhesion. It is something to do. Moreover, since the lightweight fiber-reinforced composite molded intermediate material of the present invention is a combination of fabric and porous sheet laminated together, it is flexible and easily conforms to complicated molds, and has excellent molding flexibility.

本発明でいう軽量とは、本発明と同一の補強繊維、同一
の熱可塑性物質を用いた繊維強化複合成形体において、
補強繊維間に熱可塑性物質が含浸して、全体が均一状態
になっているものに対して、本発明は、多孔質の嵩高い
層を含むことにより、軽量になっているものである。重
量で数パーセントから60パ一セント程度軽量化できる
ものである。しかし、これは繊維強化軽量複合成形体の
使用目的及び多孔質の嵩高層をどれだけ含むかによって
も異なり、目的に応じてコントロールできるものである
In the present invention, lightweight means that in a fiber-reinforced composite molded article using the same reinforcing fibers and the same thermoplastic material as in the present invention,
In contrast to those in which the reinforcing fibers are impregnated with a thermoplastic substance so that the entire structure is uniform, the present invention is lightweight by including a porous bulky layer. The weight can be reduced by several percent to about 60 percent. However, this varies depending on the purpose of use of the fiber-reinforced lightweight composite molded article and how much porous bulk layer is included, and can be controlled depending on the purpose.

本発明に用いる、補強繊維とは、炭素繊維、ガラス繊維
、アラミド繊維等があげられるが、これに限定されるも
のではなく、本発明に用いる熱可塑性繊維及び熱可塑性
物質が溶融する成形温度で、溶融しない繊維であればい
ずれでもよく目的に応じて選択すればよい。また、これ
らは単独で用いてもよいが、混合して用いてもよい。長
さや径については特に規定しない。また、ガラス繊維を
用いる場合には、使用する熱可塑性繊維および熱可塑性
物質に応じた処理剤を予め付与しておくのが好ましい。
Examples of reinforcing fibers used in the present invention include carbon fibers, glass fibers, aramid fibers, etc., but are not limited to these. , any fiber that does not melt may be selected depending on the purpose. Further, these may be used alone or in combination. There are no particular regulations regarding length or diameter. Further, when using glass fibers, it is preferable to apply a treatment agent in advance according to the thermoplastic fibers and thermoplastic substance used.

次に、熱可塑性繊維としては、ポリオレフィン、ポリビ
ニルアルコール、ポリ塩化ビニル、ポリアミド、ポリカ
ーボネイト、ポリエチレンテレフタレート、ポリブチレ
ンテレフタレート、ポリフェニレンサルファイド、ポリ
エーテルエーテルケトンなどが挙げられるが、熱可塑性
繊維であればいずれでもよく、目的に応じて選択すれば
よい。また、長さや、径についても特に規定しない。
Next, examples of thermoplastic fibers include polyolefin, polyvinyl alcohol, polyvinyl chloride, polyamide, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyether ether ketone, etc., but any thermoplastic fiber can be used. You can choose it depending on your purpose. Further, the length and diameter are not particularly specified.

本発明で言う熱可塑性樹脂とは、熱可塑性繊維とほぼ同
じ組成であり多少の共重合や変性されているものでも構
わない。しかし、熱可塑性繊維と熱可塑性樹脂の融点が
ほぼ同じであることが望ましい。この熱可塑性樹脂は、
粉末状で用いるのが望ましい。
The thermoplastic resin referred to in the present invention has almost the same composition as the thermoplastic fiber, and may be copolymerized or modified to some extent. However, it is desirable that the melting points of the thermoplastic fiber and the thermoplastic resin be approximately the same. This thermoplastic resin is
It is preferable to use it in powder form.

