JPH03137598A - Output controlling device for natural circulating reactor - Google Patents

Output controlling device for natural circulating reactor

Info

Publication number
JPH03137598A
JPH03137598A JP1273684A JP27368489A JPH03137598A JP H03137598 A JPH03137598 A JP H03137598A JP 1273684 A JP1273684 A JP 1273684A JP 27368489 A JP27368489 A JP 27368489A JP H03137598 A JPH03137598 A JP H03137598A
Authority
JP
Japan
Prior art keywords
reactor
nuclear reactor
core
output
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1273684A
Other languages
Japanese (ja)
Inventor
Takao Kageyama
影山 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1273684A priority Critical patent/JPH03137598A/en
Publication of JPH03137598A publication Critical patent/JPH03137598A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To decrease nuclear reactor output, and to keep integrity and a core cooling configuration of a nuclear reactor vessel by providing a control measure to make a feed water pump run-back and trip, and, at the same time, to open a plurality of pressing reducing valves with certain time delay. CONSTITUTION:When reactor output rises over a preset point A of a nuclear reactor output and also a nuclear reactor pressure rises higher than a higher high level of the nuclear reactor pressure, automatic pressure reducing valves 22a, 22b and 22c of which each group can release the maximum 40% of rated main steam flow, are made to open with time delaying interval of 30 second, utilizing time delaying circuit 47a and 47b, a feed water pump 16 is made to run-back and concentrated solution of sodium pentaborate is rapidly injected into a nuclear reactor vessel 2 by a high pressure liquid poison accumulator 31. By this procedure, sub-cooling degree at a reactor core inlet decreases and also reducing effect of natural circulating force of nuclear reactor works and therewith core flow rate decreases and nuclear power output also decreases.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は自然循環型の原子炉プラントにおいて、特に過
渡事象での制御棒挿入不能時に原子炉発生熱量の低減を
図った自然循環炉の出力制御装置に関する。
[Detailed description of the invention] [Objective of the invention] (Industrial application field) The present invention aims to reduce the amount of heat generated in a nuclear reactor in a natural circulation type nuclear reactor plant, especially when control rods cannot be inserted due to a transient event. This invention relates to an output control device for a natural circulation furnace.

(従来の技術) 一般に、冷却材強制循環型の沸騰水型原子炉では原子炉
圧力容器に再循環系を設けている。この再循環系は原子
炉圧力容器からの炉水を再循環ポンプで昇圧し、駆動水
として集合管を介して複数台のジェットポンプから下方
に向けて噴出し、この噴出流により周辺の炉水を吸込み
、原子炉圧力容器内の炉水を強制的に循環させている。
(Prior Art) Generally, in a forced coolant circulation type boiling water nuclear reactor, a recirculation system is provided in the reactor pressure vessel. In this recirculation system, reactor water from the reactor pressure vessel is pressurized by a recirculation pump, and is jetted downward from multiple jet pumps via a collecting pipe as driving water. The reactor water inside the reactor pressure vessel is forcibly circulated.

また、沸騰水型原子炉では制御棒挿入不能時にスクラム
信号によって再循環ポンプをトリップさせ炉心流量を低
下させている。これにより、炉心ボイド量が増加して負
の反応度が加わるため、中性子束が制御され原子炉出力
が低下するようになっている。
In addition, in boiling water reactors, when control rods cannot be inserted, a scram signal is used to trip the recirculation pump and reduce the core flow rate. As a result, the amount of core voids increases and negative reactivity is added, so the neutron flux is controlled and the reactor output is reduced.

(発明が解決しようとする課題) しかしながら、自然循環炉では前記再循環ポンプが設け
られていないため、冷却材強制循環型の原子炉プラント
で採用している制御棒挿入不能時の再循環ポンプのトリ
ップによる原子炉出力の低減手段を採れない。このため
、自然循環炉では再循環ポンプトリップに代わる新たな
出力低減手段を組込まなければ原子炉容器の健全性が保
持できなくなる課題がある。
(Problem to be solved by the invention) However, since natural circulation reactors are not equipped with the recirculation pump, the recirculation pump used in forced coolant circulation reactor plants when control rods cannot be inserted is No measures can be taken to reduce reactor output due to trips. Therefore, in natural circulation reactors, there is a problem that the integrity of the reactor vessel cannot be maintained unless a new output reduction means is installed to replace the recirculation pump trip.

本発明は上記課題を解決するためになされたもので、自
然循環炉において運転時に過渡変化が発生し、制御棒挿
入不能となった場合にも、原子炉発生熱量を低減できる
自然循環炉の出力制御装置を提供することにある。
The present invention has been made to solve the above problems, and the output of the natural circulation reactor is capable of reducing the amount of heat generated in the reactor even when transient changes occur during operation in the natural circulation reactor and control rods cannot be inserted. The purpose is to provide a control device.

