JPH03137995A - Dimethyl disulfide decomposition promoting method in methane fermentation - Google Patents

Dimethyl disulfide decomposition promoting method in methane fermentation

Info

Publication number
JPH03137995A
JPH03137995A JP1275557A JP27555789A JPH03137995A JP H03137995 A JPH03137995 A JP H03137995A JP 1275557 A JP1275557 A JP 1275557A JP 27555789 A JP27555789 A JP 27555789A JP H03137995 A JPH03137995 A JP H03137995A
Authority
JP
Japan
Prior art keywords
dimethyl disulfide
methane fermentation
gas
hydrogen
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1275557A
Other languages
Japanese (ja)
Inventor
Yuichi Tanimoto
祐一 谷本
Seiji Minami
南 清司
Kazuo Okamura
和夫 岡村
Tatsuya Sawai
澤井 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Original Assignee
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUA RUNESANSU GIJUTSU KENKYU KUMIAI filed Critical AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority to JP1275557A priority Critical patent/JPH03137995A/en
Publication of JPH03137995A publication Critical patent/JPH03137995A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To treat wastewater containing dimethyl disulfide efficiently at low cost by adding hydrogen or a hydrogen donor to a fermentation tank in methane fermentation process in treatment of wastewater containing dimethyl disulfide. CONSTITUTION:Raw water is led to, for example, a raw material receiving tank 2 having a mixer 1. High polymer such as polypeptone supposed to evolve hydrogen in decomposition process is supplied from a high polymer component storage tank 3 by a supplying pump 4. The raw water is supplied to a fermentation tank 6 (a reactor) by a supplying pump 5 and methane fermentation is carried out. Sludge is separated in a separation tank 7 and the separated sludge is returned to the fermentation tank 6 by a circulating pump 8. In this way, wastewater like paper pulp wastewater containing mainly low molecular components such as methanol and also dimethyl disulfide is treated for decomposing dimethyl disulfide to methylmercaptane by methane fermentation efficiently at low cost.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、クラフトパルプ製造工場、魚腸骨、凍原下
水処理場などの二硫化ジメチルが含まれる廃水のメタン
発酵時、およびその他の二硫化ジメチルが含まれる廃水
のメタン発酵の際に適用した場合に有効なメタン発酵に
おける二硫化ジメチル分解促進法に関するものである。
Detailed Description of the Invention "Industrial Application Field" This invention is applicable to methane fermentation of wastewater containing dimethyl disulfide, such as from kraft pulp manufacturing plants, fish iliac, and frozen ground sewage treatment plants, and other disulfide The present invention relates to a method for promoting the decomposition of dimethyl disulfide in methane fermentation, which is effective when applied to methane fermentation of wastewater containing dimethyl.

「従来技術およびその課題」 メタン発酵法は産業廃水等を効率良くメタンに変換する
方法であるが、二硫化ジメチル等の油分を大量に含む廃
水を処理する際、しばしば発酵槽内に二硫化ジメチルが
蓄積することがある。二硫化ジメチルは比重が水より大
きく、沸点も水より高いので、−旦、二硫化ジメチルの
蓄積が始まると次々に蓄積が行われ、ついには発酵阻害
などを起こし、処理を不可能にしてしまうこともある。
"Prior art and its problems" Methane fermentation is a method for efficiently converting industrial wastewater, etc. into methane, but when treating wastewater containing large amounts of oil such as dimethyl disulfide, dimethyl disulfide is often present in the fermenter. may accumulate. Dimethyl disulfide has a higher specific gravity than water and a higher boiling point than water, so once dimethyl disulfide begins to accumulate, it accumulates one after another, eventually inhibiting fermentation and making treatment impossible. Sometimes.

そこで、二硫化ジメチル等をエアストリッピング、限外
濾過などを用いて、予め二硫化ジメチル等を除外して、
メタン発酵を行なうことを検討しているが、イニシャル
コスト、ランニングコストとも多大な出費を強いられて
いる。
Therefore, dimethyl disulfide and the like are removed in advance by air stripping, ultrafiltration, etc.
We are considering using methane fermentation, but we are forced to spend a lot of money on both initial and running costs.

