JPH03137993A - Air flow rate controlling method for super deep aeration tank - Google Patents
Air flow rate controlling method for super deep aeration tankInfo
- Publication number
- JPH03137993A JPH03137993A JP1274958A JP27495889A JPH03137993A JP H03137993 A JPH03137993 A JP H03137993A JP 1274958 A JP1274958 A JP 1274958A JP 27495889 A JP27495889 A JP 27495889A JP H03137993 A JPH03137993 A JP H03137993A
- Authority
- JP
- Japan
- Prior art keywords
- air
- circulating
- flow
- head tank
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005273 aeration Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims description 7
- 230000001174 ascending effect Effects 0.000 claims description 18
- 239000011550 stock solution Substances 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 abstract description 11
- 239000001301 oxygen Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 10
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 239000010802 sludge Substances 0.000 abstract description 5
- 230000000717 retained effect Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 13
- 239000012530 fluid Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、有機性廃水を生物学的に処理する超深層曝気
槽の循環用空気量を制御する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the amount of circulating air in an ultra-deep aeration tank for biologically treating organic wastewater.
従来、下水や各種産業廃水を活性汚泥法で生物学的に処
理する装置の一つとして、極めて液深の深い超深層曝気
槽が用いられている。上記超深層曝気槽は、原液が導入
される下降流路、及び下降流路と下端で連通ずる上昇流
路と、該上昇流路の上端に連設され上記下降流路との連
通孔を有するヘッドタンクにより循環流路を形成し、上
記下降流路の比較的深い箇所に生物酸化用の空気を導入
する処理空気供給管と、上記上昇流路の比較的浅い箇所
に液の循環を制御するための液循環用空気を導入する循
環空気供給管とを具備した40〜250nもの液深を有
する竪型曝気槽であり、主として曝気部は地中に埋設さ
れる。上記曝気槽における液の循環流は、始動時、上昇
流路に具備した循環空気供給管から循環空気を導入して
、エアリフト効果による上昇流を惹起することにより成
されており、又原液の処理操作時においては、通常上記
循環空気量を徐々に減量し、且つ同時に下降流路に具備
した処理空気供給管からの処理空気を導入して徐々に増
量するが、上記処理空気は循環流と共に下降流路を下降
し、流路内水圧の増大により微細気泡化するとともに液
中に溶解し、又上昇流路に循環して上昇すると、上記と
は逆に水圧が減少するなめ気泡を発生するとともに凝集
粗大化して、下降流路と上昇流路との液の見掛比重の差
を生じ、循環流が保持されている。しかし原液の流量や
有機物含有量が多い場合には、処理空気量を増す必要が
あるが、処理空気量のみを増加すると、下降流路と上昇
流路との液の見掛比重が逆転し、液が下降流路を上昇し
て逆流を起す恐れがある。従って処理空気量に合わせて
循環空気量を増加させて逆流を防止する必要がある。従
来上記導入空気量の切り換え及び制御は液の循環状態を
適確に計測できる計器が無いため目測したりして経験に
よる手動操作で行なわれている。Conventionally, an ultra-deep aeration tank with an extremely deep liquid depth has been used as a device for biologically treating sewage and various industrial wastewater using the activated sludge method. The ultra-deep aeration tank has a descending channel into which the stock solution is introduced, an ascending channel communicating with the descending channel at its lower end, and a communicating hole connected to the descending channel at the upper end of the ascending channel. A circulation flow path is formed by a head tank, and a processing air supply pipe introduces air for biological oxidation into a relatively deep portion of the descending flow path, and a liquid circulation is controlled to a relatively shallow portion of the upward flow path. It is a vertical aeration tank with a liquid depth of 40 to 250 nm, and is equipped with a circulating air supply pipe that introduces air for liquid circulation.The aeration section is mainly buried underground. The circulating flow of the liquid in the aeration tank is achieved by introducing circulating air from the circulating air supply pipe provided in the ascending flow path at the time of startup to induce an upward flow due to the air lift effect. During operation, the amount of circulating air is usually gradually reduced, and at the same time, the amount of processing air is gradually increased by introducing processing air from the processing air supply pipe provided in the descending flow path. As it descends through the channel, it becomes fine bubbles due to an increase in the water pressure in the channel and dissolves in the liquid, and when it circulates in the ascending channel and rises, the water pressure decreases, contrary to the above, generating lick bubbles. The liquid aggregates and becomes coarse, creating a difference in the apparent specific gravity of the liquid between the descending flow path and the ascending flow path, thereby maintaining a circulating flow. However, if the flow rate or organic matter content of the stock solution is high, it is necessary to increase the amount of air to be processed, but if only the amount of air to be processed is increased, the apparent specific gravity of the liquid in the descending flow path and the ascending flow path will be reversed. There is a risk that the liquid will rise up the downward flow path and cause backflow. Therefore, it is necessary to prevent backflow by increasing the amount of circulating air in accordance with the amount of air being processed. Conventionally, the above-mentioned switching and control of the amount of introduced air has been carried out by manual operation based on experience, such as by visual measurement, since there is no instrument that can accurately measure the state of liquid circulation.