[発明の構成] (課題を解決するための手段) 本発明は炉心を内蔵する原子炉容器と、この原子炉容器
内に設置され前記炉心を取囲む筒状体と、この筒状体と
前記原子炉容器との間に形成され前記炉心の上部から吐
出された冷却材を給水ポンプから流入される給水ととも
に前記炉心の下部に導く自然循環流路と、前記原子炉容
器内で発生した蒸気を吐出する主蒸気管と、この主蒸気
管に設けられた複数個の減圧弁とを有する自然循環炉の
出力制御装置において前記給水ポンプをランバックまた
はトリップさせるのと同時に前記複数個の減圧弁を時間
差をもって開放させる制御手段を設けたことを特徴とす
る。  (作 用) 本発明では、原子炉出力運転時に過渡変化が発生し、制
御棒挿入不能となった場合、制御手段によって給水ポン
プをランバックまたはトリップさせるのと同時に前記複
数個の減圧弁を時間差をもって開放させる。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a reactor vessel containing a reactor core, a cylindrical body installed in the reactor vessel and surrounding the reactor core, and a cylindrical body and the above-described cylindrical body. A natural circulation flow path is formed between the reactor vessel and the reactor vessel to guide the coolant discharged from the upper part of the reactor core to the lower part of the reactor core along with the feed water flowing in from the feed water pump, and the steam generated in the reactor vessel is In an output control device for a natural circulation reactor having a discharge main steam pipe and a plurality of pressure reducing valves provided in the main steam pipe, the plurality of pressure reducing valves are simultaneously run back or tripped by the feed water pump. It is characterized in that it is provided with a control means for opening at a time lag. (Function) In the present invention, when a transient change occurs during reactor power operation and it becomes impossible to insert a control rod, the control means runs back or trips the feed water pump, and at the same time, the plurality of pressure reducing valves are operated at different times. to open it.

ここで、給水ポンプをランバックまたトリップさせた場
合、炉心入ロサブクール度が低下することと併せて、原
子炉水位低下による自然循環力低減効果が働き、炉心流
量が減少する。そのため、結果的に原子炉出力を減少さ
せることができる。また減圧弁を開放させることによっ
て炉心内ボイドが増加し、炉心に負の反応度が印加され
る。そのため原子炉出力は前記給水ボンプランバックま
たはトリップの効果が相乗して急激に減少する。この場
合、複数の減圧弁を時間差をもって開放させる。これに
よって、原子炉圧力の急激な低下により原子炉水位がフ
ラッシイングを起こし、二相流が主蒸気管ひいては減圧
弁にまで達し、その減圧弁がチョーキングを起こすこと
を防止する。
Here, when the feedwater pump is run back or tripped, the core entry loss subcooling degree decreases, and the natural circulation force reduction effect due to the lowering of the reactor water level comes into play, resulting in a decrease in the core flow rate. Therefore, the reactor output can be reduced as a result. Further, by opening the pressure reducing valve, the number of voids in the core increases, and negative reactivity is applied to the core. Therefore, the reactor output sharply decreases due to the effects of the water supply bomb back or trip. In this case, the plurality of pressure reducing valves are opened at different times. This prevents the reactor water level from flashing due to a sudden drop in reactor pressure, causing the two-phase flow to reach the main steam pipe and even the pressure reducing valve, thereby preventing the pressure reducing valve from choking.

(実施例) 本発明を図示する実施例に基づいて説明する。(Example) The present invention will be described based on illustrated embodiments.

第1図は本発明の一実施例による出力制御装置を適用し
た自然循環型の沸騰水型原子炉(BWR)の概略構成を
示す。同図において、符号1は原子炉格納容器を示して
おり、この原子炉格納容器1は図示しない原子炉建屋内
に設置されている。原子炉格納容器1内には原子炉圧力
容器2が格納され、この原子炉圧力容器2は図示しない
ペデスタル上に設置されている。この原子炉圧力容器2
内には炉心3が配置され、この炉心3を冷却する冷却材
4が収納されている。
FIG. 1 shows a schematic configuration of a natural circulation boiling water reactor (BWR) to which a power control device according to an embodiment of the present invention is applied. In the figure, reference numeral 1 indicates a reactor containment vessel, and this reactor containment vessel 1 is installed in a reactor building (not shown). A reactor pressure vessel 2 is housed within the reactor containment vessel 1, and this reactor pressure vessel 2 is installed on a pedestal (not shown). This reactor pressure vessel 2
A reactor core 3 is disposed inside, and a coolant 4 for cooling the reactor core 3 is housed therein.