特に、クラフトバルブのエバポレータ、コンデンセート
廃水は、主要な炭素源がメタノールで、他は、はとんど
が二硫化ジメチルを始めとする有機硫黄化合物で構成さ
れる。この廃水は主要構成物の化学構造が比較的単純な
ものを多く含むため、それを処理する発酵槽内の微生物
相も単純となりがちで、このような二硫化ジメチル等の
突然の蓄積には本来の追従能力がついていけないと考え
られる。
In particular, the main carbon source of Kraft Valve's evaporator and condensate wastewater is methanol, and the rest consists mostly of organic sulfur compounds, including dimethyl disulfide. Since this wastewater contains many main constituents with relatively simple chemical structures, the microbial flora in the fermenter that processes it tends to be simple, and the sudden accumulation of dimethyl disulfide etc. It is thought that the tracking ability of the robot cannot keep up.

「課題を解決するための手段および作用」この発明のメ
タン発酵における二硫化ツメチルの分解促進方法は、廃
水処理等を行なう際に用いるメタン発酵法の一種であっ
て、二硫化ジメチル(DMDSと略すことあり)をメタ
ン発酵とともに分解させることを目的に、発酵槽(バイ
オリアクター)中に、水素ガス、および糖、タンパク質
、脂肪酸を始めとするメタン発酵過程で水素を出す物質
(水素供与体)を添加するものである。
"Means and effects for solving the problem" The method of promoting the decomposition of dimethyl disulfide in methane fermentation of the present invention is a type of methane fermentation method used in wastewater treatment, etc. Hydrogen gas and substances (hydrogen donors) that release hydrogen during the methane fermentation process, such as sugars, proteins, and fatty acids, are placed in the fermenter (bioreactor) for the purpose of decomposing the methane fermentation process. It is added.

二硫化ジメチルは、比較的不安定な構造で、空気中でも
酸化され易い。また、水素などによっても還元され易い
、この場合、2分子の揮発性の高いメチルメルカプタン
となる。本来、二硫化ジメチルはメタン発酵中でもメチ
ルメルカプタンへと分解されると考えられている。しか
し、先に述べたエバポレータ、コンデンセート廃水など
をメタン発酵する際は、低負荷で運転する際は、さほど
問題は生じないが、メタン発酵本来の目的である高負荷
運転においては、二硫化ツメチルの分解が行なわれ難く
なり、蓄積される傾向がある。
Dimethyl disulfide has a relatively unstable structure and is easily oxidized even in the air. It is also easily reduced by hydrogen or the like, and in this case becomes two molecules of highly volatile methyl mercaptan. Originally, dimethyl disulfide is thought to be decomposed into methyl mercaptan even during methane fermentation. However, when performing methane fermentation using the aforementioned evaporator or condensate wastewater, there are no major problems when operating at low loads, but when operating at high loads, which is the original purpose of methane fermentation, trimethyl disulfide It becomes difficult to decompose and tends to accumulate.

そこで、本願発明の発明者は、二硫化ジメチルの還元的
分解を生物(微生物)系において実施することを検討し
た。特に、メタン発酵を行いながら二硫化ジメチルの分
解を行うことがコストその他の面で非常に有利になると
考えられるので、対象廃水として最も処理が難しい(組
成が簡単)と考えられる紙パルプ廃水を選び、二硫化ジ
メチルの分解促進条件について検討した。
Therefore, the inventor of the present invention considered implementing reductive decomposition of dimethyl disulfide in a biological (microbial) system. In particular, since decomposing dimethyl disulfide while performing methane fermentation is considered to be very advantageous in terms of cost and other aspects, paper and pulp wastewater, which is considered to be the most difficult to treat (simple composition), was selected as the target wastewater. , the conditions for promoting the decomposition of dimethyl disulfide were investigated.

先にも述べた通り、二硫化ジメチルは不安定な物質であ
り容易に変化する。ところで、メタン発酵槽の内部は還
元状態にある。そこで、メタン発酵槽の内部では適当な
水素供与体が存在すれば比較的分解は容易いはずである
。しかし、現実には、紙パルプ廃水の処理の場合、二硫
化ンメチルの未分解はまま見受られる。これは、発酵槽
内部に過当な水素供与体が存在しないためであろうと推
測された。特に比較的低濃度であれば二硫化ジメチルの
分解も進むことから、メタノールを主成分とした紙パル
プ廃水の処理系では水素の供給量が限られていることが
示唆された。
As mentioned earlier, dimethyl disulfide is an unstable substance and changes easily. By the way, the inside of the methane fermentation tank is in a reducing state. Therefore, if a suitable hydrogen donor exists inside the methane fermentor, decomposition should be relatively easy. However, in reality, undecomposed methyl disulfide is often observed in the treatment of pulp and paper wastewater. It was speculated that this was due to the absence of an excessive hydrogen donor inside the fermenter. In particular, the decomposition of dimethyl disulfide progresses at relatively low concentrations, suggesting that the amount of hydrogen supplied is limited in paper pulp wastewater treatment systems that mainly contain methanol.