補強繊維と熱可塑性繊維を複合した糸とは、公知の技術
、例えば特開昭80−209034号公報に開示しであ
るエアーを用いた方法等により両繊維をなるべく均一に
複合した糸である。両繊維の複合比は任意であり、目的
に応じて調整すればよい。望ましくは、補強繊維が30
〜E!Owt%であるが、特に規定はしない。このよう
に、複合した糸であることにより熱可塑性繊維が溶融し
て補強繊維間に含浸し易く、またその含浸時間も短くな
る特徴がある。この複合した糸を、布帛とした(A)層
は織物、多軸織物、編み物、マット状不織布等いずれで
もよいが、強度設計の自由度という点で多軸織物が望ま
しい。
The yarn in which reinforcing fibers and thermoplastic fibers are composited is a yarn in which both fibers are composited as uniformly as possible by a known technique, such as the method using air disclosed in Japanese Patent Application Laid-Open No. 80-209034. The composite ratio of both fibers is arbitrary and may be adjusted depending on the purpose. Preferably, the reinforcing fibers are 30
~E! Although it is Owt%, there is no particular regulation. As described above, since the fiber is a composite thread, the thermoplastic fibers are easily melted and impregnated between the reinforcing fibers, and the impregnation time is also shortened. The (A) layer made of this composite yarn may be a woven fabric, a multi-axial woven fabric, a knitted fabric, a mat-like non-woven fabric, etc., but a multi-axial woven fabric is preferable in terms of flexibility in strength design.

ここでいう見掛は密度とは、目付けを布帛の厚さで除し
たものである。目付けは、一定面積の重量で測定ができ
、厚さは、布厚み計で測定できるものである。(A)層
の見掛は密度が0.4g1ca〜1.2g/cdである
ことにより硬く密に詰まった層が形成できるものである
The apparent density here is the basis weight divided by the thickness of the fabric. The basis weight can be measured by the weight of a certain area, and the thickness can be measured with a cloth thickness meter. The apparent density of the layer (A) is 0.4 g/ca to 1.2 g/cd, so that a hard and densely packed layer can be formed.

また、多孔質シートの[B]層は、見掛は密度0.02
 g/cl〜0.4g/cJの多孔質で嵩高であること
が必要である。この見掛は密度範囲にあることにより、
成形後も(B)層は十分な嵩高さを有しており繊維強化
軽量複合成形体が得られるのである。この範囲より見掛
は密度が大きいと嵩高さが小さくなり良好な軽量化は達
成できない。また、この範囲より小さいと形態を保持で
きなくなり所望の成形体が得られない。この多孔質シー
トCB)層は5〜70酊カツト長のマット状にしたもの
や製編したものが適している。特に、ダブルラッセル編
み物は本発明を達成するのに非常に適している。
In addition, the [B] layer of the porous sheet has an apparent density of 0.02
It needs to be porous and bulky with g/cl to 0.4 g/cJ. Since this appearance is in the density range,
Even after molding, the layer (B) has sufficient bulk, and a fiber-reinforced lightweight composite molded product can be obtained. If the apparent density is greater than this range, the bulk will be small and good weight reduction cannot be achieved. Moreover, if it is smaller than this range, the shape cannot be maintained and a desired molded article cannot be obtained. This porous sheet CB) layer is suitably made into a mat shape or knitted with a length of 5 to 70 mm. In particular, double raschel knits are very suitable for achieving the invention.

該多孔質シート(31層は、(1)補強繊維と熱可塑性
繊維の組み合わせ、■補強繊維と、熱可塑性繊維と同種
の熱可塑性樹脂の組み合わせ、(3)補強繊維と熱可塑
性繊維と、さらに熱可塑性繊維と同種の熱可塑性樹脂の
王者の組み合わせいずれでもよい。(1)の場合は(A
)層と同様に補強繊維と熱可塑性繊維を複合した糸を製
編したものや、糸をカットしてマット状にしたものが例
として挙げられる。
The porous sheet (31 layers) consists of (1) a combination of reinforcing fibers and thermoplastic fibers, (2) a combination of reinforcing fibers, thermoplastic fibers and the same type of thermoplastic resin, (3) reinforcing fibers and thermoplastic fibers, and Any combination of thermoplastic fiber and thermoplastic resin of the same type may be used.In the case of (1), (A
Examples include those knitted from yarns made of a composite of reinforcing fibers and thermoplastic fibers, similar to the layer 2), and those made by cutting yarns into a mat shape.

