JPH03137605A - Optical waveguide, wavelength changing element and short-wavelength laser light source - Google Patents

Optical waveguide, wavelength changing element and short-wavelength laser light source

Info

Publication number
JPH03137605A
JPH03137605A JP27743089A JP27743089A JPH03137605A JP H03137605 A JPH03137605 A JP H03137605A JP 27743089 A JP27743089 A JP 27743089A JP 27743089 A JP27743089 A JP 27743089A JP H03137605 A JPH03137605 A JP H03137605A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
waveguide
nonlinear
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27743089A
Other languages
Japanese (ja)
Other versions
JP2765112B2 (en
Inventor
Kiminori Mizuuchi
公典 水内
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1277430A priority Critical patent/JP2765112B2/en
Publication of JPH03137605A publication Critical patent/JPH03137605A/en
Application granted granted Critical
Publication of JP2765112B2 publication Critical patent/JP2765112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make the distribution of guided light in an electromagnetic field perfectly symmetric with respect to an axis and to attain high efficiency of coupling to an optical fiber by adhering optical waveguides formed in first and second substrates to each other to form an optical waveguide. CONSTITUTION:Proton exchange waveguides are formed on LiNbO3 substrates 1, 2 and annealed at 350 deg.C in the air for 1 hr to form optical waveguides 3, 4 of 5 mum width and 2 mum depth. The waveguides 3, 4 are washed, aligned with a mask aligner and adhered to each other and both ends are polished to form an incidence part 5. When semiconductor laser light having 0.8 mum wavelength is allowed to enter the resulting waveguide, emergent guided light is made nearly circular and the distribution of the guided light in an electromag netic field is made nearly symmetric with respect to the axis of propagation. When an optical fiber is coupled to the waveguide, loss measured at the coupled part is 0.8 dB.

Description

【発明の詳細な説明】 産業上の利用分野 本発明G1  コヒーレント光源を応用した 光情報処
凰 光応用計測制御分野に使用される光導波路と波長変
換素子および短波長レーザ光源に関するものであも 従来の技術 従来の光導波路の構成としてはLiNbO3基板上にス
トライブ状のTi膜をスパッタリング及びフォトリソグ
ラフィ法で作製し高温で熱処理し導波路を形成した後さ
らに導波路上にMgを熱拡散して導波路の基板側の屈折
率を低下させ導波路を基板ないに埋め込んだ形状にし 
伝搬する導波モードの電磁界分布を伝搬軸に対し対称な
形にする方法があり九 第5図に従来の光導波路の構成
を示九ビは基板 2′は導波区 3′はMg拡欣凰4′
が導波路を伝搬する導波モードの電磁界分布であ翫 こ
れによって導波路を伝搬する導波モードの電磁界分布と
光フフイバーを伝搬する導波モードの電磁界分布を一致
させ導波路−ファイバーの高い結合効率を得るものであ
も また従来の波長変換素子としては E、 Lim、 M
、 M。
Detailed Description of the Invention Industrial Application Field of the Invention G1 Optical information processing using a coherent light source Related to optical waveguides, wavelength conversion elements, and short wavelength laser light sources used in the optical application measurement and control field. The conventional structure of an optical waveguide is to fabricate a striped Ti film on a LiNbO3 substrate by sputtering and photolithography, heat it at high temperature to form a waveguide, and then thermally diffuse Mg onto the waveguide. By lowering the refractive index of the waveguide on the substrate side, the waveguide is embedded in the substrate.
There is a method to make the electromagnetic field distribution of the propagating waveguide mode symmetrical with respect to the propagation axis.9 Figure 5 shows the configuration of a conventional optical waveguide. Kinou 4'
is the electromagnetic field distribution of the waveguide mode propagating in the waveguide.This allows the electromagnetic field distribution of the waveguide mode propagating in the waveguide to match the electromagnetic field distribution of the waveguide mode propagating in the optical fiber. Conventional wavelength conversion elements that achieve high coupling efficiency include E, Lim, and M.
, M.

Fejer、R,L、Byer、’  5econd 
harmonic generationof gre
en light in a periodicall
y−poled  LiNbO3waveguide、
”  サブ9ミツデフビ トー シー エルイー オー
 (submitted to CLEO) ’89.
Baltimore、Md、などがあも第6図に従来の
波長変換素子の基本構成図を示す。
Fejer, R.L., Byer, '5econd.
harmonic generation of gre
en light in a periodical
y-poled LiNbO3waveguide,
"Submitted to CLEO '89.
FIG. 6 shows a basic configuration diagram of a conventional wavelength conversion element.

5°は基K  6’ は非線形物質からなる導波謀7゛
は非線形物質からなりかつ非線形分極が導波路の非線形
分極に対して反転している部分であもその作製方法はス
パッタリング及びフォトリソグラフィ法によりTiスト
ライブを形成した後1000℃でTiを拡散し分極反転
グレーテイング層を形成すも つぎにプロトン交換導波
路を形成するためアルミで導波路マスクを形成したi 
 300℃の安息香酸中で熱処理した後マスクを除去レ
アニーリングを行しく 導波路を形成すも この様な方
法で形成した分極反転グレーティングにより、非線形物
質からなる導波路内に周期的に非線形分極の異なる層を
形成し 第2高調波の位相を整合させ、高効率の波長変
換素子を構成できる。
5° is the base K 6' is made of a nonlinear material The waveguide 7' is made of a nonlinear material and the nonlinear polarization is inverted with respect to the nonlinear polarization of the waveguide.The fabrication method thereof is sputtering and photolithography. After forming Ti stripes using the method, Ti was diffused at 1000°C to form a polarization inversion grating layer.Next, to form a proton exchange waveguide, a waveguide mask was formed with aluminum.
After heat treatment in benzoic acid at 300℃, the mask is removed and rare annealing is performed to form the waveguide.The polarization inversion grating formed in this way creates periodic nonlinear polarization within the waveguide made of nonlinear material. By forming different layers and matching the phase of the second harmonic, a highly efficient wavelength conversion element can be constructed.