従来の手動操作による下降流路及び上昇流路への導入空
気量の制御では、最適な循環流速を保持することが困難
である。又何らかの理由により原液の液量や有機物含有
量の変動が生じた場合に充分追従し得す、−船釣には上
昇流路への循環空気の過剰導入による動力費の損失を生
じる。With conventional manual control of the amount of air introduced into the descending flow path and the ascending flow path, it is difficult to maintain an optimal circulation flow rate. In addition, it is possible to sufficiently follow changes in the liquid volume or organic matter content of the stock solution for some reason; - In boat fishing, there is a loss in power costs due to excessive introduction of circulating air into the ascending channel.
常に適切な循環空気量を導入するためには、流速計を用
いて循環流速を測定し、その測定値を指標として制御す
るのが好ましいが、循環流路の要部が地中深く埋設され
ており、又流路内が乱流状態であるため散乱する気泡が
多量に存在している等の理由により適切な流速計が選定
できなかった。In order to always introduce an appropriate amount of circulating air, it is preferable to measure the circulating flow velocity using a current meter and use the measured value as an indicator for control. In addition, due to the turbulence in the flow path, a large amount of scattered air bubbles were present, and an appropriate current meter could not be selected.
本発明は、上記事情に鑑み、循環流速を正確に把握でき
、常に最適な循環空気量の導入を確保するために、適切
な流速計及び最適な装設位置を鋭意検討した結果なされ
たものである。In view of the above-mentioned circumstances, the present invention was made as a result of careful consideration of an appropriate current meter and an optimal installation position in order to accurately grasp the circulating flow velocity and ensure that the optimum amount of circulating air is introduced at all times. be.
本発明の要旨は原液が導入される下降流路と、該下降流
路と下端で連通ずる上昇流路と、該上昇流路の上端に連
設され上記下降流路との連通孔を有するヘッドタンクと
で循環流路を形成し、上記下降流路に処理用空気を導入
する処理空気供給管と、上記上昇流路に液循環用空気を
導入する循環空気供給管とを具備した超深層曝気槽にお
いて、上記ヘッドタンクの側壁にドツプラ式流速計を装
設し、該ドツプラ式流速計の測定値を指標として循環用
空気導入量を制御することを特徴とする超深層曝気槽の
空気量制御方法である。The gist of the present invention is a head having a descending channel into which a stock solution is introduced, an ascending channel communicating with the descending channel at its lower end, and a communicating hole connected to the descending channel at the upper end of the ascending channel. Ultra-deep aeration comprising a processing air supply pipe that forms a circulation flow path with a tank and introduces processing air into the downward flow path, and a circulating air supply pipe that introduces liquid circulation air into the upward flow path. Air amount control for an ultra-deep aeration tank, characterized in that a Doppler flow meter is installed on the side wall of the head tank in the tank, and the amount of circulating air introduced is controlled using the measured value of the Doppler flow meter as an index. It's a method.