炉心3は図示しない複数の燃料集合体および制御棒3a
から構成されている。冷却材4は炉心3の核反応熱によ
り昇温し水と蒸気の二相状態となり、炉心3の内外の温
度による密度差によって生じる自然循環力によって炉心
3の上方に設けられた筒状体(チムニ−)5を流通する
。そのうち蒸気は図示しない蒸気乾燥器に流入して乾燥
蒸気となり、原子炉圧力容器2の上部に接続された主蒸
気管6を経てタービン7に給送される。
The reactor core 3 includes a plurality of fuel assemblies and control rods 3a (not shown).
It consists of The temperature of the coolant 4 rises due to the heat of the nuclear reaction in the core 3, and it becomes a two-phase state of water and steam.The coolant 4 is heated up by the heat of the nuclear reaction in the core 3, and becomes a two-phase state of water and steam. Chimney) 5 is distributed. The steam flows into a steam dryer (not shown), becomes dry steam, and is fed to the turbine 7 via a main steam pipe 6 connected to the upper part of the reactor pressure vessel 2.

一方、原子炉圧力容器2内で分離された水はダウンカマ
部を経て炉心3の下方に流下し、再度炉心3の下部に案
内され、炉心3内を流通せしめられる。主蒸気管6の原
子炉格納容器1の貫通部前後には主蒸気隔離弁(以下M
SIVという)8および9が介装されている。このMS
IV9とタービン7との間には主蒸気止め弁10および
主蒸気加減弁11が順次介装されている。
On the other hand, the water separated within the reactor pressure vessel 2 flows down to the lower part of the reactor core 3 via the downcomer section, is guided to the lower part of the reactor core 3 again, and is made to flow within the reactor core 3. Main steam isolation valves (hereinafter referred to as M
(referred to as SIV) 8 and 9 are interposed. This MS
A main steam stop valve 10 and a main steam control valve 11 are successively interposed between the IV9 and the turbine 7.

前記タービン7に給送された蒸気はタービン7を駆動し
て発電機12を回転駆動させる。タービン7を駆動した
蒸気はタービン7の下方に設置された復水器13内に収
容され、凝縮されて復水となる。この復水は復水ポンプ
14、給水加熱器15、電動機駆動の給水ポンプ16を
経由して再び原子炉圧力容器2内に導入され、炉心3の
下方に給水される。
The steam fed to the turbine 7 drives the turbine 7 and rotates the generator 12. The steam that drove the turbine 7 is stored in a condenser 13 installed below the turbine 7, and is condensed to become condensed water. This condensate is again introduced into the reactor pressure vessel 2 via the condensate pump 14, the feed water heater 15, and the motor-driven feed water pump 16, and is supplied to the lower part of the reactor core 3.

原子炉圧力容器2とシュラウドとしての筒状体5との間
には自然循環流路2aが形成されており、その自然循環
流路2aによって炉心3の上部の冷却材4を給水ポンプ
16からの給水とともに炉心3の下部に導いている。
A natural circulation passage 2a is formed between the reactor pressure vessel 2 and a cylindrical body 5 serving as a shroud, and the natural circulation passage 2a allows the coolant 4 in the upper part of the reactor core 3 to be transferred from the water supply pump 16. It is led to the lower part of the reactor core 3 together with the water supply.

一方、MSIV9と主蒸気止め弁10との間の主蒸気管
6と復水器13との間にはタービンバイパス管17が配
設されている。このタービンバイパス管17にはタービ
ンバイパス弁18が介装されている。ここで、負荷遮断
が発生した場合には、主蒸気加減弁11が閉弁し、同時
にタービンバイパス弁18が開弁する。それによって、
蒸気はタービンバイパス管17を介して復水器13に直
接導入される。
On the other hand, a turbine bypass pipe 17 is disposed between the main steam pipe 6 and the condenser 13 between the MSIV 9 and the main steam stop valve 10 . A turbine bypass valve 18 is interposed in this turbine bypass pipe 17 . Here, when a load cutoff occurs, the main steam control valve 11 is closed, and at the same time, the turbine bypass valve 18 is opened. Thereby,
Steam is introduced directly into the condenser 13 via the turbine bypass pipe 17.

前記主蒸気管6のMS IV8の入り口側には主蒸気逃
し安全弁(SRV)19が接続されるとともに、この主
蒸気逃し安全弁19には主蒸気逃し配管20が接続され
ている。この主蒸気逃し配管20の下端は原子炉圧力容
器2の底部に設けたサプレッションプールとしての圧力
制御室21の水中21a内に浸漬されている。例えばM
SIV8および9が閉弁して主蒸気圧力が過渡に上昇し
た場合には、主蒸気逃し安全弁19が開弁じ、原子炉圧
力容器2内の主蒸気を主蒸気逃し配管20を開して圧力
抑制室21内の水中21aに逃がし、それによって原子
炉圧力容器2内の圧力上昇を抑制している。
A main steam relief safety valve (SRV) 19 is connected to the MS IV 8 entrance side of the main steam pipe 6, and a main steam relief pipe 20 is connected to the main steam relief safety valve 19. The lower end of this main steam relief pipe 20 is immersed in water 21a of a pressure control chamber 21 that serves as a suppression pool provided at the bottom of the reactor pressure vessel 2. For example, M
When SIVs 8 and 9 close and the main steam pressure rises transiently, the main steam relief safety valve 19 opens and the main steam inside the reactor pressure vessel 2 opens the main steam relief pipe 20 to suppress the pressure. The water is released into the water 21a in the chamber 21, thereby suppressing the pressure rise in the reactor pressure vessel 2.