発明が解決しようとする課題 上記のような方法で形成した光導波路で1友 導波光の
電磁界分布が基板内部に存在するため導波光を制御する
ために形成する表面集積素子の効率が低下す翫 また表
面に形成する低屈折率層の拡散制御が難しく、電磁界分
布を完全に軸対称にすることは困難であ翫 さらく 比
較的低温(200℃〜500℃)で形成するイオン交換
導波路において(よ 1000℃近くで処理す4Mg熱
拡散による導波路表面の低屈折率化の方法は使用でき哄
 埋め込み型の導波路を形成するの(上 困難であるな
どの問題があっ九 本発明は以上の点に鑑へ 2つの基板上にそれぞれ形成
した導波路どうしを密着させることにより1つの導波路
を形成して導波路伝搬方向に対して軸対称の導波路を構
成すも これによって、比較的簡単に軸対称の導波路を
提供することを目的とすa また導波路上に導波光を制
御するための表面集積素子を形成した後導波路どうしを
密着させることにより導波路内部に集積素子を形成し導
波光の制御効率の高い素子を提供することを目的とす翫
 さらく イオン交換導波路においても導波路伝搬方向
に対して軸対称の導波路を提供することを目的とすも また上記のような構成の波長変換素子で?1  分極反
転の層をTi拡散で形成しているため拡散が深さ方向と
同時に横方向も起こも このため導波路に対して充分深
い分極反転層を形成するにはグレーティングの周期(3
μm)から考えて困難であり、従って、波長変換素子の
変換効率を上げるのが難しいという問題があり九 本発明は以上の点に鑑へ 2つの基板に形成した分極反
転層をもつ導波路どうしを密着させることにより、導波
路及び導波路内に形成する分極反転層の深さを従来の半
分にすることを可能にし高効率の波長変換素子を提供す
ることを目的とする。
Problems to be Solved by the Invention The optical waveguide formed by the method described above has one advantage: Because the electromagnetic field distribution of the guided light exists inside the substrate, the efficiency of the surface integrated element formed to control the guided light decreases. Furthermore, it is difficult to control the diffusion of the low refractive index layer formed on the surface, and it is difficult to make the electromagnetic field distribution completely axially symmetrical. Although the method of lowering the refractive index of the waveguide surface by 4Mg thermal diffusion, which is processed at around 1000°C, cannot be used in waveguides, there are problems such as difficulty in forming buried waveguides. In view of the above points, one waveguide is formed by bringing the waveguides formed on two substrates into close contact with each other, and the waveguide is axially symmetrical with respect to the waveguide propagation direction. The purpose is to provide an axially symmetrical waveguide relatively easily.A Also, after forming a surface integrated element on the waveguide for controlling guided light, the waveguides are brought into close contact with each other to integrate the element inside the waveguide. The purpose of this technology is to provide a device with high efficiency in controlling guided light.In the case of ion exchange waveguides, the purpose is also to provide a waveguide that is axially symmetrical with respect to the waveguide propagation direction. In addition, in the wavelength conversion element configured as above, since the polarization inversion layer is formed by Ti diffusion, diffusion occurs in the lateral direction as well as in the depth direction.For this reason, the polarization inversion layer is sufficiently deep with respect to the waveguide. The period of the grating (3
Therefore, it is difficult to increase the conversion efficiency of a wavelength conversion element.In view of the above points, the present invention aims to connect a waveguide having a polarization inversion layer formed on two substrates. The present invention aims to provide a highly efficient wavelength conversion element by making it possible to reduce the depth of the waveguide and the polarization inversion layer formed in the waveguide to half of the conventional one by bringing the waveguides into close contact with the waveguides.

