JPH03137046A - Material for underwater concrete - Google Patents

Material for underwater concrete

Info

Publication number
JPH03137046A
JPH03137046A JP1275633A JP27563389A JPH03137046A JP H03137046 A JPH03137046 A JP H03137046A JP 1275633 A JP1275633 A JP 1275633A JP 27563389 A JP27563389 A JP 27563389A JP H03137046 A JPH03137046 A JP H03137046A
Authority
JP
Japan
Prior art keywords
fly ash
cement
concrete
underwater concrete
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1275633A
Other languages
Japanese (ja)
Other versions
JPH0567580B2 (en
Inventor
Kazuaki Ukita
和明 浮田
Mitsuhiro Ishii
石井 光裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP1275633A priority Critical patent/JPH03137046A/en
Publication of JPH03137046A publication Critical patent/JPH03137046A/en
Publication of JPH0567580B2 publication Critical patent/JPH0567580B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To lower the amt. of the expensive specific admixture to be used while maintaining the strength of concrete by adding fly ash to the material for underwater concrete formed by kneading cement, aggregate, specific admixture, and high-performance water-reducing agent with water. CONSTITUTION:The material for the underwater concrete is formed by compounding E) the classified fly ash (grain size: >=90% is <=10 mu) with the cement compsn. consisting of A) cement (ordinary Portland cement, grain size: 40 to 60 mu), B) the aggregate (e.g.: sea sand, bulk density.: 0.54, coefft. of water absorption: 1.33), C) the specific admixture (e.g.: 'Acrys 12S, D(R)' produced by Nisso Master Builders), and D) the high-performance water-reducing agent (e.g.: 'Mighty 150(R)' produced by Kao). The amt. of the specific admixture to be added is lowered to 75% of the reference amt. of addition by the addition of the fly ash.

Description

【発明の詳細な説明】 (産業上の利用分計) この発明は、港湾等の海洋工事や河川工事において水中
で用いられるコンクリート用材料、いわゆる水中コンク
リート用材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Applications) The present invention relates to concrete materials used underwater in marine construction such as ports and river construction, so-called underwater concrete materials.

(従来の技術) このような水中コンクリート用材料には、従来から、通
常のコンクリート用材料以外に水中コンクリート用特殊
混和剤(以下、゛単に特殊混和剤という)を添加するこ
とによって、コンクリートの水中分離抵抗性を高めて所
定の強度等の性能を確保することとしている。
(Prior art) In the past, special admixtures for underwater concrete (hereinafter simply referred to as special admixtures) have been added to such materials for underwater concrete in addition to ordinary concrete materials, so that concrete can be made underwater. The separation resistance is increased to ensure performance such as predetermined strength.

(発明が解決しようとする課題) ところで、この種の特殊混和剤は高価であるので、工事
の材料費用が大幅にアップし大量使用するには至ってい
ないのが現状である。
(Problems to be Solved by the Invention) By the way, this type of special admixture is expensive, so the cost of materials for construction work has increased significantly, and at present, it has not been possible to use it in large quantities.

この発明は、このような背景に基づいてなされたもので
、水中コンクリートの強度等の性能を維持しつつ高価な
特殊混和剤の使用量の軽減を図ることを目的とするもの
である。
This invention was made based on this background, and aims to reduce the amount of expensive special admixtures used while maintaining performance such as strength of underwater concrete.

(課題を解決するための手段) この目的を達成するために、この発明は、セメントと骨
材と特殊混和剤と高性能減水剤と水とを混練した水中コ
ンクリート用材料において、セメント粒の粒径より小さ
い粒径に選別されたフライアッシュを添加したものであ
る。
(Means for Solving the Problem) In order to achieve this object, the present invention provides an underwater concrete material in which cement, aggregate, special admixture, high performance water reducing agent, and water are kneaded. This is added with fly ash that has been selected to have a particle size smaller than the diameter of the fly ash.