■の場合は、補強繊維を製編したものやカットしてマッ
ト状にしたものに、後に粉末状の熱かぞい物質を付与し
たものが例として挙げられる。(3)の場合は、(A)
層と同様に補強繊維と熱可塑性繊維を複合した糸を製編
したものや、糸をカットしてマット状にしたものに、後
に粉末杖の熱可塑性物質を付与したものが例として挙げ
られる。該多孔質シート(B)中のマトリックスとなる
熱可塑性繊維または熱可塑性樹脂、または両者の割合は
、5〜40wt%がよく、さらに望ましくは10〜30
wt%がよい。これは溶融成形時に熱可塑性マ) IJ
ワックス、補強繊維間に含浸し補強繊維同士をマトリッ
クスが接着し、嵩高さをなくしてしまうのを防ぐため補
強繊維の割合が高くなっている。
In the case of (2), an example is one in which reinforcing fibers are knitted or cut into a mat shape, and then a powdered thermophilic substance is added afterwards. In the case of (3), (A)
Examples include those knitted from threads made of a composite of reinforcing fibers and thermoplastic fibers, similar to the layers, and those made by cutting the threads into a mat shape, which is later added with a powdered thermoplastic substance. The proportion of thermoplastic fibers, thermoplastic resin, or both serving as a matrix in the porous sheet (B) is preferably 5 to 40 wt%, more preferably 10 to 30 wt%.
Wt% is good. This is a thermoplastic material during melt molding) IJ
The proportion of reinforcing fibers is high in order to prevent the wax from impregnating between the reinforcing fibers and causing the matrix to adhere to each other, resulting in loss of bulk.

しかし、全くマトリックスが存在しないと、補強繊維表
面がマトリックスで全く濡れず保護されないために、外
力が加わったときに補強繊維が破損し、強度保持ができ
なくなる。また、(B)層に隣接の他の層との接着性を
確保するためにもマトリックスが上記の節回程度必要で
ある。該(A)層は少なくとも両側最外層には必要であ
り、表面の硬さを保つだけの厚さが必要である。そのた
め何層重ねてもよく、必要に応じて決定すればよい。ま
た、該(B)層は中間部に一層以上必要である。これも
必要に応じて何層かを重ねればよく、また(A)層と(
B)層を組み合わせて中間部に配してもよい。
However, if no matrix is present, the surfaces of the reinforcing fibers will not be wetted or protected by the matrix at all, and therefore the reinforcing fibers will be damaged when external force is applied, making it impossible to maintain strength. In addition, the matrix needs to have the above-mentioned thickness in order to ensure adhesion to other layers adjacent to layer (B). The layer (A) is required at least as the outermost layer on both sides, and needs to be thick enough to maintain surface hardness. Therefore, the number of layers may be stacked and may be determined as necessary. Further, one or more layers (B) are required in the intermediate portion. This can also be done by stacking several layers as necessary, and (A) layer and (
B) The layers may be combined and placed in the middle.

このように積み重ねた積層物を、(A)層に用いた熱可
塑性繊維でステッチし一体化してもよく、また熱可塑性
繊維及び熱可塑性樹脂が溶融する温度以上で低圧力下で
、軽(ヒートプレスし、各層を溶融接着して一体化して
もよい。
The stacked laminates may be stitched together using the thermoplastic fibers used for layer (A), or may be stitched together using light heat (heat) at a temperature above the melting temperature of the thermoplastic fibers and thermoplastic resin under low pressure. The layers may be integrated by pressing and melt-bonding each layer.

上記のようにして得られた、繊維強化複合成形体用中間
材(第1図)を熱可塑性繊維及び熱可塑性樹脂が溶融す
る温度以上でヒートプレスする。
The intermediate material for a fiber-reinforced composite molded body (FIG. 1) obtained as described above is heat-pressed at a temperature higher than the temperature at which the thermoplastic fibers and thermoplastic resin melt.

この場合、プレス圧はあまり高すぎてもいけないが、低
すぎてもいけない。望ましくは、lokg/cm3〜4
0 kg / cJで、できるだけプレス時間は短い方
がよく、10分以内にしておくのが望ましい。
In this case, the press pressure should not be too high, but it should not be too low either. Preferably, lokg/cm3-4
0 kg/cJ, and the press time should be as short as possible, preferably within 10 minutes.

これは、(B)層の孔部分に熱可塑性マ) IJワック
ス浸入し、(B)層の嵩高性を無くしてしまうのを防ぐ
ためである。しかし、(A)層中の熱可塑性マトリック
スは、補強繊維間に含浸した、すなわちウェットアウト
の状態であり、一方(B)層中の熱可塑性マ) IJワ
ックス補強繊維表面を濡らしているウェットスルーの状
態になるようにすることが必要である。
This is to prevent the thermoplastic polymer (IJ) wax from penetrating into the pores of the layer (B) and causing the layer (B) to lose its bulk. However, the thermoplastic matrix in layer (A) is impregnated between the reinforcing fibers, that is, in a wet-out state, while the thermoplastic matrix in layer (B) is wet-through, which wets the surface of the IJ wax reinforcing fibers. It is necessary to ensure that the condition is as follows.