さらに、前記主蒸気管6のMSIV8の入り口側には、
自動減圧弁22as 22b、22cが接続されている
。原子炉圧力を短時間で減少させる必要がある場合には
自動減圧弁22a、22b、22cが所定の時間間隔を
おいて開放される。
Furthermore, on the entrance side of the MSIV 8 of the main steam pipe 6,
Automatic pressure reducing valves 22as 22b and 22c are connected. When it is necessary to reduce the reactor pressure in a short time, the automatic pressure reducing valves 22a, 22b, 22c are opened at predetermined time intervals.

ところで、原子炉圧力容器2には高圧液体ポイズンアキ
ュムレータ(SLC)31が注入弁32を介して接続さ
れ、この注入弁32を開放させることで、液体ポイズン
である五はう酸ナトリウム濃縮溶液が5LC31から原
子炉圧力容器2内に高速で注入される。炉心3内には原
子炉の出力をモニタする平均出力モニタ(APRM)4
2が設置され、かつ原子炉圧力容器2内の上部にはその
圧力を検出する原子炉圧力検出器(P)43が設けられ
るとともに、原子炉圧力容器2内における円筒体5の外
周側に原子炉水位検出器(L)44が設けられている。
By the way, a high-pressure liquid poison accumulator (SLC) 31 is connected to the reactor pressure vessel 2 via an injection valve 32, and by opening this injection valve 32, a concentrated solution of sodium pentaphosphate, which is a liquid poison, is transferred to 5LC31. is injected into the reactor pressure vessel 2 at high speed. Inside the reactor core 3 is an average power monitor (APRM) 4 that monitors the reactor output.
2 is installed, and a reactor pressure detector (P) 43 is installed at the upper part of the reactor pressure vessel 2 to detect the pressure. A reactor water level detector (L) 44 is provided.

これら平均出力モニタ42、圧力検出器43及び水位検
出器44の出力信号は制御手段としての出力制御装置4
1に検出され、この出力制御装置41は上記出力信号に
基づいて給水ポンプ16のランバック信号(またはトリ
ップ信号)と3つの群数から構成される自動減圧弁20
を時間差をもって解放させる信号および注入弁32を解
放させる信号を各々送出するようになっている。
The output signals of the average output monitor 42, pressure detector 43, and water level detector 44 are transmitted to the output control device 4 as a control means.
1, and this output control device 41 controls a runback signal (or trip signal) of the water supply pump 16 and an automatic pressure reducing valve 20 consisting of three groups based on the output signal.
A signal for releasing the injection valve 32 and a signal for releasing the injection valve 32 are respectively sent out with a time difference.

すなわち、出力制御装置41は第2図に示すように、A
ND回路45 as 45 bsおよびOR回路46を
有し、AND回路45aは圧力検出器43が原子炉圧力
高嵩を検出した圧力信号と、原子炉出力が予め設定され
た設定値a以上を検出したAPRM42の出力信号との
論理積をとり、またAND回路45bは設定値す以上を
検出したAPRM42の出力信号と、水位検出器44が
原子炉水位低低を検出した水位信号との論理積をとり、
これらAND回路45aおよび45bの出力信号に基づ
いてOR回路46で論理和をとり、AND回路45aま
たは45bが出力信号を送出する。
That is, as shown in FIG.
It has an ND circuit 45 as 45 bs and an OR circuit 46, and the AND circuit 45a receives a pressure signal indicating that the pressure detector 43 has detected a high reactor pressure and a reactor output that has detected a preset value a or more. An AND circuit 45b performs a logical product with the output signal of the APRM 42, and an AND circuit 45b performs a logical product between the output signal of the APRM 42 which has detected a value higher than the set value and the water level signal which has detected a low or low reactor water level by the water level detector 44. ,
Based on the output signals of these AND circuits 45a and 45b, an OR circuit 46 performs a logical sum, and the AND circuit 45a or 45b sends out an output signal.

そこで、一つの群が最大40%定格主蒸気流量を逃すこ
とができる自動減圧弁22a、22b122cをTim
tDelB回路47a、47bを用いて30秒間隔で開
放させる。
Therefore, one group is equipped with automatic pressure reducing valves 22a, 22b and 122c that can release up to 40% of the rated main steam flow rate.
The tDelB circuits 47a and 47b are opened at 30 second intervals.