(作用) この発明によれば、セメント粒の粒径より小さい粒径に
選別されたフライアッシュを添加するので、この水中コ
ンクリート用材料を水中に施工後、セメント粒の間に確
実に粒径の小さいフライアッシュを介在させ、これによ
って効率的にブリージングを抑制することができる。
(Function) According to this invention, since fly ash selected to have a particle size smaller than that of cement particles is added, after this underwater concrete material is constructed underwater, it is ensured that the particle size is small between the cement particles. By interposing a small amount of fly ash, breathing can be effectively suppressed.

その結果、水中でのコンクリートからのセメント粒の流
失が軽減することによって水中コンクリートの水中分離
抵抗性が高まり、コンクリートの組織が不均一となるの
を防止できるので、強度等の性能を維持しつつ従来に比
べて特殊混和剤の添加量を軽減することができる。
As a result, by reducing the loss of cement particles from the concrete underwater, the underwater separation resistance of the underwater concrete increases, and it is possible to prevent the structure of the concrete from becoming uneven, thereby maintaining performance such as strength. The amount of special admixture added can be reduced compared to conventional methods.

(実施例) 以下、図面に示す一実施例について説明する。(Example) An embodiment shown in the drawings will be described below.

第1図は、実施例の水中コンクリート用材料を水中に施
工した状態の拡大断面図である。
FIG. 1 is an enlarged cross-sectional view of the underwater concrete material of the example in a state where it is constructed underwater.

図において、1は水中コンクリート、2は水を示す。In the figure, 1 indicates underwater concrete and 2 indicates water.

水中コンクリート1は、通常のコンクリートと同様に、
セメントと、骨材と、高性能減水剤と水との他に水中コ
ンクリート用の特殊混和剤が添加されている。
Underwater concrete 1 is similar to normal concrete,
In addition to cement, aggregate, superplasticizer, and water, special admixtures for underwater concrete are added.

そして、この水中コンクリート1には、さらにセメント
粒の粒径より小さい粒径である10μ以下に選別された
フライアッシュ(以下、分級フライアッシュという)が
添加され、混練された後、水中に施工されたものである
Then, to this underwater concrete 1, fly ash (hereinafter referred to as classified fly ash) that has been sorted to a particle size of 10 μm or less, which is smaller than the particle size of cement particles, is added, mixed, and then applied underwater. It is something that

この水中コンクリート1のセメントは、普通ポルトラン
ドセメント(大阪セメント株式会社製)であって、セメ
ント粒3は粒径が40〜60μ程度のものである。
The cement of this underwater concrete 1 is ordinary Portland cement (manufactured by Osaka Cement Co., Ltd.), and the cement particles 3 have a particle size of about 40 to 60 μm.

骨材としては、細骨材である海砂が用いられている。な
お、この海砂の比重は2. 54、吸水率は1゜33で
あり、図中4は海砂粒を示す。
Sea sand, which is a fine aggregate, is used as the aggregate. The specific gravity of this sea sand is 2. 54, the water absorption rate is 1°33, and 4 in the figure indicates sea sand grains.

高性能減水剤としては、例えば、花王株式会社製高性能
減水剤マイティ150(商品名)が用いられている。
As the high performance water reducer, for example, the high performance water reducer Mighty 150 (trade name) manufactured by Kao Corporation is used.

水中コンクリート用特殊混和剤としては、日曹マスター
ビルダーズ株式会社製アクリス12S(商品名)が使用
されているが、後述するように、その添加量は所定の標
準感加量の75%となっている。
Acrys 12S (trade name) manufactured by Nisso Master Builders Co., Ltd. is used as a special admixture for underwater concrete, but as described later, the amount added is 75% of the standard sensitized amount. There is.

更に、この水中コンクリートには、石炭の燃焼によって
生成される。フライアッシュが添加されているが、この
水中コンクリート1に添加されている分級フライアッシ
ュのフライアッシュ粒5は粒径が概ね10μ以下に選別
されたものである。
Furthermore, this underwater concrete is produced by burning coal. Fly ash is added, and the fly ash particles 5 of the classified fly ash added to this underwater concrete 1 are selected to have a particle size of approximately 10 μm or less.