原液が満たされた超深層曝気槽の上昇流路に循環空気供
給管から循環空気が導入されるとエアリフト効果により
上昇流が生じ、液の循環が行なわれる。上記循環空気供
給管から徐々に処理空気供給管側に空気供給を切り換え
、下降流路へ処理空気を導入することにより、生物酸化
処理が行なわれる。上記夫々の空気量及び適時の空気量
の制御において、処理空気量は主に溶存酸素濃度計によ
る溶存酸素量の測定値を指標とし、又循環空気量はドツ
プラ式流速計による循環液流速の測定値を指標として求
められ、夫々の供給管に具備された空気量調節弁が制御
装置を介して操作されることにより行なわれる。上記ド
ツプラ式流速計による循環流速の測定は、発信用トラン
スジューサがら循環流中へ発信された超音波が、循環流
中を伝搬する間に、混在する固体粒子に遭遇し反射され
る。反射されて生じた反射波は流速によるドツプラ効果
に基づく位相差を生じ、その位相差値から循環流速が測
定される。When circulating air is introduced from the circulating air supply pipe into the ascending flow path of the ultra-deep aeration tank filled with stock solution, an upward flow is generated due to the air lift effect, and the solution is circulated. Biological oxidation treatment is performed by gradually switching the air supply from the circulating air supply pipe to the processing air supply pipe side and introducing the processing air into the downward flow path. In controlling each of the above air amounts and timely air amounts, the amount of processed air is mainly determined by measuring the amount of dissolved oxygen using a dissolved oxygen concentration meter, and the amount of circulating air is determined by measuring the circulating fluid flow rate using a Doppler flow meter. It is determined using the value as an index, and is performed by operating the air amount control valve provided in each supply pipe via a control device. In the measurement of circulating flow velocity using the Doppler current meter, an ultrasonic wave emitted from a transmitting transducer into a circulating flow encounters and is reflected by mixed solid particles while propagating in the circulating flow. The reflected waves produced by the reflection generate a phase difference based on the Doppler effect due to the flow velocity, and the circulating flow velocity is measured from the phase difference value.
以下、図面に基づいて詳述する。第1図は本発明の一実
施例の系統図、第2図は第1図のA−A祖国である。The details will be explained below based on the drawings. FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing the AA homeland of FIG. 1.
1は上、下端が開孔し側部にヘッドタンク4との連通孔
7を有する内筒2と、該内筒を囲繞した有底の外筒3と
、該外筒3の上端に連設されたヘッドタンク4とで構成
された液深が40〜250mにもおよぶ超深層曝気槽で
あり、内筒2内を下降流路5、内筒2と外筒3との間を
上昇流路6とし、ヘッドタンク4を介して循環流路を形
成している。1 is an inner cylinder 2 which is open at the upper and lower ends and has a communication hole 7 with the head tank 4 on the side; an outer cylinder 3 with a bottom surrounding the inner cylinder; and an outer cylinder 3 connected to the upper end of the outer cylinder 3. It is an ultra-deep aeration tank with a liquid depth of 40 to 250 m, consisting of a head tank 4 and a head tank 4. A descending flow path 5 runs inside the inner cylinder 2, and an upward flow path runs between the inner cylinder 2 and the outer cylinder 3. 6, and a circulation flow path is formed via the head tank 4.
又ヘッドタンク4は上昇流路6がらの循環液がヘッドタ
ンク4内を旋回して下降流路5へ流入すべく仕切壁8a
、 8bを設けている。9は下降流路5の比較的深い箇
所へ処理用空気を導入する処理空気供給管、lOは上昇
流路6の比較的浅い箇所へ循環用空気を導入する循環空
気供給管であり、夫々空気量調節弁11a、 llbを
具備し、空気供給用のコンプレッサ12へ接続されてい
る。上記ヘッドタンク4内には循環液中の溶存酸素を測
定する溶存酸素濃度計13が配設され、又ヘッドタンク
4の側壁には循環液の流速を測定するドツプラ式流速計
14が装設される。上記ヘッドタンク4の側壁がコンク
リート製等の超音波振動が伝搬しにくい材質の場合には
側壁の一部を金属板に置換してドツプラ式流速計14を
装着するのが好ましい。15は溶存酸素濃度計13によ
る溶存酸素量の測定値及びドツプラ式流速計14による
液流速の測定値に基づいて処理空気量及び循環空気量を
制御する制御装置である。上記ドツプラ式流速計は、発
信用トランスジューサから循環流中へ超音波を発信し、
循環流中に混在する固体粒子により反射された反射波を
受信用トランスジューサにより受信し、発信波とドツプ
ラ効果により位相がずれた受信波との位相差から循環流
の流速を測定する装置や、又発信用トランスジューサか
ら発信された超音波が循環流中を伝搬する間に、ドツプ
ラ効果により位相がずれ、対向して設けた受信用トラン
スジューサにより受信して測定する装置等公知のものが
用いられる。The head tank 4 also has a partition wall 8a so that the circulating fluid from the ascending channel 6 swirls within the head tank 4 and flows into the descending channel 5.
