JPH03137904A - Adsorption filter - Google Patents
Adsorption filterInfo
- Publication number
- JPH03137904A JPH03137904A JP27493289A JP27493289A JPH03137904A JP H03137904 A JPH03137904 A JP H03137904A JP 27493289 A JP27493289 A JP 27493289A JP 27493289 A JP27493289 A JP 27493289A JP H03137904 A JPH03137904 A JP H03137904A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- filter medium
- fine particles
- liq
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 14
- 239000010419 fine particle Substances 0.000 claims abstract description 23
- 239000005909 Kieselgur Substances 0.000 claims abstract description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000011148 porous material Substances 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 5
- 239000003463 adsorbent Substances 0.000 claims description 10
- 239000004744 fabric Substances 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 22
- 229910002804 graphite Inorganic materials 0.000 abstract description 14
- 239000010439 graphite Substances 0.000 abstract description 14
- 239000000835 fiber Substances 0.000 abstract description 10
- 239000002245 particle Substances 0.000 abstract description 9
- 239000000356 contaminant Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 10
- 239000011882 ultra-fine particle Substances 0.000 description 8
- 238000001914 filtration Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 1
- 208000012886 Vertigo Diseases 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野]
本発明は、液体中に混入した微細な粒子を吸着して、除
去することの可能な吸着フィルタに関する。従って、例
えば、放電加工におけるグラファイト電極のグラファイ
ト微粒子は0.1〜0.5μm程度の粒子サイズである
が、このグラフディト微粒子の混入した加工液用のフィ
ルタとして使用することができる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an adsorption filter capable of adsorbing and removing fine particles mixed in a liquid. Therefore, for example, graphite fine particles of a graphite electrode in electric discharge machining have a particle size of about 0.1 to 0.5 μm, and can be used as a filter for machining fluid mixed with graphite fine particles.
(従来の技術)
従来、微粒子を液体から除去する方法の1つとして沈澱
法なる方法がある。これは微粒子の混入した液を数時間
から数日の間装置しておき、この間に微粒子を沈澱させ
るものである。また、遠心力を利用した遠心分離法等も
ある。しかしながら、微粒子の大きさが1μ謡程度を下
まわるものは、前者の方法においては液体分子の運動に
基づき各微粒子がブラウン運動をし、永久に沈澱に到ら
ない。また、後者の方法においても分離され得ない。(Prior Art) Conventionally, there is a precipitation method as one of the methods for removing fine particles from a liquid. In this method, a liquid containing fine particles is left in an apparatus for several hours to several days, and the fine particles are allowed to precipitate during this period. There are also centrifugal separation methods that utilize centrifugal force. However, if the size of the particles is less than about 1 μm, in the former method, each particle undergoes Brownian motion based on the movement of liquid molecules, and does not settle permanently. Nor can they be separated by the latter method.
そこで、繊維状濾材エレメント表面に、活性炭等の微粒
子吸着性能を有した吸着性物質の層を形成し、それをフ
ィルタとして使用することがある。Therefore, a layer of an adsorbent material such as activated carbon that has the ability to adsorb fine particles is sometimes formed on the surface of a fibrous filter element and used as a filter.
また、実公昭61−5926号公報には、繊維状活性炭
のヤーンを巻積層して成る高密度吸着フィルタが開示さ
れている。Further, Japanese Utility Model Publication No. 61-5926 discloses a high-density adsorption filter made of wound and laminated fibrous activated carbon yarns.
然しなから、エレメント表面に吸着性物質の層を形成し
たフィルタにおいては、表面でしか粒子を吸着できない
ので、いきおいメツシュの細かいものを採用せざるを得
す、微粒子の混入した液体の流量を大きくすることが困
難である。しかも、少量の液を濾過した段階で目詰まり
が生じ、使用不能となり易い。もし流量を大きくしよう
とすれば装置全体が大きくなってしまうという欠点を有
している。However, in filters with a layer of adsorbent material formed on the surface of the element, particles can only be adsorbed on the surface, so it is necessary to use a filter with a fine mesh. difficult to do. Moreover, clogging occurs after a small amount of liquid has been filtered, and the filter is likely to become unusable. If an attempt is made to increase the flow rate, the entire device will become larger.