課題を解決するための手段 以上の課題を解決するたべ 本発明(友 第1の基板と
前記基板表面に形成した光導波路と第2の基板と前記第
2の基板表面に形成した光導波路とを備えかつ前記第1
の基板表面に形成した光導波路と前記第2の基板表面に
形成した光導波路とを密着させたことを特徴とした光導
波路であ翫また本発明1上 第1の基板と前記基板表面
に形成した非線形物質からなる光導波路と前記光導波路
内に形成した非線形分極が前記光導波路の非線形分極に
対し反転している非線形物質からなり、かつ周期構造を
持つ部分と、第2の基板と前記第2の基板表面に形成し
た非線形物質からなる光導波路と前記光導波路内に形成
した非線形分極が前記光導波路の非線形分極に対し反転
している非線形物質からなり、かつ周期構造を持つ部分
とを備え かつMlの基板表面に形成した光導波路と第
2の基板表面に形成した光導波路及び非線形分極が反転
している部分を密着させたことを特徴とする波長変換素
子であも さらに 本発明(よ 第1の基板と前記基板表面に形成
した非線形物質からなる光導波路と前記光導波路内に周
期的に形成した線形物質からなる部分と、第2の基板と
前記第2の基板表面に形成した非線形物質からなる光導
波路と前記光導波路内に周期的に形成した線形物質から
なる部分とを備え かつ第1と第2の基板表面に形成し
た光導波路及び線形物質からなる部分とを密着させたこ
とを特徴とする波長変換素子であム さらにまた本発明(よ 非線形物質からなる第1の基板
と前記基板表面に形成した光導波層と、非線形物質から
なる第2の基板と前記基板表面に形成した光導波層とを
@丸 かつ第1と第2の基板表面に形成した 光導波路
を密着させたことを特徴とする波長変換素子であも 作用 本発明は前述した光導波路の構成により、対称構造の導
波路を構成できる。これにより導波路を伝達する導波モ
ードの電磁界分布を導波路伝搬軸に対して対称な分布に
でき光ファイバーとの高い効率の結合を可能とすも さ
らく 導波路内部に導波光を制御するための表面集積素
子を形成できるため高い効率で導波光を制御する素子を
構成できも さらく 低温で作製するイオン交換導波路
においても導波路伝搬方向に対して軸対称の導波路を作
製することができも また本発明は前述した波長変換素子の構成により、対称
構造の導波路を構成できも これにより導波路を伝搬す
る導波モードの電磁界分布を導波路伝搬軸に対して対称
な分布にでき光ファイバーとの高い効率の結合が可能と
なも また導波路内の電磁界密度の最も高い導波路中心
部に分極反転の部分を構成できるたべ 高い効率で波長
を変換できも さらに導波路内に分極反転層を形成した
後、 2つの導波路を張り合わせるた八 導波路に形成
される分極反転層の深さを従来の2倍にすることができ
、高い効率の波長変換を行えも実施例 (実施例1) 第1図は第1の実施例における光導波路の構成を示すも
ので第1の基板と前記基板表面に形成した光導波路と第
2の基板と前記第2の基板表面に形成した光導波路とを
備え かつ前記第1の基板表面に形成した光導波路と前
記第2の基板表面に形成した光導波路とを密着させた光
導波路であも第1図においてlはLiNbO5基板 2
はLiNbO5基板、3はLiNbO5基板1上に形成
したプロトン交換導波法 4はLiNbO5基板2上に
形成したプロトン交換導波法 5は研磨して作製した入
射部であも 作製方法は 洗浄した後LiNbO5基板
1. 2上にスパッタリング法によりTae Os膜を
形成すモ  フォトリソグラフィ法及びドライエツチン
グによりTa5ksのストライプマスクを作製した[ 
 230℃のピロ燐酸中で5分間熱処理し プロトン交
換導波路を形成する作製したプロトン交換導波路を空気
中で350℃1時間アニーリングし幅5μm深さ2μm
の光導波路3,4を作製し丸 この導波路2つを洗浄後
、マスクアライナ−で位置合わせして導波路3,4どう
しを密着させた後両端面を研磨して入射部を形成し九 
こうして密着形成され導波路に波長0.8μmの半導体
レーザの光を励起して導波路端面から出射する導波光に
ニヤフィールドパターンを観測したところほぼ円形をし
ており導波光の電磁界分布が伝搬軸に対して対称である
ことを示していも 次にコア径6μmのシングルモード
ファイバーとの結合を行っ丸 顕微鏡下でファイバーと
導波路の位置合わせを行ったa  UV硬化樹脂により
固定し九 導波路に波長0.8μmの半導体レーザの光
を励起L ファイバー導波路の接合部でのロスを測定し
たところ0.8dBであり丸これ(よ 従来の埋め込み
型の導波路とファイバーの結合ロス1dBに対し小さな
値であ翫な耘 密着させる2つの基板間に屈折率2.2
のゲル状LiNbO5を用いたとこへ 導波ロスをld
B/cmから0.5dB/cmまでさげることができた
 マツチング材として、有風 ゲル状ガラスなど基板と
同程度の屈折率の物質を用いることで導波路のロスの低
減が図れも な抵 本実施例において非線形物質からなる基板を用い
ると、波長変換素子を構成できムな耘 本実施例で(上
 光導波路として、LiNbO5基板上のプロトン交換
導波路を用いたべ 光導波路として#上 ガラス基板上
のイオン交換導波法LiNbO5基板上のTi拡散導波
慝 有機材料上の導波路など基板上に作製すべ 薄膜導
波路ならば同様の効果を得られも (実施例2) 第2図は第2の実施例における光導波路の構成を示すも
ので反射型グレーティングを備えた光導波路の構成を示
すものであ41はLiNbO5基板2はLiNbO5基
K 3は1のLiNbO5基板上に形成したプロトン交
換導波iil&4はLiNbO5基板2上に形成したプ
ロトン交換導波法 5は研磨して作製した入射に6は導
波路3上に形成した反射型グレーディングであも 実施
例1で作製したプロトン交換導波路上に5id2を50
OAスパツタリング法で堆積した後フォトリソグラフィ
法で周期0.4μm幅0.1μmのグレーティングを形
成した後2つの導波路を密着させることによりグレーテ
ィング周期を0.1μmにした 最後に端面を研磨して
入射部を形成し九 2つの導波路上にそれぞれ形成した
グレーティングを張り合わせることにより、グレーティ
ングの周期を作製した周期の1/2にすることができた
 またグレーティングを導波路内部に形成することによ
り、グレーティングによる摂動が導波路内部に存在する
た八 グレーティングの効率を高めることが可能となつ
九 グレーティング長をパラメータに4試料(L = 
100.200.500.1000)を作製し反射効率
を測定した結果 グレーティング長200μmで98%
以上の反射を得九 これは従来のグレーティング長50
0μmで98%に対し非常に高い効率であも な叙 電極による導波光の制御も同様に導波路内部に電
気光学効果を及ぼすことができるため高い効率で行えも (実施例3) 第3図は第3の実施例における波長変換素子の構成を示
すものて 第1の基板と前記基板表面に形成した非線形
物質からなる光導波路と前記光導波路内に形成した非線
形分極が前記光導波路の非線形分極に対し反転している
非線形物質からなり、かつ周期構造を持つ部分と、第2
の基板と前記第2の基板表面に形成した非線形物質から
なる光導波路と前記光導波路内に形成した非線形分極が
前記光導波路の非線形分極に対し反転している非線形物
質からなり、かつ周期構造を持つ部分とを備え かつ第
1の基板表面に形成した光導波路と第2の基板表面に形
成した光導波路及び非線形分極が反転している部分を密
着させた波長変換素子であも 第3図において11はL
iNb缶基楓 12はLiNbO5基K  13は11
の基板上に形成したプロトン交換導波区 14はTi拡
散により形成した分極反転層 15は12の基板上に形
成したプロトン交換導波区 16はTi拡散により形成
した分極反転層であも つぎに作製方法を述べも 非線
形物質であるLiNbO5基板11及び12上にスパッ
タリング及びフォトリソグラフィ法により周期2μm幅
0.4μmグレーティング長1mmのTiストライブを
形成した後1000℃で1時間Tiを拡散し幅1μm深
さ0.4μmのTi拡散層を作製しf、、、  Ti拡
散層はLINbOs基板の非線形分極に対して分極が反
転していも つぎにプロトン交換導波路を形成するため
アルミで導波路マスクを形成した徽300℃の安息香酸
中で熱処理した後マスクを除去レアニーリングを行賎 
幅4μm深さ0.5μmの導波路13.15を形成すも
 導波路は基板の非線形分極を保っていも こうして非
線形物質からなる導波路に導波路の非線形分極に対して
分極が反転した非線形物質からなる分極反転層14.1
6よりなるグレーティングを形成できも 作製した2つ
の導波路をマスクアナイラーで位置合わせした抵 密着
させ端面を形成し?4Ti拡散深さが従来の素子の17
2であるため周期2μmのグレーティングが形成でき九
 作製した素子に波長0.8μm10m1Fの半導体レ
ーザの光を励起して励起光の第2高調波である波長0.
4μmの光を発生させ九 発生した第2高調波は5nW
で変換効率は10%/W−cm2であも従来の導波路上
に分極反転グレーティングを形成した波長変換素子の変
換効率ζ友2.4X/ W−cm2であり、非常に高い
変換効率を得られ九 な叙 本実施例では非線形物質からなる基板としてLi
NbO5を用いた力丈 他にMgOをドーピングしたL
iNbO5、LiTaO5、KNbOsなどの強誘電体
、 MNAなどの有機物、 ZnSなどの化合物半導体
など非線形性の高い物質であれば 基板として用いるこ
とができもな抵 本実施例では導波路内に分極反転層を
形成した力丈 分極反転層の代わりにTiなどの金属マ
スクを用いてSLなどのイオンを導波路内に注入するこ
とにより導波路内に線形物質の層を周期的に形成して波
長変換素子を作製しても本実施例の波長変換素子の約半
分の変換効率の波長変換素子が作製できも (実施例4) 第4図は第4の実施例における短波長レーザ光源の構成
を示すものでコヒーレント光源と第1の基板と前記基板
表面に形成した非線形物質からなる光導波路と前記光導
波路内に形成した非線形分極が前記光導波路の非線形分
極に対し反転している非線形物質からなりかつ周期構造
を持つ部分と、第2の基板を前記第2の基板表面に形成
した非線形物質からなる光導波路と前記光導波路内に形
成した非線形分極が前記光導波路の非線形分極に対し反
転している非線形物質からなりかつ周期構造を持つ部分
とを’aL  かつ第1の基板表面に形成した光導波路
と第2の基板表面に形成した光導波路及び非線形分極が
反転している部分を密着させ、かつ導波路に対し垂直な
面を研磨して作製した入射部を備えた波長変換素子と前
記コヒーレント光源からの光を前記波長変換素子の入射
部に励起する集光光学系を備えた短波長レーザ光源であ
ム第4図において11はLiNbO5基板 12はLi
NbO5基&  13はの基板11上に形成したプロト
ン交換導波m、 14はTi拡散により形成した分極反
転層 15は基板12上に形成したプロトン交換導波区
 16はTi拡散により形成した分極反転層 17は端
面を研磨して作製した入射部18は集光光学に19は波
長0.8μmの半導体レーザであ翫 実施例3で作製し
た波長変換素子においてグレーティング長を1cmとU
 集光光学系及び半導体レーザをモジュール化して、 
14X14X28mmの短波長レーザ光源を構成し九 
半導体レーザの出力は40m9jであり、5mWの第2
高調波出力が得られた これにより小型で光出力の短波
長レーザ光源を構成でき九 な抵 半導体レーザを直接導波路入射部に接続するとさ
らにモジュールの小型化が図れも発明の詳細 な説明したように第1の基板と前記基板表面に形成した
光導波路と第2の基板と前記第2の基板表面に形成した
光導波路とを備えかつ前記第1の基板表面に形成した光
導波路と前記第2の基板表面に形成した光導波路とを密
着させた光導波路によって、対称構造の導波路を構成で
き、これにより導波路を伝搬すム 導波モードの電極界
分布を導波路伝搬軸に対して対照な分布にできるため光
ファイバーとの高い効率の結合が可能であもかつマスク
アライナ−により導波路の位置合わせを行い比較的簡単
に作製でき也 さらく 導波路内部に導波光を制御する
ための表面集積素子を形成できるため高い効率で導波光
を制御する素子を構成できも さらに 低温で作製する
イオン交換導波路においても導波路伝搬方向に対して軸
対称の導波路作製することができ、その実用効果は大き
し〜 また 第1の基板と前記基板表面に形成した非線形物質
からなる光導波路と前記光導波路内に形成した非線形分
極が前記光導波路の非線形分極に対し反転している非線
形物質からなり、かつ周期構造を持つ部分と、第2の基
板と前記第2の基板表面に形成した非線形物質からなる
光導波路と前記光導波路内に形成した非線形分極が前記
光導波路の非線形分極に対し反転している非線形物質か
らなり、かつ周期構造を持つ部分とを備え かつ第1の
基板表面に形成した光導波路と第2の基板表面に形成し
た光導波路及び非線形分極が反転している部分を密着さ
せた波長変換素子により、対称構造の導波路を構成でき
たため導波路を伝搬する導波モードの電磁分布を導波路
伝搬軸に対して対称な分布にでき光ファイバーとの高い
効率の結合が可能となも また導波路内の電磁界密度の
最も高い導波路中心部に分極反転の部分を構成できるた
数 高い効率で波長を変換できも さらに分極反転のグ
レーティングを密着させる導波路のそれぞれに形成でき
るたべ 導波路及び分極反転グレーティングの深さが1
/2になるた八 分極反転層の作製が容易になム また
作製したグレーティングどうしを半周期ずつずらして密
着させればグレーティングの周期を半分にできるため作
製が容易になり、その実用効果は太きt〜 また コヒーレント光源と第1の基板と前記基板表面に