また、(B)層は隣接の他の層に熱可塑性マトリックス
によって接着している状態となるようにする必要がある
。このような状態のものをブランクと呼び第2図に示す
。該ブランクは、プレスにより(B)層が圧縮され、嵩
高性はないものである。該ブランクを再度、はぼ圧力の
かからない状態で熱可塑性マ) +Jフックス溶融流動
する温度に加熱することにより5、熱可塑性マトリック
スが流動し、(B)層中の補強繊維のスプリングバック
により(B)層は膨張し、再度嵩高くなる。これと同時
に所望の形状に賦形すれば、冷却後は、外層は硬い(A
)層を有し、中間部には嵩高くなった(B)層を有する
軽量繊維強化複合成形体が得られる(第3図)。また、
該ブランクはスタンピング成形によって複雑な形状の繊
維強化軽量複合成形体に成形できる。すなわち、該ブラ
ンクは、硬い芯材を含有していないので、はぼ圧力のか
からない状態での再加熱により、膨張とともにマトリッ
クスの溶融流動により柔軟となる。これにより複雑な形
状の金型に沿わして湾曲成形が可能となる。この場合ス
タンピング成形用の金型は、第4図に示すように、目的
とする嵩高さを繊維強化複合成形体に与えるために、雌
雄の金型の間に目的とする嵩高さ分の空間を形成してお
かなければならない。さらに、この金型は溶融したマト
リックスを固化するために、マトリックスの融点よりも
低い温度、望ましくは結晶化温度とガラス転移温度の間
の温度にしておく必要がある。
Furthermore, the layer (B) must be adhered to other adjacent layers by means of a thermoplastic matrix. The object in this state is called a blank and is shown in FIG. In this blank, the layer (B) is compressed by pressing, and the blank has no bulk. By heating the blank again to a temperature at which the thermoplastic matrix (+J Fuchs) melts and flows without applying any pressure, the thermoplastic matrix flows, and due to the springback of the reinforcing fibers in the (B) layer, (B) ) layer expands and becomes bulky again. If the desired shape is formed at the same time, the outer layer will be hard after cooling (A
) layer and a bulky layer (B) in the middle part (FIG. 3). Also,
The blank can be formed into a fiber-reinforced lightweight composite molded article having a complex shape by stamping. That is, since the blank does not contain a hard core material, it expands and becomes flexible due to the melt flow of the matrix by reheating without applying pressure. This makes it possible to perform curved molding along a mold with a complex shape. In this case, in order to give the fiber-reinforced composite molded body the desired bulkiness, the stamping molds have a space between the male and female molds for the desired bulkiness, as shown in Figure 4. must be formed. Furthermore, the mold must be at a temperature below the melting point of the matrix, preferably between the crystallization temperature and the glass transition temperature, in order to solidify the molten matrix.

また、同様のスタンピング成形によって、部分的に嵩高
さを持たせた繊維強化軽量複合成形体が得られる。すな
わち、第5図に示すように、目的とする部分と目的とす
る嵩高さを繊維強化軽量複合成形体に与えるために雌雄
の型の目的の部分に目的とする嵩高さ分の空間を形成す
ることにより、部分的に嵩高さを持たせ繊維強化軽量複
合成形体が得られる。このようにスタンピング成形が可
能であるので、成形のサイクルタイムも短くコストも低
くなる。
Further, by similar stamping molding, a fiber-reinforced lightweight composite molded body partially made bulky can be obtained. That is, as shown in FIG. 5, in order to give the fiber-reinforced lightweight composite molded body the desired bulk and the desired bulk, a space corresponding to the desired bulk is formed in the desired portions of the male and female molds. As a result, a fiber-reinforced lightweight composite molded article with partial bulkiness can be obtained. Since stamping molding is possible in this manner, the molding cycle time is short and the cost is low.

(作用) 上記に記載で明確なように、本発明は、従来の芯材等を
用いず、中間部に多孔質嵩高シートを有することにより
軽量化できるのである。その原理は、多孔質嵩高シート
中の熱可塑性繊維、または熱可塑性物質、または、両者
を一度溶融し、圧力を加えることにより、補強繊維表面
を濡らし、保護層を形成させ、また、隣接する他の層と
の接着を溶融した熱可塑性マトリックスで行い、−度平
坦な板状物、すなわちブランクを得る。これを再度加熱
することにより、補強繊維のスプリングバックを利用し
て中間部を膨張させ、柔軟にし、金型内で成形と同時に
中間部に嵩高な層を有する繊維強化軽量複合成形体を得
るものである。またこのことは、スタンピング成形が可
能であることを示し、複雑な形状の繊維強化軽量複合成
形体を得ることができ、非常に成形の自由度が高くなっ
ていることを示すものである。
(Function) As is clear from the above description, the present invention can reduce weight by having a porous bulky sheet in the middle portion without using a conventional core material. The principle is that thermoplastic fibers, thermoplastic substances, or both in a porous bulky sheet are melted once and pressure is applied to wet the reinforcing fiber surface to form a protective layer. The bonding with the layers is carried out with a molten thermoplastic matrix to obtain a flat plate, i.e. a blank. By heating this again, the middle part expands and becomes flexible using the springback of the reinforcing fibers, and at the same time it is molded in the mold, a fiber-reinforced lightweight composite molded article with a bulky layer in the middle part is obtained. It is. This also shows that stamping molding is possible, and that a fiber-reinforced lightweight composite molded article with a complex shape can be obtained, indicating that the degree of freedom in molding is extremely high.

(実施例) 実施例−1 以下、実施例によって本発明を説明するが、何らこれに
限定されるものではない。
(Examples) Example-1 The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

補強繊維としてE−ガラス繊維、1215デニール(直
径9μm)と熱可塑性繊維としてナイロン6.2700
デニールをエアーで複合して糸を作った。複合比はガラ
ス繊維割合で約31wt%である。該糸を製織し平織物
とした。この平織物は、糸密度、縦20本/1nch、
横20本/1nchで目付けが700 g/♂で、厚さ
が1.0m−1見掛は密度が0.7g/cJである。こ
れを(A)層とする。
E-glass fiber, 1215 denier (9 μm diameter) as reinforcing fiber and nylon 6.2700 as thermoplastic fiber
I made yarn by compounding denier with air. The composite ratio is approximately 31 wt% of glass fiber. The yarn was woven into a plain woven fabric. This plain woven fabric has a thread density of 20 vertical threads/1 nch,
The fabric weight is 700 g/♂ with 20 horizontal lines/1 nch, the thickness is 1.0 m-1, and the apparent density is 0.7 g/cJ. This is called layer (A).

一方、補強繊維としてE−ガラス繊維(303デニール
、直径9μm)と熱可塑性繊維としてナイロンE3 (
130デニール)をエアーで複合して糸を作った。複合
比は、ガラス繊維割合で約7゜vt%である。該糸をダ
ブルラッセル編機で製編し、目付け1000g/♂、厚
さ10mm、見掛は密度0−1g/ciの編物を得た。
On the other hand, E-glass fiber (303 denier, diameter 9 μm) was used as a reinforcing fiber and nylon E3 was used as a thermoplastic fiber (
130 denier) was composited with air to make yarn. The composite ratio is about 7°vt% glass fiber. The yarn was knitted using a double raschel knitting machine to obtain a knitted fabric having a basis weight of 1000 g/f, a thickness of 10 mm, and an apparent density of 0-1 g/ci.

これを(B)層とする。This is called layer (B).

上記平織物を30 c+a X 30 cmに切り出し
、7枚重ね、その上に30 c+a X 30 c+a
のダブルラッセル編物を2枚重ね、さらにその上に平織
物30 cm X30cmを7枚重ねた。上記の積層物
をナイロン6のミシン糸(70デニール)を用いてステ
ッチし一体化した繊維強化複合成形体中間材を得た。上
記中間材を50tプレスを用いて、280℃、3分間、
10kg/cJでプレスした。得られたブランクは厚さ
8mmで見掛は密度は1.48g/cJであった。
Cut out the above plain weave to 30 c+a x 30 cm, stack 7 pieces, and place 30 c+a x 30 c+a on top of it.
Two layers of double raschel knitted fabric were layered, and seven layers of plain woven fabric (30 cm x 30 cm) were layered on top of that. The above laminate was stitched using nylon 6 sewing thread (70 denier) to obtain an integrated fiber-reinforced composite molded intermediate material. The above intermediate material was heated at 280°C for 3 minutes using a 50t press.
It was pressed at 10 kg/cJ. The resulting blank had a thickness of 8 mm and an apparent density of 1.48 g/cJ.