給水ポンプ16をランバックさせる信号またはトリップ
させる信号を送出1、さらに注入弁32を作動させる信
号を出力する。
A signal to run back or trip the water supply pump 16 is sent out 1, and a signal to actuate the injection valve 32 is outputted.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

まず、前記構成おいてMSIV8.9が全閉したにも拘
らず、制御棒3aの全挿入、すなわちスクラムが失敗し
た場合の出力制御装置41の作用について説明する。本
実施例おける自然循環型の沸騰水型原子炉では第1図に
示すように原子炉出力がAPRM42で、原子炉圧力が
圧力検出器43で、原子炉水位が水位検出器44で各々
計測されており、この検出値は出力制御装置41に入力
値として与えられる。通常、MSIV8.9が全閉し、
弁ストローク位置が90%以下となった場合には原子炉
はスクラムし、原子炉出力は約200%以下に抑制され
る。この場合、原子炉圧力が上昇し、圧力検出器43が
原子炉圧力高を検出することにより、約50%定格主蒸
気流量を逃すことができる逃し安全弁(SRV)19が
開放されるため原子炉圧力上昇量は10kg/cnf以
下に抑制される。
First, the operation of the output control device 41 when the full insertion of the control rod 3a, that is, the scram, fails despite the MSIV 8.9 being fully closed in the above configuration will be described. In the natural circulation boiling water reactor in this embodiment, as shown in FIG. This detected value is given to the output control device 41 as an input value. Normally, MSIV8.9 is fully closed,
When the valve stroke position becomes 90% or less, the reactor scrams and the reactor output is suppressed to about 200% or less. In this case, the reactor pressure rises and the pressure detector 43 detects the high reactor pressure, which opens the relief safety valve (SRV) 19 that can release approximately 50% of the rated main steam flow rate. The amount of pressure increase is suppressed to 10 kg/cnf or less.

これに対して、第4図(A)に示すようにスクラムが失
敗した場合、原子炉出力は一時的に300%以上(ある
いはAPRM42のアップスケール状態)となり、原子
炉圧力は原子炉圧力嵩高以上を示す。すると、出力制御
装置41は第3図および第4図に示すように、原子炉出
力が予め設定された原子炉出力設定点aを超え、かつ原
子炉圧力が原子炉圧力嵩高以上となったときに、各々の
群が最大40%定格主蒸気流量を逃すことのできる自動
減圧弁を22a、22b、22cをTinge del
a7回路47a、47b、を用いて30秒間隔で開放さ
せるとともに給水ポンプ16をランバック(またはトリ
ップ)させ、さらに高圧液体ポイズンアキュムレータ3
1により五はう酸ナトリウム濃縮溶液を例えば約7m’
、5分間で原子炉圧力容器2内に高速注入させるように
注入弁32を開放する信号を発する。
On the other hand, if the scram fails as shown in Figure 4 (A), the reactor output will temporarily exceed 300% (or the APRM42 will be upscaled), and the reactor pressure will exceed the reactor pressure bulk. shows. Then, as shown in FIGS. 3 and 4, the power control device 41 controls when the reactor power exceeds the preset reactor power set point a and the reactor pressure exceeds the reactor pressure bulk. In addition, each group is equipped with automatic pressure reducing valves 22a, 22b, and 22c that can release up to 40% of the rated main steam flow rate.
A7 circuits 47a and 47b are used to open the water supply pump 16 at 30 second intervals, run back (or trip) the water supply pump 16, and then open the high pressure liquid poison accumulator 3.
For example, about 7 m' of sodium pentaphosphate concentrated solution
, a signal is issued to open the injection valve 32 to cause high-speed injection into the reactor pressure vessel 2 in 5 minutes.

したがって、給水ポンプ16をランバック(またはトリ
ップ)させると、炉心入ロサブクール度が低下すること
と併せて、原子炉水位低下による自然循環力低減効果が
働き、炉心流量が減少するため原子炉出力は減少する。
Therefore, when the feed water pump 16 is runback (or tripped), the degree of subcooling entering the reactor core decreases, and the natural circulation force reduction effect works due to the lowering of the reactor water level, and the reactor core flow rate decreases, so the reactor output decreases. Decrease.

そして自動減圧弁22 a s 22 b s 22 
cを開放させることにより炉心内ボイドが増加し、炉心
に負の反応度が印加されるため原子炉出力は前記給水ボ
ンプランバック又はトリップの効果が相乗して急激に減
少する。
And automatic pressure reducing valve 22 a s 22 b s 22
By opening c, the voids in the core increase and negative reactivity is applied to the core, so the reactor output sharply decreases due to the synergistic effects of the water supply bomb back or trip.