, 8b is provided. Reference numeral 9 denotes a processing air supply pipe that introduces processing air into a relatively deep part of the descending passage 5, and lO indicates a circulating air supply pipe that introduces circulating air into a relatively shallow part of the ascending passage 6. It is equipped with quantity control valves 11a and llb, and is connected to a compressor 12 for supplying air. A dissolved oxygen concentration meter 13 for measuring dissolved oxygen in the circulating fluid is installed in the head tank 4, and a Doppler flow meter 14 for measuring the flow rate of the circulating fluid is installed on the side wall of the head tank 4. Ru. If the side wall of the head tank 4 is made of a material such as concrete that is difficult for ultrasonic vibrations to propagate, it is preferable to replace a portion of the side wall with a metal plate and mount the Doppler flowmeter 14 thereon. A control device 15 controls the amount of air to be processed and the amount of circulating air based on the amount of dissolved oxygen measured by the dissolved oxygen concentration meter 13 and the amount of liquid flow rate measured by the Doppler flow meter 14. The above-mentioned Doppler current meter transmits ultrasonic waves into the circulating flow from the transmitting transducer,
A device that receives reflected waves reflected by solid particles mixed in the circulating flow using a receiving transducer, and measures the flow velocity of the circulating flow from the phase difference between the emitted wave and the received wave whose phase is shifted due to the Doppler effect. While the ultrasonic waves emitted from the transmitting transducer propagate in the circulating flow, the phase shifts due to the Doppler effect, and a known device is used to receive and measure the ultrasonic waves by a receiving transducer disposed opposite to each other.
上記構成の超深層曝気槽により原液の生物学的処理を行
なう操作について以下詳述する。The operation of biologically treating the stock solution using the ultra-deep aeration tank configured as described above will be described in detail below.
原液が満された超深層曝気槽1の上昇流路6に循環空気
供給管lOから循環用空気が導入されると、エアリフト
効果による上昇流を生じる。液の流はヘッドタンク4内
を旋回し、連通孔7がら下降流路5へ流入して下降流と
なり、下降流路5の下端でUターンして上昇流路6に入
って上昇流となり循環が行なわれる。原液の処理は、原
液流路16から原液、返送汚泥流路17がら汚泥を下降
流路5内へ供給し、処理液はヘッドタンク4に具備した
処理液流路18から後段の図示しない固液分離装置等の
後処理装置へ送られる操作により連続的に行なわれるが
、循環空気供給管1oがら徐々に処理空気供給管9側へ
空気供給を切り換え下降流路5へ処理空気を導入し徐々
に増量することにより、循環量を保持して生物酸化処理
を行なうことができる。即ち導入された処理空気は循環
流と共に下降流路5を下降し、水圧の増大により微細気
泡化するとともに液中に溶解し、又上昇流路6に循環し
て上昇すると、上記とは逆に水圧が減少し、気泡を発生
するとともに凝集粗大化して下降流路5と上昇流路6と
の液の見掛比重の差が生じ、循環流が保持されるのであ
る。又液深が極めて深いため、通常の曝気槽と比較し、
液中の液存酸素濃度が高く、好気性微生物の活動が活溌
となり、効果的に生物酸化処理が行なわれる。循環空気
供給管lOからの循環空気量は、ヘッドタンク4の側壁
に装設されたドツプラ式流速計14の循環液流速の測定
値を指標とし、又処理空気供給管9がらの処理空気量は
、主としてヘッドタンク4内に配設された溶存酸素濃度
計13の循環液中溶存酸素量の測定値を指標として制御
装置15を介して、夫々の空気量調節弁11a、Ilb
が操作されることにより自動的に制御される。When circulating air is introduced from the circulating air supply pipe IO into the ascending channel 6 of the ultra-deep aeration tank 1 filled with the stock solution, an upward flow is generated due to the air lift effect. The liquid flow swirls inside the head tank 4, flows into the downward flow path 5 through the communication hole 7, becomes a downward flow, makes a U-turn at the lower end of the downward flow path 5, enters the upward flow path 6, becomes an upward flow, and circulates. will be carried out. To process the raw solution, the raw solution is supplied from the raw solution flow path 16, the sludge from the return sludge flow path 17 is supplied into the descending flow path 5, and the treated liquid is supplied to the solid liquid (not shown) in the subsequent stage from the treatment liquid flow path 18 provided in the head tank 4. This is carried out continuously by the operation of sending the air to a post-processing device