形成した非線形物質からなる導波路と前記光導波路内に
形成した非線形分極が前記光導波路の非線形分極に対し
反転している非線形物質からなりかつ周期構造を持つ部
分と、第2の基板と前記第2の基板表面に形成した非線
形物質からなる光導波路と前記光導波路内に形成した非
線形分極が前記光導波路の非線形分極に対し反転してい
る非線形物質からなりかつ周期構造を持つ部分とを備え
 かつ第1の基板表面に形成した光導波路と第2の基板
表面に形成した光導波路及び非線形分極が反転している
部分を密着させ、かつ導波路に対し垂直な面を研磨して
作製した入射部を備えた波長変換素子と前記コヒーレン
ト光源からの光を前記波長変換素子の入射部に励起する
集光光学系を備えた短波長レーザ光源により、小型でか
つ高出力の短波長レーザ光源を形成できその実用効果は
太きも〜
Means for Solving the Problems The present invention (companies) includes a first substrate, an optical waveguide formed on the surface of the substrate, a second substrate, and an optical waveguide formed on the surface of the second substrate. provision and said first
An optical waveguide characterized in that an optical waveguide formed on the surface of the substrate and an optical waveguide formed on the surface of the second substrate are brought into close contact with each other. an optical waveguide made of a nonlinear material which is made of a nonlinear material; an optical waveguide made of a nonlinear material formed on the surface of the second substrate; and a part made of a nonlinear material in which the nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide, and has a periodic structure. The wavelength conversion element according to the present invention is further characterized in that the optical waveguide formed on the surface of the Ml substrate, the optical waveguide formed on the surface of the second substrate, and the portion where the nonlinear polarization is reversed are brought into close contact with each other. a first substrate, an optical waveguide made of a nonlinear material formed on the surface of the substrate, a portion made of a linear material periodically formed in the optical waveguide, a second substrate and a nonlinear material formed on the surface of the second substrate. An optical waveguide made of a material and a portion made of a linear material formed periodically within the optical waveguide, and the optical waveguide and the portion made of the linear material formed on the surfaces of the first and second substrates are brought into close contact with each other. A wavelength conversion element according to the present invention is further characterized by a first substrate made of a nonlinear material, an optical waveguide layer formed on the surface of the substrate, a second substrate made of a nonlinear material, and an optical waveguide layer formed on the surface of the substrate. The present invention is also applicable to a wavelength conversion element characterized in that an optical waveguide layer formed in a round shape and an optical waveguide formed on the surfaces of the first and second substrates are brought into close contact with each other. This allows the electromagnetic field distribution of the waveguide mode propagating through the waveguide to be symmetrical with respect to the waveguide propagation axis, enabling highly efficient coupling with optical fibers. Since surface-integrated elements for controlling waveguide light can be formed inside the waveguide, elements that control waveguide light with high efficiency can be constructed. A symmetrical waveguide can be fabricated, and a waveguide with a symmetrical structure can also be constructed by the configuration of the wavelength conversion element described above. The distribution is symmetrical with respect to the propagation axis, making it possible to couple with the optical fiber with high efficiency.Also, the polarization inversion part can be formed in the center of the waveguide, where the electromagnetic field density within the waveguide is highest. Furthermore, after forming a polarization inversion layer in the waveguide, the two waveguides are bonded together.The depth of the polarization inversion layer formed in the waveguide can be doubled compared to conventional An example of efficient wavelength conversion (Example 1) Figure 1 shows the configuration of an optical waveguide in the first example, which includes a first substrate, an optical waveguide formed on the surface of the substrate, and a second substrate. and an optical waveguide formed on the surface of the second substrate, and the optical waveguide formed on the surface of the first substrate and the optical waveguide formed on the surface of the second substrate are brought into close contact with each other. In figure 1, l is LiNbO5 substrate 2
is a LiNbO5 substrate, 3 is a proton exchange waveguide method formed on a LiNbO5 substrate 1, 4 is a proton exchange waveguide method formed on a LiNbO5 substrate 2, and 5 is an entrance part prepared by polishing. LiNbO5 substrate 1. A Ta5ks stripe mask was fabricated by photolithography and dry etching.
Heat treated in pyrophosphoric acid at 230°C for 5 minutes to form a proton exchange waveguide.The produced proton exchange waveguide was annealed in air at 350°C for 1 hour to form a width of 5 μm and a depth of 2 μm.
After cleaning these two waveguides, align them with a mask aligner to bring the waveguides 3 and 4 into close contact with each other, and then polish both end faces to form an incident part.
When we excited the semiconductor laser light with a wavelength of 0.8 μm into the tightly formed waveguide and observed the near-field pattern of the guided light emitted from the end face of the waveguide, we found that it was approximately circular, indicating that the electromagnetic field distribution of the guided light was propagating. Even though it shows that it is symmetrical about the axis, it is next coupled with a single mode fiber with a core diameter of 6 μm and the fiber and waveguide are aligned under a microscope. When we measured the loss at the junction of the L fiber waveguide using a semiconductor laser beam with a wavelength of 0.8 μm, it was 0.8 dB. The refractive index is 2.2 between the two substrates that are brought into close contact with each other.
When using gel-like LiNbO5, the waveguide loss is reduced by ld.