この分級フライアッシュの粒度分布は第2図に示すよう
に、90%以上のフライアッシュ粒5が10μ以下の粒
径となっている。
As shown in FIG. 2, the particle size distribution of this classified fly ash is such that 90% or more of the fly ash particles 5 have a particle size of 10 μm or less.

この実施例において、この分級フライアッシュの粒径を
10μとしたのは、セメント粒3の粒径が40〜60μ
であり、後述のように、フライアッシュを添加すること
によって適度にブリージングを抑制することを目的とす
るからである。
In this example, the particle size of the classified fly ash was set to 10μ because the particle size of the cement grains 3 was 40 to 60μ.
This is because, as will be described later, the purpose of adding fly ash is to appropriately suppress breathing.

したがって、ブリージングの抑制すべき程度に応じて、
例えば20μ〜5μの範囲で前記分級フライアッシュの
粒度を調整してもこの実施例と全く同様に実施すること
が可能である。
Therefore, depending on the degree to which breathing should be suppressed,
For example, even if the particle size of the classified fly ash is adjusted within the range of 20μ to 5μ, it is possible to carry out the process in exactly the same manner as in this embodiment.

このような材料を水で混練した後、水中に施工すると、
水中コンクリート1の組成は骨材である海砂粒4の周囲
にセメント粒3とフライアッシュ粒5とが分布する。
If such materials are mixed with water and then applied underwater,
The composition of the underwater concrete 1 is that cement grains 3 and fly ash grains 5 are distributed around sea sand grains 4 which are aggregates.

この際、セメント粒3の粒径が前述のように大きく、フ
ライアッシュ粒5の粒径が小さいので、フライアッシュ
粒5は海砂粒4およびセメント粒3の隙間を充填するよ
うに分布することになる。
At this time, since the grain size of the cement grains 3 is large as described above and the grain size of the fly ash grains 5 is small, the fly ash grains 5 are distributed so as to fill the gaps between the sea sand grains 4 and the cement grains 3. Become.

そのため、これらのフライアッシュ粒5によって水中コ
ンクリート1の施工後のブリージングが生じにくくなる
Therefore, these fly ash particles 5 make it difficult for breathing to occur after construction of the underwater concrete 1.

水中コンクリート1におけるブリージングは、海砂等の
骨材を沈下させてコンクリートの組成を偏在させるとと
もに、水に接するコンクリートの表面をセメント過多の
状態とし、水によるセメント粒の流失の原因となるもの
である。
Breathing in underwater concrete 1 causes aggregates such as sea sand to sink and unevenly distribute the composition of the concrete, and also causes the surface of the concrete that comes into contact with water to be in a state of excessive cement, causing cement particles to be washed away by water. be.

この実施例によれば、フライアッシュ粒5を添加するこ
とによって、前述のようにブリージングを防止すること
ができるので、水中コンクリートのかかる不具合を解決
することができる。
According to this embodiment, by adding the fly ash particles 5, breathing can be prevented as described above, and this problem of underwater concrete can be solved.

本願発明者は、かかる観点に基づいて、以下のごとき実
験を行ない、前述の効果を奏することを確認した。
Based on this viewpoint, the inventor of the present application conducted the following experiments and confirmed that the above-mentioned effects were achieved.

なお、この実験に用いた、セメント、骨材、特殊混和剤
、高性能減水剤および分級フライアッシ二等の材料は、
前述と同一のものを使用し、下表A−Gの配合で同一形
状の供試体を作製した(以下において、各供試体の区別
を用する場合には、これらのA−Gを付して行なう)。
The materials used in this experiment, such as cement, aggregate, special admixture, high performance water reducer, and classified fly ash, were as follows:
Using the same materials as mentioned above, specimens of the same shape were prepared with the formulations shown in Table A-G below. ).