また、繊維状活性炭のヤーンを使用する方法においては
、この様な繊維状活性炭は廉価とは言えず、コスト的に
問題かある。Furthermore, in the method of using yarns of fibrous activated carbon, such fibrous activated carbon cannot be said to be inexpensive, and there are problems in terms of cost.
依って本発明は斯かる課題の解決を図るべく、小型であ
っても流量を大きくすることができ、長時間目詰まりな
く使用可能な、超微粒子用の廉価な吸着フィルタの提供
を目的とする。Therefore, in order to solve this problem, the present invention aims to provide an inexpensive adsorption filter for ultrafine particles that can increase the flow rate even if it is small and can be used for a long time without clogging. .
〔課題を解決するための手段]
上記目的に鑑みて本発明は、多孔性の濾材と、吸着物質
とを具備したフィルタであって、前記吸着物質の微細粒
子を前記濾材の断面内部にまで亘る多孔の孔壁に分散、
付着させたことを特徴とする吸着フィルタを提供する。[Means for Solving the Problems] In view of the above object, the present invention provides a filter comprising a porous filter medium and an adsorbent material, in which fine particles of the adsorbent material extend to the inside of the cross section of the filter medium. Dispersed in the porous pore walls,
To provide an adsorption filter characterized by adhesion.
多孔性濾材の断面内部全体に亘る孔壁に吸着微細粒子が
分散、付着しているので、グラファイト等の超微粒子の
混入した液が多孔性の孔を通って濾材を通過する間に、
孔壁に付着した吸着物質の微細粒子が上記超微粒子の吸
着し、濾材の表面のみならず内部においても液の濾過作
用を果たす。Adsorbed fine particles are dispersed and attached to the pore walls throughout the cross section of the porous filter medium, so while the liquid mixed with ultrafine particles such as graphite passes through the filter medium through the porous pores,
The fine particles of the adsorbent adhering to the pore walls adsorb the ultrafine particles, and perform a liquid filtration action not only on the surface of the filter medium but also inside the filter medium.
従って、目詰まりが発生し、使用不能となるまでには相
当の液量を濾過することができ、また、液は濾材の多孔
を通過するため流量を大きくとることができる。Therefore, a considerable amount of liquid can be filtered before clogging occurs and the filter becomes unusable, and since the liquid passes through the pores of the filter medium, a large flow rate can be achieved.
以下本発明を添付図面に示す実施例に基づいて更に詳細
に説明する。第1図は本発明に係るフィルタの部分断面
拡大図であり、濾過される液体が通過可能な孔10を多
数有した、多孔性の濾材12に、液体中に混入したグラ
ファイト等の超微粒子を吸着することのできる特性を有
した珪藻土等の微細粒子14を分散、付着させた様子を
模式的に図示している。この濾材12は繊維の集合体で
あり、布帛としての不織布や、糸巻層状体等から成る。The present invention will be described in more detail below based on embodiments shown in the accompanying drawings. FIG. 1 is an enlarged partial sectional view of a filter according to the present invention, in which ultrafine particles such as graphite mixed in the liquid are inserted into a porous filter medium 12 having a large number of holes 10 through which the liquid to be filtered can pass. This diagram schematically shows how fine particles 14 of diatomaceous earth or the like having adsorption characteristics are dispersed and attached. The filter medium 12 is an aggregate of fibers, and is made of a nonwoven fabric, a thread-wound layered body, or the like.
こうした繊維の集合体では各繊維間に空隙(孔と同意で
使用)10が存在し、この空隙10が液体を通過させる
のであり、その各繊維に珪藻土の微細粒子14が分散、
付着しているため、通過中の液体に混入しているゴミ成
分としての超微粒子を吸着し、これにより液体をクリー
ンに再生することができる。In such an aggregate of fibers, there are voids (used interchangeably with pores) 10 between each fiber, and these voids 10 allow liquid to pass through, and fine particles of diatomaceous earth 14 are dispersed in each fiber.
Because it is attached, it adsorbs ultrafine particles as dust components mixed into the passing liquid, thereby making it possible to regenerate the liquid cleanly.