この場合、本発明では3群の自然減圧弁22a122b
、22cをTil1le Dela1回路47a、47
bを用いて30秒間間隔で解放させることによって原子
炉水位がフラッシイングを起し、二相流が主蒸気配管ひ
いては自動減圧弁に達し、自動減圧弁がチョーキングを
起すことを防止することが可能である。そしてさらには
、五はう酸ナトリウム濃縮溶液のポイズン効果と相俟っ
て原子炉は短時間で未臨界となる。
In this case, in the present invention, three groups of natural pressure reducing valves 22a122b
, 22c to Til1le Dela1 circuits 47a, 47
By releasing the pressure at intervals of 30 seconds using b, the reactor water level will cause flushing, and the two-phase flow will reach the main steam piping and eventually the automatic pressure reducing valve, making it possible to prevent the automatic pressure reducing valve from choking. It is. Furthermore, combined with the poison effect of the concentrated sodium pentaborate solution, the reactor becomes subcritical in a short period of time.

また、MSIV8.9の全閉による原子炉圧力の上昇は
原子炉圧力高で逃し安全弁19及び自動減圧弁22a1
22b、22cが開となるため、原子炉圧力容器2の健
全性が確保される。
In addition, the rise in reactor pressure due to the full closure of MSIV8.9 will cause the reactor pressure to rise and the safety valve 19 and automatic pressure reducing valve 22a1 will be released.
Since 22b and 22c are open, the integrity of the reactor pressure vessel 2 is ensured.

前述したように、本実施例に係る自然循環炉の出力制御
装置41を用いた場合、強制循環型BWRで採用されて
いる再循環ポンプトリップ(RPT)機能がない場合で
もMSIV8.9の全閉時にスクラムが失敗するという
事態が発生した場合に原子炉圧力容器2の健全性を維持
し、炉心3の冷却形状を保持したままで原子炉を短時間
で未臨界にすることができる。
As mentioned above, when using the output control device 41 of the natural circulation reactor according to this embodiment, even if there is no recirculation pump trip (RPT) function adopted in forced circulation type BWR, MSIV8.9 can be completely closed. Even when a scram failure occurs, the reactor can be rendered subcritical in a short time while maintaining the integrity of the reactor pressure vessel 2 and maintaining the cooling shape of the reactor core 3.

次に、前記構成を有する自然循環型BWRにおいて、給
水ポンプ16がトリップしたにも拘らず、制御棒3aの
全挿入(すなわちスクラム)が失敗した場合の出力制御
装置41の作用について説明する。通常、給水ポンプ1
6がトリップし、原子炉水位が原子炉水位低以下になっ
た場合、原子炉はスクラムし、原子炉出力が初期値より
も上昇することはない。また、原子炉水位低下でMSI
V8.9が全閉するが、原子炉圧力高で逃し安全弁19
が解放されるため原子炉圧力の上昇量も僅かである。
Next, in the natural circulation BWR having the above configuration, the operation of the output control device 41 will be described when the full insertion (ie, scram) of the control rod 3a fails despite the water supply pump 16 tripping. Normally, water supply pump 1
6 trips and the reactor water level falls below the reactor water level low, the reactor will scram and the reactor power will not rise above the initial value. In addition, MSI is increasing due to the drop in reactor water level.
V8.9 is fully closed, but the safety relief valve 19 is closed due to high reactor pressure.
Since the reactor pressure is released, the amount of increase in reactor pressure is also small.

そして、出力制御装置41は第2図および第5図に示す
ように原子炉出力が予め設定された原子炉出力すよりも
高く、かつ原子炉水位が原子炉水位低以下になったとき
に、自動減圧弁22a、22b122cをTime D
elB回路45a、45bを用いて30秒間間隔で開放
させさらに、五はう酸ナトリウム溶液を例えば約7rI
!を約5分間で原子炉圧力容器2内に高速注入させるよ
うに注入弁32を開放させる信号を出力する。したがっ
て、第6図に示すように給水ポンプ16トリツプによる
炉心入ロサブクール度低下並びに自然循環力低下効果と
、自動減圧弁22 a % 22 b % 22 CN
開放による炉心内ボイド率増加効果さらには五はう酸ナ
トリウム濃縮溶液のポイズン効果とが相俟って原子炉は
短時間で未臨界となる。さらに、原子炉水位低低でMS
 IV8.9が全閉した場合の原子炉圧力の上昇は原子
炉圧力高で逃し安全弁19が開となり、自動減圧弁22
aq 22b、22cによる減圧効果も得られるため原
子炉圧力容器2の健全性を損なうことはない。尚、設定
値すは定格出力の約50%未満に設定されるのが好まし
く、本実施例では50%に設定されている。
Then, as shown in FIGS. 2 and 5, when the reactor output is higher than the preset reactor output and the reactor water level is below the reactor water level, the output control device 41 Automatic pressure reducing valve 22a, 22b122c
The elB circuits 45a and 45b are used to open the circuits at 30 second intervals, and the sodium pentaborate solution is added, for example, to about 7rI.
! A signal is output to open the injection valve 32 so that the injection valve 32 is injected into the reactor pressure vessel 2 at high speed in about 5 minutes. Therefore, as shown in Fig. 6, the effect of lowering the subcooling level of the core inlet by the trip of the water supply pump 16 and lowering the natural circulation force, and the effect of lowering the natural circulation force of the automatic pressure reducing valve 22 CN
The effect of increasing the void rate in the core due to opening, combined with the poisoning effect of the concentrated sodium pentaphosphate solution, causes the reactor to become subcritical in a short period of time. In addition, MS at low and low reactor water levels
When the reactor pressure rises when IV8.9 is fully closed, the reactor pressure is high and the relief safety valve 19 opens, and the automatic pressure reducing valve 22
Since the depressurizing effect by aq 22b and 22c is also obtained, the integrity of the reactor pressure vessel 2 is not impaired. Note that the set value is preferably set to less than about 50% of the rated output, and in this embodiment is set to 50%.