表 水 セメント F/A  骨材 減水剤 混和剤A  
250  450  50  1250  5   7
5%B  250  425  75  1250  
5   75%C2504001001250575χ
D  250  350  150 1250  5 
  75χg  275  500   g2.511
87.5 5   75%F  275  500  
125 1125  5   75%G  275  
500   0 1250  5  100%この表に
おいて、F/Aはフライアッシュを、骨材は海砂を、減
水剤は高性能減水剤を、また、混和剤は特殊混和剤を示
す、特殊混和剤の欄においては、標準添加量に対する添
加割合を表示し、その他の欄においては、単位をダラム
で示した。
Surface water Cement F/A Aggregate Water reducer Admixture A
250 450 50 1250 5 7
5%B 250 425 75 1250
5 75%C2504001001250575χ
D 250 350 150 1250 5
75χg 275 500 g2.511
87.5 5 75%F 275 500
125 1125 5 75%G 275
500 0 1250 5 100% In this table, F/A is fly ash, aggregate is sea sand, water reducer is high performance water reducer, and admixture is special admixture. , the addition ratio to the standard addition amount is shown, and in other columns, the unit is shown in durams.

なお、この実験での特殊混和剤の添加標準量は、7 k
g / m 3であり、表中に75%と表示されている
ものは、  5.25kg / m ”の割合で添加さ
れている。
The standard amount of special admixture added in this experiment was 7k
g/m3, and what is indicated as 75% in the table is added at a rate of 5.25 kg/m''.

この表において、配合例A−Dは、分級フライアッシュ
をセメントの一部として添加した場合であり、配合例E
およびFは、分級フライアッシュを細骨材の一部として
添加した場合である。なお、配合例Gは比較例としての
特殊混和剤の標準量を添加したものを示している。
In this table, mix examples A-D are cases where classified fly ash is added as part of the cement, and mix examples E
and F are cases where classified fly ash was added as part of the fine aggregate. In addition, Formulation Example G shows a comparative example in which a standard amount of a special admixture was added.

かかる配合割合の各コンクリート用材料を十分に混練し
た後、供試体を次のように作製した。
After thoroughly kneading each of the concrete materials having the above-mentioned mixing ratios, specimens were prepared as follows.

供試体の作製方法は、 「特殊水中コンクリート・マニ
ュアル」 (財団法人沿岸開発技術研究センター発行)
の付録−1特殊水中コンクリートの試験の1−2供試体
の作製方法を準用した。
The method for preparing the specimen is described in the "Special Underwater Concrete Manual" (published by the Coastal Development Technology Research Center).
The method for preparing the specimen in 1-2 of Appendix-1 Special Underwater Concrete Test was applied mutatis mutandis.

すなわち、縦70 an、  横50ロ、深さ30an
の容器の底に、モルタル用3連を枠を3個並べ、水面か
ら型枠上面までの深さが15anとなるように水を入れ
た。
That is, length 70an, width 50ro, depth 30an
At the bottom of the container, three mortar frames were lined up, and water was poured so that the depth from the water surface to the top of the mold was 15 an.

そして、モルタル用練り匙に溝線した材料を載せ、練り
匙の先端を水面につけ、材料を水中に自由落下させて直
方体(4anX 4C!OX 1 BG!l)の供試体
を作製した。
Then, the grooved material was placed on a mortar mixing spoon, the tip of the mixing spoon was placed on the water surface, and the material was allowed to fall freely into the water to produce a rectangular parallelepiped (4anX 4C!OX 1 BG!l) specimen.

なお、このとき締め固めは、通常の場合と同様行なって
いない。
At this time, compaction was not performed as in the normal case.

このようにして作製された各供試体を用いて、材令7 
B、  材令14 F3.  材令28日の圧縮強度を
測定し、材令7日の強度を100とした強度の伸びを得
た。
Using each specimen prepared in this way,
B. Material Regulation 14 F3. The compressive strength at 28 days of age was measured, and the elongation of the strength was obtained with the strength at 7 days of age as 100.

このようにして得た強度の伸びで、各供試体の評価を行
なうこととしたのは、水中コンクリートを用いた工事に
おいては、最終的な強度の大きさを重視するとともに、
工事が長期に渡るものが多く、経験的に強度の伸びが大
きいものほど最終的な強度が大であるからである。
The reason why we decided to evaluate each specimen based on the strength increase obtained in this way is that in construction using underwater concrete, we place emphasis on the final strength, and
This is because many construction projects take a long time, and experience shows that the greater the increase in strength, the greater the final strength.