第2図は従来の珪藻土を利用したフィルターの断面を模
式的に図示したものであり、繊維の集合体から成る濾材
12の表面にのみ珪藻土の微細粒子14から成る屠体を
形成している。この場合には図からも推察され得るよう
に液中のゴミ成分によって容易に目詰まりを生じ、少量
の液体を濾過した段階で使用不能状態に至る。FIG. 2 schematically shows a cross section of a conventional filter using diatomaceous earth, in which a carcass made of fine particles 14 of diatomaceous earth is formed only on the surface of a filter medium 12 made of an aggregate of fibers. In this case, as can be inferred from the figure, the filter is easily clogged by dust components in the liquid, and becomes unusable after filtering a small amount of liquid.
そこで濾材12の内部の空隙10を区画形成する濾材の
構成要素繊維に珪藻土等の微細粒子を分散、付着させる
作業工程が必要であるが、その工程の初期段階を第3図
に示し、終期段階の状態を第4図に示している。即ち、
層状の濾材12に対し、珪藻土を混入させた液体を低流
量状態で流し、内部にまで珪藻土の微細粒子14を侵入
、付着せしめるのである。珪藻土は繊維に付着する性質
を有しているため、内部に侵入させれば濾材全体に分散
、付着させることは容易である。Therefore, a work process is required in which fine particles such as diatomaceous earth are dispersed and adhered to the constituent fibers of the filter medium that define the voids 10 inside the filter medium 12. The initial stage of this process is shown in Fig. 3, and the final stage The state is shown in FIG. That is,
A liquid mixed with diatomaceous earth is flowed through the layered filter medium 12 at a low flow rate, and the fine particles of diatomaceous earth are allowed to penetrate and adhere to the inside of the filter medium 12. Since diatomaceous earth has the property of adhering to fibers, it is easy to disperse and adhere to the entire filter medium once it is allowed to penetrate inside.
その他、繊維20aを紡いで糸20に成す段階で、珪藻
土の微細粒子14を混入させた液を吹き付けて、内部に
まで珪藻土微細粒子14を付着させた第5図に示す糸2
0を巻き、第6図に示す糸巻体12’を構成し、これを
フィルタとして使用することができる。また、糸20の
内部にまで珪藻土の微細粒子14を侵入させ′るには、
前述の第3図並びに第4図の説明と同様な方法によって
も達成され得る。その他、不織布22を第3図、第4図
に示す方法によってその断面内部にまで珪藻土微細粒子
14を分散、付着せしめた帯状の不織布22をロール状
に巻設した円筒体12′(第8図)をフィルタとして使
用することもできる。第6図や第8図に示す円筒体フィ
ルタは、パイプ部材内に挿填し、カートリッジとして提
供することも容易である。In addition, at the stage of spinning the fibers 20a to form the yarn 20, a liquid mixed with diatomaceous earth fine particles 14 is sprayed to make the diatomaceous earth fine particles 14 adhere to the inside of the yarn 2 shown in FIG.
0 to form a thread wound body 12' shown in FIG. 6, which can be used as a filter. In addition, in order to make the diatomaceous earth fine particles 14 penetrate into the inside of the thread 20,
This can also be achieved by a method similar to that described in FIGS. 3 and 4 above. In addition, a cylindrical body 12' (see Fig. 8) is a cylindrical body 12' (Fig. ) can also be used as a filter. The cylindrical filter shown in FIGS. 6 and 8 can be easily inserted into a pipe member and provided as a cartridge.
本発明に係るフィルタの効果を、第2図に示す従来タイ
プのフィルタと比較して試験を行い、その結果を第9図
に示す。この試験は、グラファイトの超微粒子3ccを
混入した201の加工液をタンクに入れ、ポンプで吸い
上げ、フィルタを通して、再び前記タンクに戻す循環管
路で行う。フィルタの直前に圧力計を設け、フィルタへ
の供給ゲージ圧力Pを測定した。フィルタは、従来タイ
プとして珪藻土50gを糸巻体エレメントの表面に付着
させたものと、本発明に係るタイプとして同様の糸巻体
の断面内部にまで亘る孔壁に同じり50gの珪藻土を分
散・付着させたものとを用いた。The effect of the filter according to the present invention was tested in comparison with the conventional filter shown in FIG. 2, and the results are shown in FIG. This test is carried out using a circulation pipe in which a 201 processing fluid mixed with 3 cc of ultrafine graphite particles is put into a tank, sucked up by a pump, passed through a filter, and returned to the tank. A pressure gauge was provided just before the filter, and the gauge pressure P supplied to the filter was measured. The conventional type filter has 50 g of diatomaceous earth attached to the surface of the thread-wound element, and the type according to the present invention has the same 50 g of diatomaceous earth dispersed and attached to the pore walls extending into the cross section of the same thread-wound element. I used the same thing.