このように、本実施例における自然循環炉の出力制御装
置を用いれば強制循環型BWRで採用されている再循環
ポンプトリップ(RPT)機能を有しない場合にも給水
ポンプトリップ時にスクラムが失敗するという事態が発
生した場合原子炉圧力容器2の健全性を保持し、炉心3
の冷却形状を維持したままの状態で原子炉を短時間で未
臨界にすることが可能である。
In this way, if the output control device of the natural circulation reactor in this embodiment is used, it is possible to prevent the scram from failing at the time of the feed water pump trip even when the recirculation pump trip (RPT) function adopted in the forced circulation type BWR is not provided. In the event of an emergency, the integrity of the reactor pressure vessel 2 is maintained and the reactor core 3
It is possible to bring a nuclear reactor to subcriticality in a short time while maintaining its cooling configuration.

尚、本実施例の自動減圧弁22a、22b、22c1は
、主蒸気&原子炉格納容器1内に逃がすように構成され
ているが、主蒸気逃がし配管を接続し圧力抑制室21内
の水中21aに逃がすようにしてもよい。
Note that the automatic pressure reducing valves 22a, 22b, and 22c1 of this embodiment are configured to release main steam and reactor into the containment vessel 1, but the main steam relief pipe is connected to the underwater 21a in the pressure suppression chamber 21. You can also let it escape.

[発明の効果] 本発明によれば給水ポンプのトリップおよびランバック
を選択的に実行すると同時に自動減圧弁を開放させるこ
とで、原子炉出力を減少させて原子炉容器の健全性と炉
心冷却形状を保持することができる。
[Effects of the Invention] According to the present invention, by selectively tripping and running back the feedwater pump and simultaneously opening the automatic pressure reducing valve, the reactor power is reduced and the integrity of the reactor vessel and core cooling profile are improved. can be retained.

また、自動減圧弁を時間差をもって開放させることによ
り、原子炉水位がフラッシイングを起した場合自動減圧
弁がチョーキングを起すのを防止することができる。
Furthermore, by opening the automatic pressure reducing valve at different times, it is possible to prevent the automatic pressure reducing valve from choking when the reactor water level is flushed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る出力制御装置を備えた
自然循環炉を示す概略系統図、第2図は第1図における
出力制御装置を示すブロック図、第3図は主蒸気隔離弁
全開時にスクラムが失敗した際に第1図の出力制御装置
を適用した場合のフローチャート、第4図(A)、(B
)、(C)は第3図における各事象の過渡変化を示すグ
ラフ、第5図は全給水流量喪失時にスクラムが失敗した
際に第1図の出力制御装置を適用したフローチャート、
第6図(A)、(B)、(C)は第5図における各事象
の過渡変化を示すグラフである。 ■・・・出力制御装置(制御手段) 2・・・平均出力モニタ(APRM) 3・・・原子炉圧力検出器(P) 4・・・原子炉水位検出器(L) 1・・・原子炉格納容器 2・・・原子炉圧力容器 3・・・炉心 3a・・・制御棒 4・・・冷却材 5・・・円筒体 6・・・主蒸気管 8.9・・・主蒸気隔離弁(MSIV)16・・・給水
ポンプ 19・・・主蒸気逃し安全弁(SRV)22・・・自動
減圧弁 31・・・高圧液体ポイズンアキュムレータ(SLC) 32・・・注入弁 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 弄 3 閃
Fig. 1 is a schematic system diagram showing a natural circulation furnace equipped with an output control device according to an embodiment of the present invention, Fig. 2 is a block diagram showing the output control device in Fig. 1, and Fig. 3 is a main steam isolation Flowchart when the output control device of Fig. 1 is applied when the scram fails when the valve is fully open, Figs. 4 (A) and (B)
), (C) is a graph showing the transient changes of each event in Fig. 3, Fig. 5 is a flowchart in which the output control device of Fig. 1 is applied when the scram fails when the total water supply flow rate is lost,
FIGS. 6A, 6B, and 6C are graphs showing transient changes of each event in FIG. ■...Output control device (control means) 2...Average power monitor (APRM) 3...Reactor pressure detector (P) 4...Reactor water level detector (L) 1...Atom Reactor containment vessel 2...Reactor pressure vessel 3...Reactor core 3a...Control rods 4...Coolant 5...Cylinder 6...Main steam pipe 8.9...Main steam isolation Valve (MSIV) 16... Water supply pump 19... Main steam relief safety valve (SRV) 22... Automatic pressure reducing valve 31... High pressure liquid poison accumulator (SLC) 32... Injection valve (8733) agent Patent attorney Yoshiaki Inomata (and others)
1 person) Fuck 3 Flash