該ブランクを遠赤外線ヒーターで約290 ’Cに2分
間加熱し、中間部が膨張したところを第6図に示す14
0°Cの金型でプレス成形し、繊維強化l!量複合成形
体を得た。該繊維強化軽量複合成形体は厚さ20關、見
掛は密度0.59g/cdであった。これをJIS  
K7055に従って、曲げ試験を行った。結果を表−1
に示す。
The blank was heated to about 290'C for 2 minutes with a far-infrared heater, and the middle part expanded, as shown in Figure 6.
Press molded in a mold at 0°C and reinforced with fibers! A composite molded body was obtained. The fiber-reinforced lightweight composite molded article had a thickness of 20 mm and an apparent density of 0.59 g/cd. This is JIS
Bending tests were performed according to K7055. Table 1 shows the results.
Shown below.

実施例−2 実施例−1の(B)層のダブルラッセル編物をE−ガラ
ス繊維(303デニール)のみで製編し、目付け700
g/♂、厚さ10關、見掛は密度0.07g/Cdの編
物を得た。該編物にナイロン−6の粉末をバイブレータ
−を用いて内部に含ませた。これによりガラス繊維含有
量は約80wt%で見掛は密度は0.088g/cm3
となった。後は、実施例−1と同様にし、厚さ20龍、
見掛は密度0−58g/caの繊維強化軽量複合体を得
た。曲げ強度の結果を表−1に示す。
Example-2 The double raschel knitted fabric of layer (B) of Example-1 was knitted only with E-glass fiber (303 denier), and the basis weight was 700.
A knitted fabric having a thickness of 10 g/♂ and an apparent density of 0.07 g/Cd was obtained. Nylon-6 powder was impregnated into the knitted fabric using a vibrator. As a result, the glass fiber content is approximately 80 wt% and the apparent density is 0.088 g/cm3.
It became. The rest was the same as in Example-1, and the thickness was 20 mm.
A fiber-reinforced lightweight composite with an apparent density of 0-58 g/ca was obtained. The bending strength results are shown in Table 1.

実施例−3 実施例−1の(B)層のE−ガラス繊維とナイロン−6
の複合糸から成るダブルラッセル編物に、ナイロン−6
の粉末をバイブレータ−で含ませた。
Example-3 E-glass fiber and nylon-6 of layer (B) of Example-1
Double raschel knitted fabric made of composite yarn of nylon-6
powder was added using a vibrator.

ガラス繊維含有量は約80wt%、見掛は密度は0.1
2g/cJであった。後は、実施例−1と同様にし、厚
さ20−m、見掛は密度0.6Og / cJの繊維強
化軽量複合成形体を得た。曲げ強度の結果を表−1に示
す。
Glass fiber content is approximately 80wt%, apparent density is 0.1
It was 2g/cJ. The rest was carried out in the same manner as in Example-1 to obtain a fiber-reinforced lightweight composite molded product with a thickness of 20 m and an apparent density of 0.6 Og/cJ. The bending strength results are shown in Table 1.

比較例−1 実施例−1の(B)層のE−ガラス繊維とナイロン−6
の複合糸から成るダブルラッセル編物の代りに、E−ガ
ラス繊維のみから成るダブルラッセル編物、目付け70
0 g / 、!、厚さ10mm1見掛は密度0.07
g/cJの物を用いた。後は、実施例−1と同様にし、
厚さ2011見掛は密度0.56g/cdの繊維強化軽
量複合成形体を得た。
Comparative Example-1 E-glass fiber and nylon-6 of (B) layer of Example-1
Instead of a double raschel knitted fabric made of a composite yarn of
0 g/,! , thickness 10mm 1 apparent density 0.07
g/cJ was used. The rest is the same as in Example-1,
A fiber-reinforced lightweight composite molded article with a thickness of 2011 and an apparent density of 0.56 g/cd was obtained.

曲げ強度の結果を表−1に示す。The results of bending strength are shown in Table-1.