The loss in the waveguide can be reduced from 0.5 dB/cm to 0.5 dB/cm.By using a material with a refractive index similar to that of the substrate, such as wind-free gel glass, as a mating material, it is possible to reduce waveguide loss. In this example, if a substrate made of a nonlinear material is used, it is impossible to construct a wavelength conversion element.In this example, a proton exchange waveguide on a LiNbO5 substrate is used as an optical waveguide. Ion-exchange waveguide method Ti-diffusion waveguide on LiNbO5 substrate A similar effect can be obtained with a thin film waveguide (Example 2). This figure shows the structure of the optical waveguide in the example shown in FIG. 4, which shows the structure of the optical waveguide equipped with a reflective grating. 41 is the LiNbO5 substrate 2 is a LiNbO5 group K, and 3 is the proton exchange waveguide formed on the LiNbO5 substrate 1. iil & 4 is a proton exchange waveguide formed on the LiNbO5 substrate 2; 5 is an incident waveguide fabricated by polishing; and 6 is a reflection type grading formed on the waveguide 3; on the proton exchange waveguide fabricated in Example 1. 5id2 to 50
After depositing by OA sputtering method, a grating with a period of 0.4 μm and a width of 0.1 μm was formed by photolithography, and the grating period was made 0.1 μm by bringing two waveguides into close contact.Finally, the end face was polished and the incident By forming the gratings formed on the two waveguides and pasting them together, we were able to reduce the period of the grating to 1/2 of the fabricated period.Also, by forming the grating inside the waveguide, Since the perturbation caused by the grating exists inside the waveguide, it is possible to increase the efficiency of the grating.
100.200.500.1000) and measured the reflection efficiency: 98% at a grating length of 200 μm
This is compared to the conventional grating length of 50
The control of guided light by electrodes can also be performed with high efficiency (Example 3) since the electro-optic effect can be exerted inside the waveguide. shows the configuration of a wavelength conversion element in a third embodiment; a first substrate, an optical waveguide made of a nonlinear material formed on the surface of the substrate, and a nonlinear polarization formed in the optical waveguide; A part made of a nonlinear material that is inverted with respect to
an optical waveguide made of a nonlinear material formed on the surface of the second substrate; and an optical waveguide made of a nonlinear material in which the nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide, and has a periodic structure. In FIG. 11 is L
iNb can base Kaede 12 is LiNbO5 base K 13 is 11
14 is a polarization inversion layer formed on the substrate of 12. 15 is a proton exchange waveguide region formed on the substrate of 12. 16 is a polarization inversion layer formed by Ti diffusion. The manufacturing method will be described. Ti stripes with a period of 2 μm, a width of 0.4 μm, and a grating length of 1 mm are formed on LiNbO5 substrates 11 and 12, which are nonlinear materials, by sputtering and photolithography, and then Ti is diffused at 1000° C. for 1 hour to have a width of 1 μm. A Ti diffused layer with a depth of 0.4 μm was fabricated, and even though the polarization of the Ti diffused layer was reversed with respect to the nonlinear polarization of the LINbOs substrate, a waveguide mask was made of aluminum to form a proton exchange waveguide. After heat treatment in benzoic acid at 300℃, the mask was removed and rare annealing was performed.
A waveguide 13.15 with a width of 4 μm and a depth of 0.5 μm is formed. Even though the waveguide maintains the nonlinear polarization of the substrate, the waveguide is made of a nonlinear material. Polarization inversion layer 14.1 consisting of
Although it is possible to form a grating consisting of 6 parts, the end faces can be formed by aligning the two fabricated waveguides with a mask analizer and closely contacting them. 4Ti diffusion depth is 17
2, a grating with a period of 2 μm can be formed.9 The fabricated element is excited with light from a semiconductor laser with a wavelength of 0.8 μm and 10 m 1 F, and the second harmonic of the excitation light is generated with a wavelength of 0.8 μm.
The second harmonic generated is 5nW.
The conversion efficiency is 10%/W-cm2, but the conversion efficiency of a conventional wavelength conversion element with a polarization inversion grating formed on a waveguide is 2.4X/W-cm2, which is a very high conversion efficiency. In this example, Li is used as the substrate made of nonlinear material.
Strength using NbO5 L doped with MgO
Highly nonlinear materials such as ferroelectric materials such as iNbO5, LiTaO5, and KNbOs, organic materials such as MNA, and compound semiconductors such as ZnS cannot be used as the substrate. By using a metal mask such as Ti instead of a polarization inversion layer and injecting ions such as SL into the waveguide, a layer of linear material is periodically formed in the waveguide to form a wavelength conversion element. Although a wavelength conversion element having a conversion efficiency of about half of that of the wavelength conversion element of this example can be manufactured even if the wavelength conversion element of this example is manufactured (Example 4), FIG. 4 shows the configuration of a short wavelength laser light source in the fourth example. a coherent light source; a first substrate; an optical waveguide made of a nonlinear material formed on the surface of the substrate; an optical waveguide made of a nonlinear material having a structure, a second substrate formed on the surface of the second substrate, and a nonlinear polarization formed in the optical waveguide that is inverted with respect to the nonlinear polarization of the optical waveguide. The optical waveguide formed on the surface of the first substrate and the optical waveguide formed on the surface of the second substrate are brought into close contact with each other, and the optical waveguide formed on the surface of the second substrate is brought into close contact with the part made of a substance and has a periodic structure, and the optical waveguide formed on the surface of the second substrate is brought into close contact with A short wavelength laser light source comprising a wavelength conversion element having an entrance part made by polishing a surface perpendicular to the wave path, and a condensing optical system that excites light from the coherent light source to the entrance part of the wavelength conversion element. In Figure 4, 11 is a LiNbO5 substrate and 12 is Li