第9図は縦軸に前記供給ゲージ圧力Pを、横軸に経過時
間むをとって示している。ラインLOは従来タイプのフ
ィルタの場合であり、ラインLl〜L5は本発明に係る
フィルタの場合である。この試験では液の供給ゲージ圧
力Pが2.6 kgw/ cnlになるとフィルターが
使用限界まで目詰まり状態になったものと設定している
。従来タイプのフィルタでは経過時間tが3分でその限
界に達したが、本発明に係るフィルタではラインLlが
示す様に、その圧力Pの上昇傾斜がラインLOと比較し
て相当に小さく、経過時間りが3分の時点での供給圧力
Pは0.7kgw/ca程であり、限界圧力値2.6k
g w / cdまでには十分な余裕がある。FIG. 9 shows the supply gauge pressure P on the vertical axis and the elapsed time on the horizontal axis. Line LO is for the conventional type filter, and lines L1 to L5 are for the filter according to the present invention. In this test, it is assumed that the filter has become clogged to the limit of use when the liquid supply gauge pressure P reaches 2.6 kgw/cnl. In the conventional filter, the limit was reached after the elapsed time t was 3 minutes, but in the filter according to the present invention, as shown by the line Ll, the rising slope of the pressure P is considerably smaller than the line LO, and the elapsed time t is 3 minutes. The supply pressure P at the time of 3 minutes is about 0.7 kgw/ca, and the limit pressure is 2.6 k
There is plenty of room until gw/cd.
なお、本試験では経過時間tが約3分の時点からほとん
ど圧力Pは上昇していないが、これは本発明に係るフィ
ルタによる液の濾過が完了したことを示しており、10
分経過後に再び前回と同量のグラフディト超微粒子3c
cをタンク内の加工液に添加し、試験を続行した。その
場合の圧力上昇ラインがL3であり、再び濾過が完了し
てラインL4となり、経過時間りが20分となった時点
で再び加工液にグラフディト超微粒子3ccを加え、そ
の時の圧力上昇ラインがL5である。こうして限界供給
圧力に達することとなった。In addition, in this test, the pressure P hardly increased after the elapsed time t was about 3 minutes, which indicates that the filtration of the liquid by the filter according to the present invention was completed, and the
After a minute has passed, use the same amount of Graphite Ultrafine Particles 3c as before.
c was added to the processing liquid in the tank, and the test was continued. In that case, the pressure increase line is L3, and when the filtration is completed again, it becomes line L4. When the elapsed time reaches 20 minutes, 3 cc of Graphite ultrafine particles are added to the processing fluid again, and the pressure increase line at that time is L5. It is. In this way, the critical supply pressure was reached.
従来のフィルタを用いた場合、3分経過した時点で供給
ゲージ圧力が2.6kgw/c4の限界圧力に達したが
、その時のタンク内の液体はほぼ濾過され透明になった
。しかし更なる濾過を行う場合は新しいフィルタと交換
しなければならない。また本発明に係るフィルタを用い
た場合も3分経過時点でほぼ濾過され透明になっており
、再度グラファイト超微粒子を添加した加工液も添加し
た時点から約4分後にほぼ濾過され透明になった。更に
グラファイト超微粒子を添加後、約1分で供給ゲージ圧
力が限界圧力に達し、加工液は半分位濾過された。つま
り、従来のフィルタと本発明に係るフィルタとでは、本
発明に係るフィルタの方が2倍強の量のグラファイト超
微粒子を捕捉する濾過能力を有していることがわかる。When the conventional filter was used, the supply gauge pressure reached the limit pressure of 2.6 kgw/c4 after 3 minutes, but the liquid in the tank at that time was almost filtered and became transparent. However, if further filtration is to be performed, the filter must be replaced with a new one. Furthermore, when the filter according to the present invention was used, it was almost completely filtered and became transparent after 3 minutes had elapsed, and the machining fluid to which ultrafine graphite particles had been added was also almost filtered and became transparent about 4 minutes after it was added. . Furthermore, after adding ultrafine graphite particles, the supply gauge pressure reached the critical pressure in about 1 minute, and about half of the processing liquid was filtered. In other words, it can be seen that between the conventional filter and the filter according to the present invention, the filter according to the present invention has a filtration ability to trap slightly more than twice as much graphite ultrafine particles.