Claims (1)

【特許請求の範囲】[Claims] 炉心を内蔵する原子炉容器と、この原子炉容器内に設置
され前記炉心を取囲む筒状体と、この筒状体と前記原子
炉容器との間に形成され前記炉心の上部から吐出された
冷却材を給水ポンプから流入される給水とともに前記炉
心の下部に導く自然循環流路と、前記原子炉容器内で発
生した蒸気を吐出する主蒸気管と、この主蒸気管に設け
られた複数個の減圧弁とを有する自然循環炉の出力制御
装置において、前記給水ポンプをランバックまたはトリ
ップさせるのと同時に前記複数個の減圧弁を時間差をも
って開放させる制御手段を設けたことを特徴とする自然
循環炉の出力制御装置。
A reactor vessel containing a reactor core, a cylindrical body installed in the reactor vessel and surrounding the reactor core, and a cylindrical body formed between the cylindrical body and the reactor vessel and discharged from the upper part of the reactor core. A natural circulation flow path that guides the coolant to the lower part of the reactor core together with the feed water flowing in from the feed water pump, a main steam pipe that discharges steam generated in the reactor vessel, and a plurality of pipes provided in the main steam pipe. An output control device for a natural circulation reactor having a pressure reducing valve comprising: a control means for opening the plurality of pressure reducing valves with a time difference at the same time as running back or tripping the water pump; Furnace output control device.
JP1273684A 1989-10-23 1989-10-23 Output controlling device for natural circulating reactor Pending JPH03137598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273684A JPH03137598A (en) 1989-10-23 1989-10-23 Output controlling device for natural circulating reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273684A JPH03137598A (en) 1989-10-23 1989-10-23 Output controlling device for natural circulating reactor

Publications (1)

Publication Number Publication Date
JPH03137598A true JPH03137598A (en) 1991-06-12

Family

ID=17531109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273684A Pending JPH03137598A (en) 1989-10-23 1989-10-23 Output controlling device for natural circulating reactor

Country Status (1)

Country Link
JP (1) JPH03137598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343106B1 (en) 1998-08-27 2002-01-29 Kabushiki Kaisha Toshiba Boiling water reactor and operation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6343106B1 (en) 1998-08-27 2002-01-29 Kabushiki Kaisha Toshiba Boiling water reactor and operation thereof

Similar Documents

Publication Publication Date Title
US5180543A (en) Passive safety injection system using borated water
US4587079A (en) System for the emergency cooling of a pressurized water nuclear reactor core
Ishiwatari et al. Safety of super LWR,(I) safety system design
US4948551A (en) Method of protecting a pressurized water nuclear reactor against failures in its emergency stop means
JPH03137598A (en) Output controlling device for natural circulating reactor
Collier et al. The Accident at Three Mile Island
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
JPS6050318B2 (en) Reactor control device
JPH0517515B2 (en)
JPS63195592A (en) Output controller for natural circulation reactor
JPS6128893A (en) Nuclear power plant
Stefanova et al. Use of Main Loop Isolating Valves (GZZS) in WWER 440
No Decay Beat Removal and Operator's Intervention During A Very Small L () CA
Israel EPR: steam generator tube rupture analysis in Finland and in France
Bamdad Analysis of manual depressurization of a boiling water reactor under transient condition
Abalkhail et al. Evaluation of Anticipated Transient Without Scram initiated by Total Loss of Reactor Coolant Flow
JPH0212097A (en) Method for operating recirculation pump
Maqua et al. Neutron flux oscillations at German BWRs
ISHIWATARI et al. Safety of Super LWR,(I)
JPH07128491A (en) Whole capacity bypass system controller for natural circulation type reactor
Wu et al. Preliminary Safety Analysis of CSR1000
JPH04104090A (en) Pressure releasing apparatus for nuclear reactor
JPH02263196A (en) Output controller of natural circulation reactor
Kaliatka et al. Analyses of severe accident scenarios in RBMK-1500
Guo et al. Safety Analysis of a High Breeding Fast Reactor Cooled by Supercritical-Pressure Light Water: Accidents and Abnormal Transients at Supercritical Pressure