such as a separation device, but the air supply is gradually switched from the circulating air supply pipe 1o to the treated air supply pipe 9 side, and the treated air is gradually introduced into the descending flow path 5. By increasing the amount, it is possible to maintain the circulating amount and perform biological oxidation treatment. That is, the introduced processing air descends through the downward flow path 5 along with the circulating flow, becomes fine bubbles due to the increase in water pressure, and dissolves in the liquid, and when it circulates back to the upward flow path 6 and rises, it reverses the above process. The water pressure decreases, bubbles are generated, and the liquid aggregates and coarsens, creating a difference in the apparent specific gravity of the liquid between the descending channel 5 and the ascending channel 6, thereby maintaining the circulating flow. Also, since the liquid depth is extremely deep, compared to a normal aeration tank,
The concentration of liquid oxygen in the liquid is high, the activity of aerobic microorganisms becomes active, and biological oxidation treatment is carried out effectively. The amount of circulating air from the circulating air supply pipe IO is determined by the measured value of the circulating fluid flow rate by the Doppler flow meter 14 installed on the side wall of the head tank 4, and the amount of air being processed from the processing air supply pipe 9 is determined by , the respective air amount control valves 11a, Ilb are controlled via the control device 15 using the measured value of the amount of dissolved oxygen in the circulating fluid by the dissolved oxygen concentration meter 13 disposed mainly in the head tank 4 as an index.
is automatically controlled by the operation.
本発明は下記の効果を奏する。 The present invention has the following effects.
イ)ヘッドタンク側壁にドツプラ式流速計を設けること
により、その取付工事及び保守が容易となり、又流速測
定の障害となる上昇流に混在する多量の気泡は、ヘッド
タンクで分離破泡され、且つ循環流はヘッドタンク内で
整流されるため流速が正確に測定できる。b) By installing a Doppler type current meter on the side wall of the head tank, its installation work and maintenance are facilitated, and a large amount of air bubbles mixed in the ascending flow that impede flow rate measurement are separated and broken in the head tank. Since the circulating flow is rectified within the head tank, the flow velocity can be measured accurately.
口)循環空気量はドツプラ式流速計の測定値を指標とし
、又処理空気量は溶存酸素濃度計の測定値を指標として
夫々自動的に制御されるため、原液の液量や有機物含有
量の変動に対して、常に最適な循環空気量及び処理空気
量に制御でき電力費の節減を計れるとともに、循環流量
を安定して保持することができる。(Note) The amount of circulating air is automatically controlled using the measured value of the Doppler flowmeter as an indicator, and the amount of processed air is automatically controlled using the measured value of the dissolved oxygen concentration meter as an indicator. It is possible to always control the amount of circulating air and the amount of processed air to be optimal in response to fluctuations, thereby reducing power costs and maintaining a stable circulating flow rate.
第1図は本発明の一実施例を示した系統図、第2図は第
1図のA−A税目である。
1;超深層曝気槽、2:内筒、3;外筒、4;ヘッドタ
ンク、5;下降流路、6;上昇流路、7;連通孔、8a
、8b;仕切壁、9;処理空気供給管、10;循環空気
供給管、lla、 llb 、空気量調節弁、12;コ
ンプレッサ、13;溶存酸素濃度計、14;ドツプラ式
流速計、15;制御装置、16.原液流路、17、返送
汚泥流路、18;処理液流路。FIG. 1 is a system diagram showing an embodiment of the present invention, and FIG. 2 is a tax line diagram taken along line A-A in FIG. 1; Ultra-deep aeration tank, 2: Inner cylinder, 3; Outer cylinder, 4; Head tank, 5; Downflow passage, 6: Upflow passage, 7: Communication hole, 8a
, 8b; Partition wall, 9; Processing air supply pipe, 10; Circulating air supply pipe, lla, llb, air volume control valve, 12; Compressor, 13; Dissolved oxygen concentration meter, 14; Doppler flow meter, 15; Control Apparatus, 16. Raw solution flow path, 17, return sludge flow path, 18; treated liquid flow path.