上記試験に使用した濾過フィルタを切断し、その内部の
グラファイトの吸着状態を拡大観察したが、本発明に係
るフィルタの方は、グラファイトを大いに吸着せしめて
おり、有効さを実証することができた。また、試験前、
及び試験段階における加工液の汚濁度を写真において評
価している。The filtration filter used in the above test was cut and the adsorption state of graphite inside it was observed under magnification, and the filter according to the present invention was able to adsorb graphite to a greater extent, demonstrating its effectiveness. . Also, before the exam,
The degree of contamination of the processing fluid at the test stage was evaluated using photographs.
以上の説明から明らかな様に本発明によれば、フィルタ
の全体積において液を濾過するため長時間目詰まりなく
使用できると共に小型化が可能であり、更には濾材は多
孔性であるため液の流量を大きくとることができ、実用
性を有する。吸着物質として珪藻土を用いる限り、その
コストは安く、廉価な吸着フィルタの提供が可能となる
。As is clear from the above description, according to the present invention, the entire volume of the filter filters the liquid, so it can be used for a long time without clogging, and it can be made smaller.Furthermore, since the filter medium is porous, it is possible to filter the liquid. It can provide a large flow rate and is practical. As long as diatomaceous earth is used as the adsorbent, its cost is low, and an inexpensive adsorption filter can be provided.
第1図は本発明に係るフィルタの部分断面拡大図、
第2図は従来タイプのフィルタの模式的部分断面図、
第3図は第1図のフィルタの製造過程の初期段階の断面
状態図、
第4図は第1図のフィルタの製造過程の終期段階の断面
状態図、
第5図は糸の内部に吸着物質を分散させる一過程図、
第6図は第5図の糸を使用した糸巻体フィルターの斜視
図、
第7図は帯状不織布に吸着物質を分散、吸着させた場合
の模式的斜視図、
第8図は第7図の帯状不織布をロール状に巻設したフィ
ルタの斜視図、
第9図は本発明フィルタの効果を示すグラフ図である。
IO・・・孔(空隙)、 12・・・濾材、14
・・・珪藻土の微細粒子、 20・・・糸、22・・・
帯状不織布。
12′
P(kgW/cm2)
本
名
図
某
図FIG. 1 is an enlarged partial cross-sectional view of a filter according to the present invention, FIG. 2 is a schematic partial cross-sectional view of a conventional filter, and FIG. 3 is a cross-sectional diagram of the filter shown in FIG. 1 at an initial stage of the manufacturing process. Figure 4 is a cross-sectional diagram of the final stage of the manufacturing process of the filter shown in Figure 1. Figure 5 is a diagram of the process of dispersing the adsorbent inside the thread. Figure 6 is a spool using the thread shown in Figure 5. Fig. 7 is a schematic perspective view of a case where an adsorbent substance is dispersed and adsorbed on a band-shaped nonwoven fabric; Fig. 8 is a perspective view of a filter in which the band-shaped nonwoven fabric of Fig. 7 is wound into a roll; FIG. 9 is a graph showing the effect of the filter of the present invention. IO...pore (void), 12...filter medium, 14
...Fine particles of diatomaceous earth, 20...Thread, 22...