13 is a proton exchange waveguide m formed on a substrate 11 of NbO5 groups, 14 is a polarization inversion layer formed by Ti diffusion, 15 is a proton exchange waveguide region formed on the substrate 12, and 16 is a polarization inversion layer formed by Ti diffusion. Layer 17 is made by polishing the end face. Incidence part 18 is a condensing optical device. 19 is a semiconductor laser with a wavelength of 0.8 μm. In the wavelength conversion element made in Example 3, the grating length is 1 cm and U
By modularizing the focusing optical system and semiconductor laser,
It consists of a short wavelength laser light source of 14 x 14 x 28 mm.
The output of the semiconductor laser is 40m9j, and the second
Harmonic output was obtained. This enabled the construction of a compact, short-wavelength laser light source with optical output. If a nine-resistance semiconductor laser was connected directly to the waveguide input section, the module could be further miniaturized, but as described in the detailed explanation of the invention. a first substrate, an optical waveguide formed on the surface of the substrate, a second substrate, and an optical waveguide formed on the surface of the second substrate, and the optical waveguide formed on the surface of the first substrate and the second substrate. A waveguide with a symmetrical structure can be constructed by closely contacting the optical waveguide formed on the surface of the substrate. This allows for highly efficient coupling with optical fibers, and it is relatively easy to fabricate by aligning the waveguide with a mask aligner. Since integrated elements can be formed, it is possible to construct elements that control guided light with high efficiency.Furthermore, even in ion exchange waveguides fabricated at low temperatures, it is possible to fabricate waveguides that are axially symmetrical with respect to the waveguide propagation direction. The effect is great~ Also, the first substrate and the optical waveguide are made of a nonlinear material formed on the surface of the substrate, and the optical waveguide is made of a nonlinear material in which the nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide. , and an optical waveguide including a portion having a periodic structure, a second substrate, and a nonlinear material formed on the surface of the second substrate, and a nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide. an optical waveguide formed on the surface of the first substrate, an optical waveguide formed on the surface of the second substrate, and a portion in which the nonlinear polarization is reversed; By using the wavelength conversion element, we were able to construct a waveguide with a symmetrical structure, making the electromagnetic distribution of the waveguide mode propagating in the waveguide symmetrical with respect to the waveguide propagation axis, which enabled highly efficient coupling with optical fibers. In addition, it is possible to form a polarization inversion grating in the center of the waveguide, where the electromagnetic field density is highest within the waveguide. The depth of the waveguide and polarized grating is 1
The polarization inversion layer can be manufactured easily.Also, if the manufactured gratings are shifted by half a period and brought into close contact with each other, the period of the gratings can be halved, which makes manufacturing easier. Also, a coherent light source, a first substrate, a waveguide made of a nonlinear material formed on the surface of the substrate, and a nonlinear material whose nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide. an optical waveguide made of a nonlinear material formed on a second substrate and a surface of the second substrate; and a nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide. an optical waveguide formed on the surface of the first substrate, an optical waveguide formed on the surface of the second substrate, and a portion in which the nonlinear polarization is reversed; and a short-wavelength laser comprising a wavelength conversion element having an entrance part made by polishing a surface perpendicular to the waveguide, and a condensing optical system that excites light from the coherent light source to the entrance part of the wavelength conversion element. The light source can form a compact, high-output, short-wavelength laser light source, and its practical effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における光導波路の構成斜視
医 第2図は本発明の他の実施例の導波路を用いた反射
型光導波路の構成斜視医 第3図は本発明のさらに他の
実施例の波長変換素子の構成斜視諷 第4図は本発明の
他の実施例の短波長レーザ光源の構成斜視は 第5図は
従来の光導波路の基本構成は 第6図は従来の波長変換
素子の基本構成図である。 1、 2・・・基板 3,4・・・導波法 5・・・入
射部
FIG. 1 shows a strabismus configuration of an optical waveguide according to an embodiment of the present invention. FIG. 2 shows a strabismus configuration of a reflective optical waveguide using a waveguide according to another embodiment of the invention. Figure 4 is a perspective view of the configuration of a wavelength conversion element in another embodiment of the present invention. Figure 5 is a perspective view of the configuration of a short wavelength laser light source in another embodiment of the present invention. Figure 5 is the basic configuration of a conventional optical waveguide. FIG. 2 is a basic configuration diagram of a wavelength conversion element. 1, 2...Substrate 3,4...Waveguiding method 5...Incidence part