なお、この圧縮強度試験は、JIS R5201に準じ
て行い、強度の伸びは第2図に示すとおりである。
Note that this compressive strength test was conducted according to JIS R5201, and the increase in strength is as shown in FIG. 2.

第3図によれば、セメントの一部として分級プライアッ
シュを添加した供試体A−Dの場合、何れも特殊混和剤
の添加量を標準量の75%としたにもかかわらず供試体
Gと同等以上の強度の伸びを確認することができる。
According to Figure 3, in the case of specimens A to D, in which classified ply ash was added as part of the cement, specimen G and specimen G were all mixed, even though the amount of special admixture added was 75% of the standard amount. It is possible to confirm that the strength has increased to the same level or higher.

また、細骨材の一部として分級フライアッシュを添加す
る供試体EおよびFの場合にも、何れも、特殊混和剤の
添加量を低減させたにもかかわらず、比較例である供試
体Gよりも大きな強度の伸びを示しており、分級フライ
アッシュの添加がコンクリートへの添加すべき特殊混和
剤量の軽減に寄与することを示している。
In addition, in the case of specimens E and F, in which classified fly ash is added as part of the fine aggregate, although the amount of special admixture added was reduced, specimen G, which is a comparative example, This shows that the addition of classified fly ash contributes to reducing the amount of special admixtures that need to be added to concrete.

この実験とともに、発明者は前記配合例による未硬化の
コンクリート用材料を用いて、水中コンクリートの濁り
の状況をあわせて観察した。
In addition to this experiment, the inventor also observed the turbidity of underwater concrete using the uncured concrete material according to the formulation example.

この濁りの観察方法は、容量2Yzのガラス製メスシリ
ンダ(内径7.7an、  高さ45.6(!11 )
に水を満たし、モルタル用練り匙に混練した材料を載せ
、練り匙の先端を水面につけ、水中に材料を自由落下さ
せた時の濁りや分離の様子を目視観察した。
The method for observing this turbidity is to use a glass measuring cylinder with a capacity of 2 Yz (inner diameter 7.7 an, height 45.6 (!11)
The mortar was filled with water, the kneaded materials were placed on a mortar mixing spoon, the tip of the mixing spoon was placed on the water surface, and the material was allowed to fall freely into the water, and the appearance of turbidity and separation was visually observed.

その結果は、第4図に示すとおりであるが、濁りの判断
基準は次のように定めた。
The results are shown in Figure 4, and the criteria for determining turbidity were determined as follows.

極大: メスシリンダの向こう側の目盛りが全体に渡っ
て全く見えない場合。
Maximum: When the scale on the other side of the graduated cylinder cannot be seen at all.

大ニ メスシリンダの向こう側の目盛りが全体に見えな
いが、下部に比べて上部の濁りが少ない場合。
If the scale on the other side of the female cylinder cannot be seen completely, but the upper part is less cloudy than the lower part.

中ニ メスシリンダの向こう側の目盛りがわずかに見え
る場合。
If the scale on the other side of the middle cylinder is slightly visible.

小: メスシリンダの向こう側の目盛りがよく見える場
合。
Small: When the scale on the other side of the graduated cylinder is clearly visible.

極/1薯 メスシリンダの向こう側の目盛りが鮮明に見
える場合。
Poles/1 yam When the scale on the other side of the graduated cylinder is clearly visible.

この濁りの観察結果である第4図によれば、分級プライ
アッシュをセメントの一部として添加した場合、配合割
合が前記A、  Bの場合には、比較例Gと同等である
が、配合割合が前記C,Dの場合には濁りが大きくなる
According to Fig. 4, which shows the observation results of this turbidity, when classified ply ash is added as a part of cement, the mixing ratios A and B are the same as Comparative Example G, but the mixing ratio is In the case of C and D, the turbidity becomes large.