Band-shaped non-woven fabric. 12' P (kgW/cm2) Real name map
Claims (1)
あって、前記吸着物質の微細粒子を前記濾材の断面内部
にまで亘る多孔の孔壁に分散、付着させたことを特徴と
する吸着フィルタ。 2、前記多孔性の濾材が布帛から成る請求項1に記載の
吸着フィルタ。 3、前記多孔性の濾材が糸巻体から成る請求項1に記載
の吸着フィルタ。 4、前記吸着物質が珪藻土から成る請求項1から3の何
れか1項に記載の吸着フィルタ。[Claims] 1. A filter comprising a porous filter medium and an adsorbent substance, wherein fine particles of the adsorbent substance are dispersed and adhered to the pore walls of the pores extending to the inside of the cross section of the filter medium. An adsorption filter characterized by: 2. The adsorption filter according to claim 1, wherein the porous filter medium is made of fabric. 3. The adsorption filter according to claim 1, wherein the porous filter medium is a thread-wound body. 4. The adsorption filter according to any one of claims 1 to 3, wherein the adsorption substance is made of diatomaceous earth.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27493289A JPH03137904A (en) | 1989-10-24 | 1989-10-24 | Adsorption filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27493289A JPH03137904A (en) | 1989-10-24 | 1989-10-24 | Adsorption filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03137904A true JPH03137904A (en) | 1991-06-12 |
Family
ID=17548554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27493289A Pending JPH03137904A (en) | 1989-10-24 | 1989-10-24 | Adsorption filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03137904A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013111511A (en) * | 2011-11-28 | 2013-06-10 | Nano Summit Kk | Ultrafine particle support, ultrafine particle supporting device, method of manufacturing ultrafine particle support and method of manufacturing ultrafine particle supporting device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5123492A (en) * | 1974-08-22 | 1976-02-25 | Shionogi Seiyaku Kk | Kyuchakuseishiito oyobi sonoseizohoho |
JPS5570342A (en) * | 1978-11-17 | 1980-05-27 | Sanyo Kokusaku Pulp Co Ltd | Manufacturing method for adsorptive sheet |
JPS5913244A (en) * | 1982-07-15 | 1984-01-24 | Fuji Photo Film Co Ltd | Electrophotographic plate making material |
-
1989
- 1989-10-24 JP JP27493289A patent/JPH03137904A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5123492A (en) * | 1974-08-22 | 1976-02-25 | Shionogi Seiyaku Kk | Kyuchakuseishiito oyobi sonoseizohoho |
JPS5570342A (en) * | 1978-11-17 | 1980-05-27 | Sanyo Kokusaku Pulp Co Ltd | Manufacturing method for adsorptive sheet |
JPS5913244A (en) * | 1982-07-15 | 1984-01-24 | Fuji Photo Film Co Ltd | Electrophotographic plate making material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013111511A (en) * | 2011-11-28 | 2013-06-10 | Nano Summit Kk | Ultrafine particle support, ultrafine particle supporting device, method of manufacturing ultrafine particle support and method of manufacturing ultrafine particle supporting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3733267A (en) | Process of filtration of dry cleaning fluid | |
US3228527A (en) | Water separating fuel filter | |
US3327859A (en) | Portable unit for potable water | |
US5904854A (en) | Method for purifying water | |
US3252270A (en) | Apparatus and method for removal of oil entrained in air | |
JPWO2003066193A1 (en) | Fluid cleaning filter and filter device | |
DE3787659T2 (en) | Filter apparatus. | |
JPH0157607B2 (en) | ||
JP2947314B2 (en) | Adsorption and reaction equipment | |
EP1345667B1 (en) | Module for treating fluids and a method for producing a module of this type | |
JP3360857B2 (en) | Filtration device | |
JPH03137904A (en) | Adsorption filter | |
JPH0852347A (en) | Water treating filter material | |
EP2510992B1 (en) | Filter material for cleaning a fluid | |
CN203315875U (en) | Activated carbon fiber filtering core with sparse and dense arrangement structure | |
JP2640901B2 (en) | Liquid filtration device | |
JPH05161811A (en) | Filter device | |
RU2185877C2 (en) | Filtering material and method of its production | |
JP2803041B2 (en) | Filtration device | |
JPH04326980A (en) | Water purifier | |
RU2674131C1 (en) | Filtering element | |
JP2000510387A (en) | Purification and filtration of liquids and gases | |
DE102011016689A1 (en) | Filtering medium for use in filter for cleaning e.g. liquid in swimming pool, has non-woven fabric that consists of density in specific range and is formed from multiple synthetic fibers, which are made from polyester | |
EP0437763A1 (en) | Method for treating aqueous solutions | |
CN217051668U (en) | Tap water prefilter |