Claims (11)

【特許請求の範囲】[Claims] (1)第1の基板と前記基板表面に形成した光導波路と
第2の基板と前記第2の基板表面に形成した光導波路と
を備え、前記第1の基板表面に形成した光導波路と前記
第2の基板表面に形成した光導波路とを密着させたこと
を特徴とした光導波路。
(1) A first substrate, an optical waveguide formed on the surface of the substrate, a second substrate, and an optical waveguide formed on the surface of the second substrate, the optical waveguide formed on the surface of the first substrate and the optical waveguide formed on the surface of the second substrate. An optical waveguide characterized in that an optical waveguide formed on the surface of a second substrate is brought into close contact with the optical waveguide.
(2)第1と第2の基板間にマッチング層を備えたこと
を特徴とする特許請求第1項記載の光導波路。
(2) The optical waveguide according to claim 1, further comprising a matching layer between the first and second substrates.
(3)第1と第2の基板表面に形成した導波路表面に周
期的に屈折率の異なる部分を形成したことを特徴とする
特許請求第1項記載の光導波路。
(3) The optical waveguide according to claim 1, wherein portions having different refractive indexes are periodically formed on the surfaces of the waveguides formed on the surfaces of the first and second substrates.
(4)第2の基板上に形成した導波路上に電極を備えた
ことを特徴とする特許請求第1項記載の光導波路。
(4) The optical waveguide according to claim 1, characterized in that an electrode is provided on the waveguide formed on the second substrate.
(5)第1の基板と前記基板表面に形成した非線形物質
からなる光導波路と前記光導波路内に形成した非線形分
極が前記光導波路の非線形分極に対し反転している非線
形物質からなり、かつ周期構造を持つ部分と、第2の基
板と前記第2の基板表面に形成した非線形物質からなる
光導波路と前記光導波路内に形成した非線形分極が前記
光導波路の非線形分極に対し反転している非線形物質か
らなり、かつ周期構造を持つ部分とを備え、前記第1の
基板表面に形成した光導波路と第2の基板表面に形成し
た光導波路及び非線形分極が反転している部分を密着さ
せたことを特徴とする波長変換素子。
(5) a first substrate, an optical waveguide made of a nonlinear material formed on the surface of the substrate, and a nonlinear material formed in the optical waveguide, the nonlinear polarization of which is inverted with respect to the nonlinear polarization of the optical waveguide, and a periodicity of the nonlinear material; an optical waveguide consisting of a structured portion, a second substrate, and a nonlinear material formed on the surface of the second substrate; and a nonlinear polarization in which the nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide. an optical waveguide formed on the surface of the first substrate, an optical waveguide formed on the surface of the second substrate, and a portion in which the nonlinear polarization is inverted, which are made of a substance and have a periodic structure, and are brought into close contact with each other; A wavelength conversion element characterized by:
(6)第1の基板と前記基板表面に形成した非線形物質
からなる光導波路と前記光導波路内に周期的に形成した
線形物質からなる部分と、第2の基板と前記第2の基板
表面に形成した非線形物質からなる光導波路と前記光導
波路内に周期的に形成した線形物質からなる部分とを備
え、前記第1と第2の基板表面に形成した光導波路及び
線形物質からなる部分とを密着させたことを特徴とする
波長変換素子。
(6) a first substrate, an optical waveguide made of a nonlinear material formed on the surface of the substrate, a portion made of a linear material periodically formed in the optical waveguide, a second substrate, and a portion made of a linear material formed on the surface of the second substrate; comprising an optical waveguide made of a nonlinear material formed and a part made of a linear material formed periodically in the optical waveguide, and an optical waveguide and a part made of a linear material formed on the surfaces of the first and second substrates. A wavelength conversion element characterized by being brought into close contact with each other.
(7)非線形物質からなる第1の基板と前記基板表面に
形成した光導波層と、非線形物質からなる第2の基板と
前記基板表面に形成した光導波層とを備え、前記第1と
第2の基板表面に形成した、光導波路を密着させたこと
を特徴とする波長変換素子。
(7) A first substrate made of a nonlinear material, an optical waveguide layer formed on the surface of the substrate, a second substrate made of a nonlinear material, and an optical waveguide layer formed on the surface of the substrate, A wavelength conversion element characterized by having an optical waveguide formed on the surface of the substrate No. 2 in close contact with each other.
(8)コヒーレント光源と第1の基板と前記基板表面に
形成した非線形物質からなる導波路と前記光導波路内に
形成した非線形分極が前記光導波路の非線形分極に対し
反転している非線形物質からなりかつ周期構造を持つ部
分と、第2の基板と前記第2の基板表面に形成した非線
形物質からなる光導波路と前記光導波路内に形成した非
線形分極が前記光導波路の非線形分極に対し反転してい
る非線形物質からなりかつ周期構造を持つ部分とを備え
、前記第1の基板表面に形成した光導波路と第2の基板
表面に形成した光導波路及び非線形分極が反転している
部分を密着させ、かつ導波路に対し垂直な面を研磨して
作製した入射部を備えた波長変換素子と前記コヒーレン
ト光源からの光を前記波長変換素子の入射部に励起する
集光光学系を備えたことを特徴とする短波長レーザ光源
(8) A coherent light source, a first substrate, a waveguide made of a nonlinear material formed on the surface of the substrate, and a nonlinear material made of a nonlinear material whose nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide. and an optical waveguide including a portion having a periodic structure, a second substrate, and a nonlinear material formed on the surface of the second substrate, and a nonlinear polarization formed in the optical waveguide is inverted with respect to the nonlinear polarization of the optical waveguide. an optical waveguide formed on the surface of the first substrate, an optical waveguide formed on the surface of the second substrate, and a portion in which the nonlinear polarization is inverted; and a wavelength conversion element having an entrance part made by polishing a surface perpendicular to the waveguide, and a condensing optical system that excites the light from the coherent light source to the entrance part of the wavelength conversion element. Short wavelength laser light source.
(9)コヒーレント光源と第1の基板と前記基板表面に
形成した非線形物質からなる光導波路と前記光導波路内
に周期的に形成した線形物質からなる部分と、第2の基
板と前記第2の基板表面に形成した非線形物質からなる
光導波路と前記光導波路内に周期的に形成した線形物質
からなる部分とを備え、前記第1と第2の基板表面に形
成した光導波路及び線形物質からなる部分とを密着させ
かつ導波路層に対し垂直な面を研磨して作製した入射部
を備えた波長変換素子と前記コヒーレント光源からの光
を前記波長変換素子の入射部に励起する集光光学系を備
えたことを特徴とする短波長レーザ光源。
(9) a coherent light source, a first substrate, an optical waveguide made of a nonlinear material formed on the surface of the substrate, a portion made of a linear material periodically formed in the optical waveguide, a second substrate and the second substrate; comprising an optical waveguide made of a nonlinear material formed on the surface of a substrate and a portion made of a linear material formed periodically within the optical waveguide, and made of the optical waveguide and the linear material formed on the surfaces of the first and second substrates. a wavelength conversion element including an entrance part made by bringing the parts into close contact with each other and polishing a surface perpendicular to the waveguide layer; and a condensing optical system that excites light from the coherent light source to the entrance part of the wavelength conversion element. A short wavelength laser light source characterized by comprising:
(10)コヒーレント光源と非線形物質からなる第1の
基板と前記基板表面に形成した光導波層と、非線形物質
からなる第2の基板と前記基板表面に形成した光導波層
とを備え、前記第1と第2の基板表面に形成した光導波
路を密着させかつ導波路に対し垂直な面を研磨して作製
した入射部を備えた波長変換素子と前記コヒーレント光
源からの光を前記波長変換素子の入射部に励起する集光
光学系を備えたことを特徴とする短波長レーザ光源。
(10) A coherent light source, a first substrate made of a nonlinear material, an optical waveguide layer formed on the surface of the substrate, a second substrate made of a nonlinear material, and an optical waveguide layer formed on the surface of the substrate, A wavelength conversion element is provided with an incident part made by bringing the optical waveguides formed on the surfaces of the first and second substrates into close contact with each other and polishing a surface perpendicular to the waveguides. A short wavelength laser light source characterized by having a focusing optical system for excitation at an incident part.
(11)半導体レーザと半導体レーザの発光部と波長変
換素子の入射部を直接接続したことを特徴とする特許請
求第8項又は第9項又は第10項記載の短波長レーザ光
源。
(11) A short wavelength laser light source according to claim 8, 9, or 10, characterized in that a semiconductor laser, a light emitting part of the semiconductor laser, and an input part of a wavelength conversion element are directly connected.
JP1277430A 1989-10-24 1989-10-24 Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source Expired - Fee Related JP2765112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277430A JP2765112B2 (en) 1989-10-24 1989-10-24 Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277430A JP2765112B2 (en) 1989-10-24 1989-10-24 Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source