しかし、系中に直接水素を送り込むことはコストその他
の面での制約を受は易いと考えられることから、メタン
発酵槽中で水素を供給する方法を考えた。メタン発酵は
紙バルブ廃水に限らず、あらゆる廃水に適用が可能だが
、その最大の目的であるメタンの生産は、発酵槽中でも
ある一群のメタン生成細菌と呼ばれる微生物が行ってい
る。この微生物は、酢酸、メタノール、ギ酸などの低分
子をメタンに変換する。対象とする廃水は、メタノール
が主成分で、高分子成分は殆ど存在しないが、一般の廃
水の主成分である糖分、タンパク質、脂質などは、−旦
、酸生成菌を呼ばれる微生物グループなどにより低分子
に分解され、このときに水素を放出する。そこで、これ
らの過程で放出される水素に着目し、二硫化ジメチルの
分解に供することを考えた。後で述べるように、実際は
、これらの物質から放出される水素虫はそれほど条虫で
はないが、二硫化ジメチルの分解には大きく寄与した。
However, since it is thought that directly feeding hydrogen into the system is likely to be subject to cost and other constraints, a method of supplying hydrogen in a methane fermentation tank was considered. Methane fermentation can be applied to any kind of wastewater, not just paper valve wastewater, but its primary purpose, the production of methane, is carried out by a group of microorganisms called methane-producing bacteria that are also present in the fermenter. This microbe converts small molecules such as acetic acid, methanol, and formic acid into methane. The main component of the target wastewater is methanol and almost no polymer components, but the main components of general wastewater, such as sugars, proteins, and lipids, are reduced by a group of microorganisms called acid-producing bacteria. It breaks down into molecules, releasing hydrogen at this time. Therefore, we focused on the hydrogen released during these processes and considered using it to decompose dimethyl disulfide. As discussed later, the hydrogen worms released from these materials were not actually tapeworms, but they contributed significantly to the decomposition of dimethyl disulfide.

この実験で供給された水素に対し、遥かに多量の二硫化
ジメチルが分解されたことから、少量の水素の添加も検
討したが、予想通り、二硫化ジメチルの分解は少量の水
素によっても促進された。このようにメタン発酵槽中に
おいては、僅かな量の水素の供給が二硫化ジメチルの分
解を促進することが実験的に確かめられた。
Since a much larger amount of dimethyl disulfide was decomposed compared to the hydrogen supplied in this experiment, we considered adding a small amount of hydrogen, but as expected, the decomposition of dimethyl disulfide was accelerated even by a small amount of hydrogen. Ta. It has thus been experimentally confirmed that supplying a small amount of hydrogen promotes the decomposition of dimethyl disulfide in a methane fermenter.

「実施例」 以下、この発明を適用してメタン発酵を行なった場合の
二硫化ジメチル分解促進作用を確認するための二種類の
実験(下記の実験1および実験2)について第4図およ
び第5図を参照して詳細に説明する。
"Example" Hereinafter, two types of experiments (Experiment 1 and Experiment 2 below) for confirming the effect of promoting the decomposition of dimethyl disulfide when methane fermentation is performed by applying this invention are shown in Figures 4 and 5. This will be explained in detail with reference to the drawings.

(実験1 ) この実験では、酵母エキス、ポリペプトン添加、および
水素ガス添加によるメタン発酵への影響を、ヘッドスペ
ースガス中に占めるメタンガスの割合および二硫化ジメ
チルの分解により生成するメチルメルカプタンの生成量
を測定することにより調べた。
(Experiment 1) In this experiment, we investigated the effects of yeast extract, polypeptone addition, and hydrogen gas addition on methane fermentation by measuring the proportion of methane gas in the headspace gas and the amount of methyl mercaptan produced by decomposing dimethyl disulfide. This was investigated by measurement.

まず、実験に際して、25mf2容の試験管にIOJづ
ツ培地ヲ入れ、ヘッドスペースガスを置換してブチルゴ
ム栓、アルミシールで密封し、次いで上記試験管内に二
硫化ジメチルを設定量注入した後、メタン発酵槽からの
流出液を0.5−づつ植菌した。
First, for the experiment, IOJ culture medium was placed in a 25mf2 test tube, the headspace gas was replaced, the headspace gas was replaced, and the tube was sealed with a butyl rubber stopper and an aluminum seal.Next, a set amount of dimethyl disulfide was injected into the test tube, and then methane was added. The effluent from the fermenter was used to inoculate 0.5 microorganisms.

そして、上記試験管内に密封状態のまま内部の培地を5
5℃で培養し、二週間後に分析した。その分析結果を第
4図に示す。
Then, pour the medium inside the test tube in a sealed state for 5 minutes.
The cells were cultured at 5°C and analyzed two weeks later. The analysis results are shown in Figure 4.

但し、この図において、グラフ中の各実線または破線は
、それらの線で結ばれた点の形状によって、それぞれ以
下に示す各県でのメタン生成I8程について示している
However, in this figure, each solid line or broken line in the graph indicates the methane production I8 in each prefecture shown below, depending on the shape of the points connected by those lines.

(実線) Oコントロールでのメタン生成量。(ヘッドスペースガ
スの成分比、H,:Co、:N!=l:1:8 )へ 
酵母エキス、ポリペプトン添加系(それぞれ0.5g/
f2)でのメタン生成量。(へ・ソドスペースガスの成
分比:Ht:CCh:Nt= l:1:8 )ロ コン
トロール系のヘッドスペースガスの成分比をH,:C0
t=4:1に変更した系でのメタン生成量。
(Solid line) Methane production amount under O control. (component ratio of headspace gas, H, :Co, :N!=l:1:8)
Yeast extract, polypeptone addition system (0.5g/each)
Methane production amount at f2). (B) The component ratio of the head space gas in the control system: Ht:CCh:Nt = l:1:8) The component ratio of the head space gas in the control system is H, :C0
Methane production amount in the system changed to t = 4:1.

(破線) ム 酵母エキス、ポリペプトン添加系(それぞれ0.5
g#りでのメチルメルカプタン生成量。(ヘッドスペー
スガスの成分比 ;Hs:Cot:Nz= 1+1+8 )■ コントロ
ール系のヘッドスペースガスの成分比をHf:C02=
4:lに変更した系てのメチルメルカプタン生成量。
(Dotted line) Yeast extract, polypeptone addition system (each 0.5
Amount of methyl mercaptan produced in g#ri. (Component ratio of head space gas; Hs:Cot:Nz= 1+1+8)■ The component ratio of head space gas in the control system is Hf:C02=
Methyl mercaptan production amount of the system changed to 4:l.

(実験2 ) この実験では、グルコース添加によるメタン発酵への影
響を、ヘッドスペースガス中に占めるメタンガスの割合
および二硫化ジメチルの分解により生成するメチルメル
カプタンの生成量を測定することにより調べた。
(Experiment 2) In this experiment, the effect of glucose addition on methane fermentation was investigated by measuring the proportion of methane gas in the headspace gas and the amount of methyl mercaptan produced by decomposing dimethyl disulfide.

まず、実験に際して、実験lと同様に、25m(!容の
試験管にlomcづつ培地を入れ、ヘッドスペースガス
を置換してブチルゴム栓、アルミシールで密封し、次い
で上記試験管内に二硫化ジメチルを設定量注入したあと
、メタン発酵槽からの流出液を0.5+nf2づつ植菌
した。そして、上記試験管内に密封状態のまま内部の培
地を55°Cで培養し、二週間後に分析した。その分析
結果を第5図に示す。
First, in the same way as in Experiment 1, culture medium was poured into 25 m (! volume) test tubes, the headspace gas was replaced, the headspace gas was replaced, and the tubes were sealed with butyl rubber stoppers and aluminum seals. After injecting the set amount, the effluent from the methane fermenter was inoculated at 0.5+nf2 each.Then, the culture medium inside the test tube was cultured at 55°C in a sealed state, and analyzed two weeks later. The analysis results are shown in Figure 5.

但し、この図において、グラフ中の各実線または破線は
、それらの線で結ばれた点の形状(こよって、それ′ぞ
れ以下に示す各県でのメタン生成過程について示してい
る。
However, in this figure, each solid line or broken line in the graph represents the shape of the points connected by those lines (thus, each represents the methane production process in each prefecture shown below).

(実線) Q コントロールでのメタン生成量。(ヘッドスペース
ガスの成分比;Hz:Cot:N*= 1:1:8 )
◇ グルコース添加系(それぞれIg/12)でのメタ
ン生成量。(ヘッドスペースガスの成分比;Hz:Co
1:Nt= 1:l:8 )(破線) ◆ グルコース添加系(それぞれIg/12)でのメチ
ルメルカプタン生ffcll。(ヘッドスペースガスの
成分比;H,:CO,+N、= 1+l:8 )上記実
験lおよび実験2の結果が示すよう(こ、二硫化ジメチ
ルを含む廃水(対象廃水(よ炭素源の殆どがメタノール
である)をメタン発酵する15(こヘプトスペースガス
への水素ガス(Hl)の極く僅かの添加や酵母エキス、
ポリペプトンなどの分解過程で水素を放出すると考えら
れる高分子成分(グルコース含む)を添加することによ
りメタン発酵に対する二硫化ジメチルの阻害a度を引き
上げたり、二硫化ジメチルのメチルメルカプタンへの変
換を促進した。メチルメルカプタンへの変換の点で見れ
ば、分解されたメチルメルカプタンの量を考えると、計
算上必要な水素の量よりもずっと少ない量の水素しか供
給されていない。これは、現時点ではうまく説明できな
いが、少量の水素添加で理論値以上の変換量が得られる
ことが示唆されたことになる。
(Solid line) Methane production amount under Q control. (Component ratio of headspace gas; Hz:Cot:N*=1:1:8)
◇ Methane production amount in glucose addition system (Ig/12 for each). (component ratio of headspace gas; Hz: Co
1:Nt=1:l:8) (dashed line) ◆ Methyl mercaptan raw ffcll in glucose-added system (Ig/12, respectively). (component ratio of headspace gas; H,:CO,+N, = 1+l:8) As shown by the results of Experiments 1 and 2 above, 15 (by adding a very small amount of hydrogen gas (Hl) to heptospace gas, yeast extract,
By adding polymer components (including glucose) that are thought to release hydrogen during the decomposition process of polypeptone, we increased the degree of inhibition of dimethyl disulfide against methane fermentation and promoted the conversion of dimethyl disulfide to methyl mercaptan. . In terms of conversion to methyl mercaptan, much less hydrogen is supplied than the calculated amount of hydrogen, considering the amount of methyl mercaptan that has been decomposed. Although this cannot be explained well at present, it suggests that a small amount of hydrogenation can yield a conversion amount that exceeds the theoretical value.

上述した実験結果に基づき、第1図、第2図にそれぞれ
示すような二種類の装置を考案した。
Based on the above experimental results, two types of devices were devised as shown in FIGS. 1 and 2, respectively.

第1図に示す装置は、上記実験結果において二硫化ジメ
チルの分解促進効果か高かった高分子物質(高分子成分
)を添加することを目的として考案した装置であって、
原水が最初に導入されかつ撹拌器lが備えられた原水受
槽2と、この原水受槽2内の原水に高分子成分を添加す
るために設けられた高分子成分貯留タンク3および高分
子成分供給ポンプ4と、上記原水受槽2内の原水を供給
する供給ポンプ5と、この供給ポンプ5から供給された
原水を導入してメタン発酵を行なうメタン発酵槽6 (
リアクター)と、このメタン発酵槽6内から外部に取り
出した循環水から汚泥を分離して処理水を得ろ分離槽7
と、この分離槽7で分離した汚泥を上記メタン発酵槽6
内に戻す循環ポンプ8とから構成されているものである
The device shown in FIG. 1 was devised for the purpose of adding a polymeric substance (polymer component) that had a high effect of promoting the decomposition of dimethyl disulfide in the above experimental results.
A raw water receiving tank 2 into which raw water is initially introduced and equipped with an agitator l, a polymeric component storage tank 3 provided for adding polymeric components to the raw water in this raw water receiving tank 2, and a polymeric component supply pump. 4, a supply pump 5 that supplies the raw water in the raw water receiving tank 2, and a methane fermentation tank 6 that introduces the raw water supplied from the supply pump 5 and performs methane fermentation.
Separation tank 7 Separation tank 7
The sludge separated in this separation tank 7 is transferred to the methane fermentation tank 6.
It is composed of a circulation pump 8 that returns the water to the inside.

高分子成分としては、上述の実験で用いた酵母エキス、
ポリペプトン、グルコースを始め、コスト改善効果の大
きいアルコール蒸留廃水、水産加工廃水、凍原など高分
子成分を高濃度に含むものであれば、廃水の類で十分で
ある。
The polymer components include the yeast extract used in the above experiment,
Any kind of wastewater is sufficient as long as it contains a high concentration of polymeric components such as polypeptone and glucose, as well as alcohol distillation wastewater, fishery processing wastewater, and frozen ground, which have a large cost improvement effect.

第2図に示す装置は、水素添加による改善効果が大きい
ことに基づいて考案されたものであって、第1図の装置
のような原水受槽2が備えられておらず、原水を供給ポ
ンプ5で直接メタン発酵Wj6内に供給するようになっ
ており、代わりに、供給ポンプ5からの原水供給ライン
と循環ポンプ8がらの循環ラインとの合流点下流側に水
素ガス接触用の配管または塔を設けるが、あるいは水素
ガスを直接メタン発酵槽6に吹き込むようになっている
The device shown in FIG. 2 was devised based on the great improvement effect of hydrogen addition, and is not equipped with a raw water receiving tank 2 like the device shown in FIG. Instead, a pipe or tower for contacting hydrogen gas is installed downstream of the confluence of the raw water supply line from the supply pump 5 and the circulation line from the circulation pump 8. Alternatively, hydrogen gas may be directly blown into the methane fermentation tank 6.

この装置を用いた場合、水素ガス添加量は二硫化ジメチ
ルを10 mM含む廃水IQを処理する際に0.1mM
 (2,24mf2)程度で十分と考えられろか、水素
ガスは価格が高い上に気体であるため、気液接触効率を
上げなければならない、そこで、直接メタン発酵槽6に
水素ガスを吹き込むシステムの他に気液接触を促進する
システムを付加することも考えている。元々、メタン発
酵槽6には軽石などの充填材を併用することを想定して
いるため、このようなタイプでは直接水素ガスを吹き込
むことも可能で、その場合にもある程度の気液接触が期
待される。しかし、流動床型、スラッノブランケット型
(UASB)などではリアクターへのガスの添加は難し
く (担体、菌体の流出を沼<)、たとえガスを吹き込
んでも気液接触は期待できないため、上述のような気液
接触促進システムを採用することが望ましい。
When using this device, the amount of hydrogen gas added is 0.1mM when treating wastewater IQ containing 10mM dimethyl disulfide.
(2.24 mf2) would be sufficient, but since hydrogen gas is expensive and is a gas, it is necessary to increase the gas-liquid contact efficiency, so a system that blows hydrogen gas directly into the methane fermentation tank 6 has been developed. We are also considering adding a system to promote gas-liquid contact. Originally, it was assumed that the methane fermentation tank 6 would be used with a filler such as pumice, so it is also possible to directly blow hydrogen gas into this type of tank, and even in that case, a certain degree of gas-liquid contact is expected. be done. However, in the fluidized bed type, Surano blanket type (UASB), etc., it is difficult to add gas to the reactor (to prevent carriers and bacterial cells from flowing out), and even if gas is blown into the reactor, gas-liquid contact cannot be expected. It is desirable to adopt such a gas-liquid contact promotion system.

この気液接触促進システムは、第2図中において符号9
で示したものであって、第3図に示すように、原水供給
ラインと循環ラインとの合流点下流側ラインに細管で構
成された気液接触部10を設けると共に、この気液接触
部10の下流側(発酵槽6側)に水素ガス供給ライン1
1を連結し、かつ上記気液接触部IOの上流側に水素ガ
ス放出ライン12を連結して構成したものである。そし
て、上記水素ガス放出ライン12は、ポンプ15を介し
て水素ガス供給ライン11に連結され、かつこの水素ガ
ス放出ライン12の途中部において余剰ガスを必要に応
じてメタンガスラインへ放出するための水素ガス排出ラ
イン13が連結されている。また、上記水素ガス供給ラ
イン11には、供給する水素ガスが不足した場合、また
は水素ガスの供給量を増やす必要のある場合などに新た
な水素ガスを供給する水素ガス補充ライン14が連結さ
れている。
This gas-liquid contact promotion system is designated by the reference numeral 9 in FIG.
As shown in FIG. 3, a gas-liquid contact section 10 composed of a thin tube is provided on the downstream line of the confluence of the raw water supply line and the circulation line, and this gas-liquid contact section 10 Hydrogen gas supply line 1 on the downstream side (fermenter 6 side)
1 are connected to each other, and a hydrogen gas discharge line 12 is connected to the upstream side of the gas-liquid contact portion IO. The hydrogen gas release line 12 is connected to the hydrogen gas supply line 11 via a pump 15, and is connected to a hydrogen gas supply line 11 in the middle of the hydrogen gas release line 12 for releasing surplus gas to the methane gas line as needed. A gas exhaust line 13 is connected. Further, a hydrogen gas replenishment line 14 is connected to the hydrogen gas supply line 11 to supply new hydrogen gas when there is a shortage of hydrogen gas to be supplied or when it is necessary to increase the amount of hydrogen gas supplied. There is.

ところで、気液接触を促進する物としては、従来からガ
ス洗浄塔などが知られており、本システムはそれと類似
のものであるが、二硫化ジメチルの分解促進を目的とし
た水素添加に利用している点は異なる。そして、本シス
テムの水素添加量は、原水tC当り 2〜3 mQと少
量添加であるため、通常の配管中にガスを向流で流す(
第3図中の気液接触部)ことにより所望の気液接触効率
が容易に達成され、さらに配管中に内部充填材などを設
けて気液接触を促進させることによってシステムの大き
さも小さくすることもできる。また、従来の基型反応槽
(いわゆるガス洗浄塔)に内部充填材を併用したものな
どの使用も可能である。このような気液接触促進システ
ムにおいては、第3図に示したもの以外に、ガス循環の
ための気液分離槽を一つまたは二つ設けることが望まし
いが、気液の分離効率は良いと考えられるので、気液分
離槽は小さいもので良く、また、このように気液分離槽
を設けた場合には、水素ガスを循環使用することができ
るので、ランニングコストが安くなるという利点もある
By the way, gas scrubbing towers have long been known as devices that promote gas-liquid contact, and this system is similar to that, but it is used for hydrogenation for the purpose of promoting the decomposition of dimethyl disulfide. The difference is that Since the amount of hydrogen added in this system is a small amount of 2 to 3 mQ per tC of raw water, gas is flowed countercurrently through normal piping (
The desired gas-liquid contact efficiency can be easily achieved (gas-liquid contact section in Fig. 3), and the size of the system can also be reduced by providing internal fillers in the piping to promote gas-liquid contact. You can also do it. It is also possible to use a conventional basic reaction tank (so-called gas scrubbing tower) combined with an internal filler. In such a gas-liquid contact promotion system, it is desirable to provide one or two gas-liquid separation tanks for gas circulation in addition to those shown in Figure 3, but the gas-liquid separation efficiency is good. Therefore, the gas-liquid separation tank can be small. Also, when a gas-liquid separation tank is installed in this way, hydrogen gas can be recycled and used, which has the advantage of reducing running costs. .

また、第4図で示したように、酵母エキス、ポリペプト
ン等の高分子物質によるメタン発酵への二硫化ジメチル
阻害濃度の引き上げ効果が大きいことから、第2図の装
置に第1図の装置のような高分子成分を添加するための
原水受槽を設けることにより、二硫化ジメチル阻害濃度
をさらに引き上げること、すなわち二硫化ジメチル分解
促進効果をさらに向上させることも勿論可能である。
Furthermore, as shown in Figure 4, the effect of increasing the inhibitory concentration of dimethyl disulfide on methane fermentation by high-molecular substances such as yeast extract and polypeptone is large; Of course, by providing a raw water receiving tank for adding such a polymer component, it is possible to further increase the dimethyl disulfide inhibitory concentration, that is, further improve the dimethyl disulfide decomposition promoting effect.

「発明の効果」 この発明のメタン発酵における二硫化ジメチル分解促進
法によれば、メタン発酵を行なう際に、発酵槽中に、水
素、またはメタン発酵過程で水素を生成する水素供与体
を添加して二硫化ジメチルの分解を促進させるようにし
たので、祇パルプ廃水のようにメタノール等の低分子成
分が主成分で、かっ二硫化ジメチルを含む廃水をメタン
発酵により処理する場合にも、メタン発酵中に二硫化ジ
メチルを水素により還元して揮発性の高いメチルメルカ
プタンに分解することができ、これにより、従来量も処
理の難しかった紙パルプ廃水などを低コストかつ高効率
で処理することができる。
"Effects of the Invention" According to the method for promoting the decomposition of dimethyl disulfide in methane fermentation of the present invention, hydrogen or a hydrogen donor that generates hydrogen in the methane fermentation process is added to the fermenter during methane fermentation. Since the decomposition of dimethyl disulfide is accelerated, even when wastewater containing dimethyl disulfide is treated by methane fermentation, such as wastewater from Gishi pulp, which is mainly composed of low-molecular components such as methanol, methane fermentation is possible. In the process, dimethyl disulfide can be reduced with hydrogen and decomposed into highly volatile methyl mercaptan, making it possible to treat pulp and paper wastewater, etc., which was previously difficult to process, at low cost and with high efficiency. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は、この発明の一実施例を示す図で
あって、第1図はメタン発酵における二硫化ツメチルの
分解促進法を適用した装置の一例を示す概略構成図、第
2図は他側の装置を示す概略構成図、第3図は第2図B
部詳細図、第4図および第5図はメタン発酵時の二硫化
ジメチル分解促進効果を示す実験結果を表すグラフであ
る。
1 to 5 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a schematic configuration diagram showing an example of an apparatus to which a method for promoting the decomposition of trimethyl disulfide in methane fermentation is applied, and FIG. The figure is a schematic configuration diagram showing the device on the other side, and Figure 3 is Figure 2B.
Detailed views, FIGS. 4 and 5 are graphs showing experimental results showing the effect of promoting decomposition of dimethyl disulfide during methane fermentation.

Claims (1)

【特許請求の範囲】[Claims] メタン発酵を行なう際に、発酵槽中に、水素、またはメ
タン発酵過程で水素を生成する水素供与体を添加して二
硫化ジメチルの分解を促進させることを特徴とするメタ
ン発酵における二硫化ジメチル分解促進法。
Dimethyl disulfide decomposition in methane fermentation characterized by adding hydrogen or a hydrogen donor that generates hydrogen in the methane fermentation process to the fermenter to accelerate the decomposition of dimethyl disulfide when performing methane fermentation. Promotion method.
JP1275557A 1989-10-23 1989-10-23 Dimethyl disulfide decomposition promoting method in methane fermentation Pending JPH03137995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275557A JPH03137995A (en) 1989-10-23 1989-10-23 Dimethyl disulfide decomposition promoting method in methane fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275557A JPH03137995A (en) 1989-10-23 1989-10-23 Dimethyl disulfide decomposition promoting method in methane fermentation

Publications (1)

Publication Number Publication Date
JPH03137995A true JPH03137995A (en) 1991-06-12

Family

ID=17557109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275557A Pending JPH03137995A (en) 1989-10-23 1989-10-23 Dimethyl disulfide decomposition promoting method in methane fermentation

Country Status (1)

Country Link
JP (1) JPH03137995A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011218298A (en) * 2010-04-09 2011-11-04 Ihi Corp Anaerobic treatment facility and anaerobic treatment method
JP2012183539A (en) * 2012-06-01 2012-09-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011218298A (en) * 2010-04-09 2011-11-04 Ihi Corp Anaerobic treatment facility and anaerobic treatment method
JP2012183539A (en) * 2012-06-01 2012-09-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method

Similar Documents

Publication Publication Date Title
Lauterböck et al. Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor
Gavala et al. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature
US7083956B2 (en) Method for hydrogen production from organic wastes using a two-phase bioreactor system
Salminen et al. Anaerobic batch degradation of solid poultry slaughterhouse waste
Wang et al. Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment
AT506582B1 (en) PROCESS FOR THE PRODUCTION OF BIOGAS
EP3555258B1 (en) Membrane bioreactor for biological upgrading of biogas and conversion of co2 to methane
BRPI1007417B1 (en) apparatus and method for continuously producing hydrogen or hydrogen and methane from organic waste
US20100089823A1 (en) Feedback system for enhancing elimination of biomass in sewage sludge
Martínez et al. Anaerobic digestion of high lipid content wastes: FOG co-digestion and milk processing fat digestion
BR102013021902A2 (en) Ethanol and biogas production method, and ethanol installation for ethanol and biogas production
Worwag et al. Volatile fatty acid (VFA) yield from sludge anaerobic fermentation through a biotechnological approach
Nakashimada et al. Ammonia–methane two-stage anaerobic digestion of dehydrated waste-activated sludge
US8163179B2 (en) Apparatus for removing dissolved hydrogen sulfide in anaerobic treatment
JPH03137995A (en) Dimethyl disulfide decomposition promoting method in methane fermentation
JP2007510540A (en) Method and apparatus for processing organic materials
KR101426440B1 (en) Apparatus for recycling and reducing of organic wastewater and sewage sludge by autothermal thermophilic aerobic digestion method and treatment method using it
JP4440023B2 (en) Methane fermentation treatment method and methane fermentation treatment apparatus
JP2001038378A (en) Method and device for anaerobically treating organic waste water
JP2005103375A (en) Methane fermentation treatment method and apparatus
KR20170075777A (en) Method for the management of biology in a batch process
KR101324494B1 (en) Anaerpbic digestion apparatus for organic waste and anaerpbic digestion method for organic waste
JP2001232388A (en) Method and apparatus for treating waste liquor
JP2003164840A (en) Method and apparatus for treating organic matter
JP2004024929A (en) Methane fermentation method and system for the same