この濁りの観点から、分級フライアッシュをセメントの
一部として添加する場合、供試体Bの分級プライアッシ
ュの添加量と供試体Cの分級プライアッシュの添加量と
の間に添加に適する限度があるものと予想される。
In view of this turbidity, when adding classified fly ash as part of cement, there is a limit between the amount of classified fly ash added in specimen B and the amount of classified fly ash added in specimen C. It is expected that

他方、分級フライアッシュを細骨材の一部として添加す
る場合には、配合割合E、Fの何れの場合も、比較例G
と同等である。
On the other hand, when classified fly ash is added as part of the fine aggregate, Comparative Example G
is equivalent to

これらの実験結果から、水中コンクリートに分級フライ
アッシュを添加することによって、特殊混和剤の添加量
を少なくすることができることは明らかであり、高価な
特殊混和剤の使用量が軽減するから、工事材料費用を軽
減することができる。
From these experimental results, it is clear that by adding classified fly ash to underwater concrete, it is possible to reduce the amount of special admixtures added, and because the amount of expensive special admixtures used is reduced, it is possible to reduce the amount of special admixtures used. Costs can be reduced.

なお、以上説明した実施例においては、特殊混和剤の添
加量を標準量の75%としたものであるが、この発明は
これ以外の割合に特殊混和剤の添加量を定めて低減させ
ても実施できるのはいうまでもない。
In the embodiments described above, the amount of the special admixture added was set to 75% of the standard amount, but the present invention also allows the amount of the special admixture to be reduced by setting the amount other than this. Needless to say, it can be implemented.

(発明の効果) 以上説明したように、この発明によれば、セメント粒の
粒径より小さい粒径に選別されたフライアッシュを添加
するので、この水中コンクリート用材料を水中に施工後
、セメント粒の間に確実に粒径の小さいフライアッシュ
を介在させ、これによって効率的にブリージングを抑制
することができる。
(Effects of the Invention) As explained above, according to the present invention, since fly ash selected to have a particle size smaller than that of cement particles is added, the cement particles are By reliably interposing fly ash with a small particle size between the particles, breathing can be effectively suppressed.

その結果、水中でのコンクリートからのセメント粒の流
失が軽減することによって水中コンクリートの水中分離
抵抗性が高まり、コンクリートの組織が不均一となるの
を防止できるので、強度等の性能を維持しつつ従来に比
べて特殊混和剤の添加量を軽減することができる。
As a result, by reducing the loss of cement particles from the concrete underwater, the underwater separation resistance of the underwater concrete increases, and it is possible to prevent the structure of the concrete from becoming uneven, thereby maintaining performance such as strength. The amount of special admixture added can be reduced compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例に関し、第1図は水中コンクリ
ートの断面路間、第2図は分級フライアッシュの粒度分
布図、第3図は各供試体の強度の伸びを示すグラフ、第
4図は各供試体の濁りの観察結果を示すグラフである。 第27 1; 水中コンクリート、 2; 水、3;セメント粒
、4;海砂粒(骨材)、5; フライアッシュ私 龜 #I:(ドm)
The drawings relate to embodiments of the present invention; Fig. 1 shows a cross-section of underwater concrete, Fig. 2 shows a particle size distribution diagram of classified fly ash, Fig. 3 shows a graph showing the strength growth of each specimen, and Fig. 4 shows a graph showing the strength growth of each specimen. is a graph showing the observation results of turbidity of each specimen. No. 27 1; Underwater concrete, 2; Water, 3; Cement grains, 4; Sea sand grains (aggregate), 5; Fly ash private body #I: (Dom)

Claims (1)

【特許請求の範囲】[Claims] セメントと骨材と特殊混和剤と高性能減水剤と水とを混
練した水中コンクリート用材料において、セメント粒の
粒径より小さい粒径に選別されたフライアッシュを添加
したことを特徴とする水中コンクリート用材料。
An underwater concrete material made by kneading cement, aggregate, a special admixture, a high-performance water reducing agent, and water, which is characterized by adding fly ash selected to have a particle size smaller than that of cement grains. Materials for use.
JP1275633A 1989-10-23 1989-10-23 Material for underwater concrete Granted JPH03137046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275633A JPH03137046A (en) 1989-10-23 1989-10-23 Material for underwater concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275633A JPH03137046A (en) 1989-10-23 1989-10-23 Material for underwater concrete