比較例−2 実施例−1の(B)層のダブルラッセル編物を用いずに
、実施例−1の平織物を10枚重ねて、50tプレスを
用いて、280℃、3分間、10kg / ellでプ
レスした。得ら′れたものは、厚さ5ff1111見掛
は密度1.4g/cJであった。それを、そのまま曲げ
試験に用いた。結果を表−1に示す。
Comparative Example-2 Without using the double raschel knitted fabric of layer (B) of Example-1, 10 sheets of the plain woven fabric of Example-1 were stacked, and the fabric was heated at 280°C for 3 minutes at 10 kg/ell using a 50-t press. I pressed it. The obtained product had a thickness of 5ff1111 and an apparent density of 1.4 g/cJ. It was used as it was for the bending test. The results are shown in Table-1.

比較例−3 実施例−1の平織物の代りに、E−ガラス繊維(303
デニール)とナイロン−E3 (300デニール)の複
合糸(ガラス繊維含有量的50wt%)を見掛は密度0
.1g/cJのダブルラッセル編物を(A)層として用
い、該ダブルラッセル編物を5層重ね一体化し、後は、
実施例−1と同様にした。得られた繊維強化軽量複合成
形体は厚さ201箇で、見掛は密度0.25g/cJで
あった。曲げ強度の結果を表−1に示す。
Comparative Example-3 E-glass fiber (303
denier) and nylon-E3 (300 denier) composite yarn (glass fiber content 50wt%) with an apparent density of 0
.. A 1 g/cJ double raschel knitted fabric was used as the (A) layer, and 5 layers of the double raschel knitted fabric were stacked and integrated, and then,
The same procedure as in Example-1 was carried out. The obtained fiber-reinforced lightweight composite molded article had a thickness of 201 points and an apparent density of 0.25 g/cJ. The bending strength results are shown in Table 1.

(発明の効果) 本発明の繊維強化複合成形体用中間材は柔軟であるため
、該中間材を用いて加熱成形すると、複雑な形状の金型
にも密着させることができ、該中間材中に多孔質嵩高層
が形成されるため、軽量でかつ複雑な形状の繊維強化複
合成形体を得ることができる。
(Effects of the Invention) Since the intermediate material for a fiber-reinforced composite molded article of the present invention is flexible, when the intermediate material is heat-formed, it can be closely attached to a mold with a complicated shape, and the intermediate material Since a porous bulky layer is formed in the fiber-reinforced composite molded article, it is possible to obtain a lightweight fiber-reinforced composite molded article having a complicated shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複合成形体中間材の断面の概略図、第2図は複
合成形体中間材をヒートプレスしたブランクの断面の概
略図、 第3図は第2図のブランクを加熱した複合成形体の断面
の概略図、 第4図、第5図および第6図は、本発明の複合成形体の
各種形状のプレス金型内での様子を断面で示した概略図
である。 1・・・(A)層布帛、2・・・(B)層多孔質シート
、3・・・補強繊維、4・・・マトリックス5・・・補
強繊維中にマ) IJフックス脂が含浸された(A)層
、 6・・・補強繊維がマ) IJフックス脂で濡れた(B
)層多孔質シート 7・・・金型
Figure 1 is a schematic diagram of a cross section of a composite molded intermediate material, Figure 2 is a schematic diagram of a cross section of a blank obtained by heat pressing the composite molded intermediate material, and Figure 3 is a composite molded product obtained by heating the blank in Figure 2. FIG. 4, FIG. 5, and FIG. 6 are schematic cross-sectional views showing various shapes of composite molded bodies of the present invention in press molds. 1... (A) layer fabric, 2... (B) layer porous sheet, 3... reinforcing fiber, 4... matrix 5... reinforcing fiber is impregnated with IJ Fuchs fat. (A) layer, 6... Reinforcing fibers are wet with IJ Fuchs fat (B)
) layer porous sheet 7...mold

Claims (2)