Claims (1)
する上昇流路と、該上昇流路の上端に連設され上記下降
流路との連通孔を有するヘッドタンクとで循環流路を形
成し、上記下降流路に処理用空気を導入する処理空気供
給管と、上記上昇流路に液循環用空気を導入する循環空
気供給管とを具備した超深層曝気槽において、上記ヘッ
ドタンクの側壁にドップラ式流速計を装設し、該ドップ
ラ式流速計の測定値を指標として循環用空気導入量を制
御することを特徴とする超深層曝気槽の空気量制御方法
。A circulating flow is created by a descending channel into which the stock solution is introduced, an ascending channel communicating with the descending channel at its lower end, and a head tank that is connected to the upper end of the ascending channel and has a communication hole with the descending channel. In the ultra-deep aeration tank, the head A method for controlling the amount of air in an ultra-deep aeration tank, comprising: installing a Doppler current meter on the side wall of the tank; and controlling the amount of circulating air introduced using the measured value of the Doppler current meter as an index.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1274958A JPH03137993A (en) | 1989-10-24 | 1989-10-24 | Air flow rate controlling method for super deep aeration tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1274958A JPH03137993A (en) | 1989-10-24 | 1989-10-24 | Air flow rate controlling method for super deep aeration tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03137993A true JPH03137993A (en) | 1991-06-12 |
Family
ID=17548936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1274958A Pending JPH03137993A (en) | 1989-10-24 | 1989-10-24 | Air flow rate controlling method for super deep aeration tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03137993A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997033834A1 (en) * | 1996-03-14 | 1997-09-18 | Deep Shaft Technology Inc. | Aerobic long vertical shaft bioreactors |
CN102795745A (en) * | 2012-08-18 | 2012-11-28 | 江苏凌志市政工程设计研究院有限公司 | Integrated multi-cycle biological multiplication sewage treatment system |
-
1989
- 1989-10-24 JP JP1274958A patent/JPH03137993A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997033834A1 (en) * | 1996-03-14 | 1997-09-18 | Deep Shaft Technology Inc. | Aerobic long vertical shaft bioreactors |
CN102795745A (en) * | 2012-08-18 | 2012-11-28 | 江苏凌志市政工程设计研究院有限公司 | Integrated multi-cycle biological multiplication sewage treatment system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100089133A1 (en) | Nanobubble-containing liquid producing apparatus and nanobubble-containing liquid producing method | |
US20200055756A1 (en) | Eductor-based membrane bioreactor | |
US5645726A (en) | Treatment of waste liquor in a vertical shaft bioreactor | |
JPS61185393A (en) | Method and device for biological aerobic waste water treatment | |
US4532038A (en) | Flow control apparatus for aerobic sewage treatment | |
JPS6340159B2 (en) | ||
JP5148460B2 (en) | Purification processing apparatus and purification processing method | |
EP1670574A1 (en) | Method and apparatus for mixing of two fluids | |
JPH10156159A (en) | Mixing and aerating device | |
JP2008178792A (en) | Biological reaction method and biological reaction apparatus | |
JP2010119940A (en) | Purification apparatus and method | |
JPH03137993A (en) | Air flow rate controlling method for super deep aeration tank | |
CN109734259B (en) | Environment-friendly distributed sewage treatment system and method | |
JPS6268591A (en) | Closed circuit type recirculation water tank | |
CN102557177A (en) | Impeller cutting type vortex air floatation device | |
CN210065277U (en) | Multi-effect static mixing and stirring reaction device and system for sewage treatment | |
CN106517401A (en) | Intermittent air flotation water-purifying device | |
JPH0642796Y2 (en) | Submersible mechanical aerator | |
KR0128277Y1 (en) | Biological waste water treating equipment using pure oxygen | |
CN212504218U (en) | Biochemical treatment device for sewage | |
JP7550118B2 (en) | Multi-layer treatment tank and wastewater treatment system | |
CN208218498U (en) | MBR reaction tank combination unit with inner circulation structure | |
CN209052444U (en) | A kind of micro-power biological reaction sewage treatment unit | |
SU842056A1 (en) | Method of water aeration | |
JP2005254078A (en) | Method for treating water and its apparatus |