Publications (2)

Publication Number Publication Date
JPH03137046A true JPH03137046A (en) 1991-06-11
JPH0567580B2 JPH0567580B2 (en) 1993-09-27

Family

ID=17558180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275633A Granted JPH03137046A (en) 1989-10-23 1989-10-23 Material for underwater concrete

Country Status (1)

Country Link
JP (1) JPH03137046A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071130A (en) * 2001-03-03 2002-09-12 이미경 A cement admixture composite using fly-ash
JP2003012362A (en) * 2001-06-29 2003-01-15 Onoda Chemico Co Ltd Super quick hardening underwater non-segregating cement composition and method of manufacturing underwater concrete using the same
CN102491688A (en) * 2011-11-16 2012-06-13 北京科技大学 Concrete material for pipe pile

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959124A (en) * 1972-10-11 1974-06-08
JPH01108140A (en) * 1987-10-20 1989-04-25 Denki Kagaku Kogyo Kk Material for cement milk construction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959124A (en) * 1972-10-11 1974-06-08
JPH01108140A (en) * 1987-10-20 1989-04-25 Denki Kagaku Kogyo Kk Material for cement milk construction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071130A (en) * 2001-03-03 2002-09-12 이미경 A cement admixture composite using fly-ash
JP2003012362A (en) * 2001-06-29 2003-01-15 Onoda Chemico Co Ltd Super quick hardening underwater non-segregating cement composition and method of manufacturing underwater concrete using the same
CN102491688A (en) * 2011-11-16 2012-06-13 北京科技大学 Concrete material for pipe pile

Also Published As

Publication number Publication date
JPH0567580B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
Zhu et al. Investigation of using recycled powder from waste of clay bricks and cement solids in reactive powder concrete
Kwan et al. Adding fly ash microsphere to improve packing density, flowability and strength of cement paste
Kondraivendhan et al. Flow behavior and strength for fly ash blended cement paste and mortar
Łaźniewska-Piekarczyk The influence of admixtures type on the air-voids parameters of non-air-entrained and air-entrained high performance SCC
Kuli et al. The use of nano-silica for improving mechanical properties of hardened cement paste
Ahmad Production of high-performance silica fume concrete
Sonebi et al. Effect of mixture composition on relative strength of highly flowable underwater concrete
Khalooee et al. Tackling the issues of self‐compacting concrete containing high volume of waste glass aggregate by zeolite
Tao et al. Effect of limestone powder substitution on fresh and hardened properties of 3D printable mortar
JP2930215B2 (en) Cement composition for watertight concrete and method for producing the same
Geraldo et al. Self-healing concrete with crystalline admixture made with different cement content
JPH03137046A (en) Material for underwater concrete
Bozorgmehr Nia et al. Combined Effect of Natural Zeolite and Limestone Powder on the Rheological and Mechanical Behavior Self-Compacting Concrete (SCC) and Mortars (SCM)
Berredjem et al. Influence of recycled sand containing fillers on the rheological and mechanical properties of masonry mortars
CN116102314A (en) Concrete with red mud and limestone powder as auxiliary cementing materials and preparation method thereof
Li et al. Effect of sand content on properties of self-consolidating, high-performance cementitious mortar
JP2017160082A (en) Fine aggregate having resin hollow microsphere, concrete using the same, and method for producing concrete
JP4984112B2 (en) Cement-based filling solidification material
JP2002003264A (en) Hydraulic compound
CN114605118B (en) Seawater sea sand concrete and matching proportion design method and preparation method thereof
Liang et al. Experimental investigation of the influence of cellulose ether on the floating of rubber particles in mortar
JPH0780695B2 (en) Hydraulic cement
Ma et al. Study on the mechanical properties and mechanism of cement concrete based on interface modification
Al-Kamal et al. Modification of mechanical properties of cement mortar by adding zinc oxide nanoparticles
Ali et al. Useful and practical hints on the process of producing high-strength concrete