【特許請求の範囲】[Claims] (1)補強繊維(イ)と熱可塑性繊維(ロ)を複合した
糸から成る見掛け密度0.4g/cm^3〜1.2g/
cm^3の布帛を1つの層(A)とし、前記(イ)と(
ロ)または前記(イ)と熱可塑性樹脂(ハ)または前記
(イ)と(ロ)と(ハ)から成る見掛け密度0.02g
/cm^3〜0.4g/cm^3の多孔質のシートをも
う1つの層(B)とし、少なくとも層(A)を両側最外
層にそれぞれ配し、1層以上の層(B)もしくは1層以
上の層(B)と1層以上の層(A)を組み合わせた層を
中間に配して積層一体化したことを特徴とする繊維強化
複合成形体用中間材。
(1) Apparent density 0.4g/cm^3-1.2g/ made of yarn that is a composite of reinforcing fibers (a) and thermoplastic fibers (b)
The fabric of cm^3 is used as one layer (A), and the above (A) and (
(b) or the above (a) and a thermoplastic resin (c), or the apparent density of 0.02 g consisting of the above (a), (b) and (c)
/cm^3 to 0.4g/cm^3 is another layer (B), and at least layer (A) is arranged as the outermost layer on both sides, and one or more layers (B) or An intermediate material for a fiber-reinforced composite molded article, characterized in that a layer that is a combination of one or more layers (B) and one or more layers (A) is arranged in the middle and laminated and integrated.
(2)請求1記載の軽量繊維強化複合成形体用中間材を
加熱成形することにより得られる繊維強化軽量複合成形
体。
(2) A fiber-reinforced lightweight composite molded article obtained by thermoforming the intermediate material for a lightweight fiber-reinforced composite molded article according to claim 1.
JP27738289A 1989-10-24 1989-10-24 Intermediate material for fiber reinforced composite material and fiber reinforced light-weight composite molded material manufactured from the same intermediate material Pending JPH03138136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27738289A JPH03138136A (en) 1989-10-24 1989-10-24 Intermediate material for fiber reinforced composite material and fiber reinforced light-weight composite molded material manufactured from the same intermediate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27738289A JPH03138136A (en) 1989-10-24 1989-10-24 Intermediate material for fiber reinforced composite material and fiber reinforced light-weight composite molded material manufactured from the same intermediate material

Publications (1)

Publication Number Publication Date
JPH03138136A true JPH03138136A (en) 1991-06-12

Family

ID=17582750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27738289A Pending JPH03138136A (en) 1989-10-24 1989-10-24 Intermediate material for fiber reinforced composite material and fiber reinforced light-weight composite molded material manufactured from the same intermediate material

Country Status (1)

Country Link
JP (1) JPH03138136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512281A (en) * 2008-02-21 2011-04-21 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method and apparatus for profile parts made of fiber reinforced plastic
JP2016016541A (en) * 2014-07-04 2016-02-01 日本ガスケット株式会社 Fiber reinforced resin and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512281A (en) * 2008-02-21 2011-04-21 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Manufacturing method and apparatus for profile parts made of fiber reinforced plastic
JP2016016541A (en) * 2014-07-04 2016-02-01 日本ガスケット株式会社 Fiber reinforced resin and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US5725940A (en) Composite molded article and method for making same
JP3821467B2 (en) Reinforcing fiber base material for composite materials
US5529826A (en) Fabric-faced thermoplastic composite panel
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
JP2018080442A (en) Plane composite material
KR101279522B1 (en) Natural fiber reinforced composite board for vehicle headliner of multi-layers structure using thermoplastic matrix fibers of high crystalline and bonding to improve heat resistance and strength, and method for preparing the board
US7168272B2 (en) Crimp-free infusible reinforcement fabric
JP2023002513A (en) Method for producing flat composite member and composite member produced thereby
US7772143B2 (en) Multilayer, composite, fleece material and a method for manufacturing a multilayer, composite, fleece material
US4889763A (en) Sandwich material and the use thereof
JPH04249152A (en) Thermoplastic composite body and manufacture thereof
JP2002321215A (en) Preform and molding thereof
US20200180266A1 (en) Composite laminate resin and fiberglass structure
JP2005313455A (en) Multi-axis fabric, its production method, preform material, and fiber-reinfoced plastic molding
JPH03138136A (en) Intermediate material for fiber reinforced composite material and fiber reinforced light-weight composite molded material manufactured from the same intermediate material
JP2831673B2 (en) Method for producing fiber molded body
JP5777972B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
US20210370624A1 (en) Method for producing a thermoplastically deformable, fiber-reinforced flat semi-finished product
JP2002028997A (en) Plate-shaped foamed molded item with skin
JP3255424B2 (en) Composite molded sheet pad
JP2721820B2 (en) Fiber reinforced thermoplastic resin laminate
US20200406581A1 (en) Composite laminate resin and fiberglass structure
JPH03161575A (en) Production of light weight composite material
JP2005314837A (en) Multiaxial fabric, preform material and fiber-reinforced plastic molded article
JP2003071958A (en) Composite molding and its manufacturing method