Publications (2)

Publication Number Publication Date
JPH03137605A true JPH03137605A (en) 1991-06-12
JP2765112B2 JP2765112B2 (en) 1998-06-11

Family

ID=17583454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277430A Expired - Fee Related JP2765112B2 (en) 1989-10-24 1989-10-24 Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source

Country Status (1)

Country Link
JP (1) JP2765112B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337163A (en) * 2015-12-16 2016-02-17 南京信息工程大学 Efficient intermediate infrared difference frequency generation laser device and making method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139755A (en) 2000-11-01 2002-05-17 Fuji Photo Film Co Ltd Wavelength conversion element and its manufacturing method
JP2006301610A (en) 2005-03-25 2006-11-02 Fuji Xerox Co Ltd Optical coupling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352105A (en) * 1986-08-22 1988-03-05 Omron Tateisi Electronics Co Optical waveguide device
JPH02103521A (en) * 1988-08-18 1990-04-16 Philips Gloeilampenfab:Nv Frequency doubling device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352105A (en) * 1986-08-22 1988-03-05 Omron Tateisi Electronics Co Optical waveguide device
JPH02103521A (en) * 1988-08-18 1990-04-16 Philips Gloeilampenfab:Nv Frequency doubling device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337163A (en) * 2015-12-16 2016-02-17 南京信息工程大学 Efficient intermediate infrared difference frequency generation laser device and making method thereof

Also Published As

Publication number Publication date
JP2765112B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
US6393172B1 (en) Method of manipulating optical wave energy using patterned electro-optic structures
US5504772A (en) Laser with electrically-controlled grating reflector
US5488681A (en) Method for controllable optical power splitting
US5781670A (en) Optical frequency channel selection filter with electronically-controlled grating structures
US5630004A (en) Controllable beam director using poled structure
US5586206A (en) Optical power splitter with electrically-controlled switching structures
JP2679570B2 (en) Polarization separation element
US6289027B1 (en) Fiber optic lasers employing fiber optic amplifiers
Ramer et al. Experimental integrated optic circuit losses and fiber pigtailing of chips
JP3129028B2 (en) Short wavelength laser light source
JP4579417B2 (en) Optical waveguide manufacturing
JPH03137605A (en) Optical waveguide, wavelength changing element and short-wavelength laser light source
Nightingale et al. Monolithic Nd: YAG fiber laser
JPH01201609A (en) Optical device
RU2781367C1 (en) Hybrid integrated optical device
JPH06289344A (en) Optical waveguide element and its production
JPH04356031A (en) Incidence tapered optical waveguide and wavelength converting element using the same
JPH07270634A (en) Manufacture of optical waveguide and optical waveguide substrate
Gehler et al. ARROW's in KTiOPO 4
JPH0481725A (en) Wavelength conversion device
JPH0497232A (en) Production of wavelength conversion element and incidence tapered optical waveguide
Gao HIGHLY EFFICIENT SILICON PHOTONICS DEVICES FOR NEXT GENERATION ON-CHIP INTERCONNECTION NETWORKS
JPH02236505A (en) Incident tapered optical waveguide and wavelength converting element and manufacture of incident tapered optical waveguide
JPS6319620A (en) Formation of optical waveguide
JPH08160238A (en) Production of optical waveguide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees