JPH0313604A - Seamless expansion joint structure between bridge slabs - Google Patents

Seamless expansion joint structure between bridge slabs

Info

Publication number
JPH0313604A
JPH0313604A JP14588889A JP14588889A JPH0313604A JP H0313604 A JPH0313604 A JP H0313604A JP 14588889 A JP14588889 A JP 14588889A JP 14588889 A JP14588889 A JP 14588889A JP H0313604 A JPH0313604 A JP H0313604A
Authority
JP
Japan
Prior art keywords
slabs
joint structure
bridge
slab
expansion joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14588889A
Other languages
Japanese (ja)
Other versions
JP2738025B2 (en
Inventor
Shiyouichirou Mutou
武藤 稱一郎
Hideo Katayama
片山 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOMEN CONSTR KK
Tomen Construction Co Ltd
Original Assignee
TOOMEN CONSTR KK
Tomen Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOMEN CONSTR KK, Tomen Construction Co Ltd filed Critical TOOMEN CONSTR KK
Priority to JP1145888A priority Critical patent/JP2738025B2/en
Publication of JPH0313604A publication Critical patent/JPH0313604A/en
Application granted granted Critical
Publication of JP2738025B2 publication Critical patent/JP2738025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of cracking and breakage of elastic material and floating and cracking of an asphalt concrete paving portion by separating a slab surface from the lower surface of an elastic material layer having wear resistance, which is disposed above the slab surface in such a manner as to slide by a separation sheet. CONSTITUTION:A Slide plate 5 is placed on a resin impregnated portion 4 in such a manner as to freely slide extending over a seam gap 3 between concrete slabs 2, 2 of a bridge, and two, upper and lower layers of elastic resin mortars 71, 72 are placed on the slabs 2, 2, the impregnated-portions 4, 4 and the plate, 5 through a separation sheet 6. At this time, the mortar 7 is fixed to be integral with the slabs 2, 2 by wedge-shaped anchoring elements 8, 8 outside the impregnated portion 4. Thus, the occurrence of cracking and breakage of elastic material 7 of a local portion right above a seam gap l is eliminated, and the expansion stress is cut off in view of stress from an asphalt concrete paving portion 9 to prevent floating and cracking of the portion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一般道路、高速道路等の橋梁におけるスラブ間
の継目部分に施工される継目なし伸縮継手構造に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a seamless expansion joint structure constructed at a joint between slabs in a bridge such as a general road or an expressway.

(従来の技術) 従来から高速道路等のlil!梁スラジス91間部分に
は、温度変化に起因する橋梁スラブの伸縮を吸収せしめ
るなめに、相互に突出して噛み合う櫛歯状の伸縮継手(
フィンガージヨイント)やゴム状弾性体からなる伸縮継
手等が用いられている。
(Prior art) lil! has been used on expressways, etc. Between the beam slugs 91, there are comb-like expansion joints that protrude and engage with each other in order to absorb the expansion and contraction of the bridge slab caused by temperature changes.
Finger joints) and expansion joints made of rubber-like elastic bodies are used.

(発明が解決しようとする課題) 上記の従来の橋梁伸縮継手は多くの利点を有するものの
、その構造に起因し取付部が破壊され易く、二次的に取
付部廻りのスラブまで欠損の影響を受けること、車両が
継手部分上を通過する際に不快な振動が発生すること、
また石、その他異物が道路から継目間の空隙部を下方へ
落下したり、砂塵や雨水等が浸入し易いこと等の問題を
有する。
(Problem to be solved by the invention) Although the conventional bridge expansion joint described above has many advantages, due to its structure, the attachment part is easily destroyed, and the slab around the attachment part is secondarily affected by the damage. and unpleasant vibrations that occur when a vehicle passes over the joint.
Further, there are other problems such as stones and other foreign objects falling down from the road through the gaps between the joints, and dust, rainwater, etc. easily entering.

そして、継手部が損傷した場合にはその補修に手間がか
かり、長時間にわたって交通を遮断しなければならない
という問題があった。
Furthermore, if the joint is damaged, it takes time and effort to repair it, and there is a problem in that traffic must be shut off for a long period of time.

さらに、従来のゴム状弾性体では通行車両の荷重に対す
る耐久力が低く、継手寿命が短い問題を有する。
Furthermore, conventional rubber-like elastic bodies have a problem of low durability against the load of passing vehicles and a short joint life.

(問題点を解決するための手段及び作用)本発明は上記
の問題点の解決を目的とするものであり、すなわち 橋
梁スラブ間の継目構造において、(a)両側の橋梁から
延出され継目間隙を隔てて対向する両側のスラブ、(b
)前記の継目間隙をまたぎ両側のスラブ面に対し滑動自
在に架設載置された中央のスライドプレート、(c)前
記スライドプレートの後方にあって、下面がスラブ面に
接着さt〔、背面が舗装コンクリート部に接着されてな
る両側に設けられた碇着体、(d)前記スライドプレー
ト及びスラブ露出部の表面に被覆された隔離シート、(
e)前記隔離シートの上に打設され、両端が少なくとも
碇着体前面に接着されてなり、かつ表面が舗装コンクリ
ート面と面一に設けられてなる耐摩耗性を有する伸縮性
材料層、及び(f)前記耐摩耗性を有する伸縮性材料層
の外側に面一になるように打設された舗装コンクリート
部、とから構成されたことを特徴とする橋梁スラブ間の
継目なし伸縮継手構造である。
(Means and effects for solving the problems) The present invention aims to solve the above-mentioned problems, namely: In a joint structure between bridge slabs, (a) a joint gap extending from both bridges; Slabs on both sides facing each other across (b
) A central slide plate mounted on the slab surface on both sides across the joint gap so as to be slidable; (d) an isolation sheet coated on the surface of the exposed slide plate and the exposed slab;
e) a wear-resistant stretchable material layer cast on the isolation sheet, both ends of which are adhered to at least the front surface of the anchorage body, and whose surface is flush with the paved concrete surface; (f) a paving concrete section cast flush with the outside of the abrasion-resistant elastic material layer; and a seamless expansion joint structure between bridge slabs. be.

なお上記において、スラブとは、通常i梁道路床版とし
て採用されているコンクリートスラブ、鋼板スラブ等を
意味する。
Note that in the above, the slab means a concrete slab, a steel plate slab, etc., which are usually employed as an I-beam road slab.

また、舗装コンクリートとは、アスファルトコンクリー
ト(アスコン)、道路表層用コンクリート等の道路表層
舗装材層を意味する。
Furthermore, the term "paving concrete" refers to a road surface paving material layer such as asphalt concrete (ASCON) or road surface concrete.

上記においては、使用される耐摩耗性を有する伸縮性材
料としては、下方のスラブ素材よりも伸縮性の大きな材
料であればよいが、伸縮性を有する樹脂モルタルが好適
に使用され、またそれらは上下複数層で構成し、上部層
は舗装コンクリート材に近い耐摩耗性のものとし、下部
層は上部層より軟かいゴム弾性を有するものとすること
が好ましい。
In the above, the wear-resistant stretchable material used may be any material with greater stretchability than the lower slab material, but stretchable resin mortar is preferably used; Preferably, it is composed of a plurality of upper and lower layers, with the upper layer having wear resistance similar to that of paving concrete, and the lower layer having softer rubber elasticity than the upper layer.

また碇着体は、前方部が光重に削がれた楔状体として、
耐1撃耗性を有する材料層との接触(接着)表面積を大
きくすること・が好ましい。
In addition, the anchor body is a wedge-shaped body with the front part shaved off by light weight.
It is preferable to increase the contact (adhesion) surface area with the material layer having abrasion resistance.

−mの道路Pt梁においては、第1図に図示のごとく、
季節、経皮等の外気温度変化により、橋梁のスラブ2.
2は膨張、収縮する結果、それらスラブの継目隙間部分
の長さrは、1枚のスラブ素材の膨張f糸数と温度差に
比例し総合された分だけ変化するが、通常数cmの変化
量となり、かなりの長さ変化を生じる。
-m road Pt beam, as shown in Fig. 1,
Due to seasonal and skin temperature changes, the bridge slab 2.
As a result of expansion and contraction of 2, the length r of the joint gap between these slabs changes in proportion to the expansion f of one slab material and the temperature difference, and changes by the total amount, but usually the amount of change is several cm. This results in a considerable length change.

仮に、継目部分のスラブ上面に伸縮性材料が直接打設さ
れて接着している場合には、温度変化に伴い、スラブ継
目上の伸縮性材料部は、スラブ間の隙間長さeの変化分
くΔl)が、短い隙間長さ!上の伸縮性材料部に伸縮応
力として直接にかかり、距Mlの短い部分で伸縮性材料
が#J縮しなければならない結果、被部に亀裂が生じ、
あるいは切断か生じる。
If a stretchable material is directly cast and bonded to the upper surface of the slabs at the joint, the stretchable material at the slab joint will change due to the change in the gap length e between the slabs due to temperature changes. Δl) is the short gap length! As a result, the stretchable material is directly applied as stretching stress to the upper stretchable material part, and the stretchable material has to contract #J in the short part of the distance Ml, resulting in cracks in the covered part.
Or amputation occurs.

本発明では、特に隔離シートによりスラブ面とその上方
の伸縮性材料層下面とを滑動可能に隔離した構成とした
ため、温度変化によりスラブ2゜2が膨張、収縮して生
じる、両側のスラブ先端の継目隙間部分における長さl
の変化分Δl(1枚のスラブ素材の膨張係数と温度差の
#!会突変化分は、伸縮性材料全体の長さL部分で分散
吸収される。
In the present invention, the slab surface and the lower surface of the stretchable material layer above it are slidably isolated by an isolation sheet, so that the ends of the slabs on both sides, which are caused by expansion and contraction of the slabs 2 and 2 due to temperature changes, are removed. Length l at seam gap
The change amount Δl (#! of the expansion coefficient and temperature difference of one slab material is dispersed and absorbed in the length L portion of the entire stretchable material.

その結果、継目隙間部分lの直上局部の伸縮性材料部に
大きな伸縮応力がかかる問題は無くなり、よって該局部
の伸縮性材料に亀裂、切断が発生する危険は発生しない
As a result, there is no longer a problem in which a large elastic stress is applied to the stretchable material in the local area directly above the joint gap l, and there is no risk of cracking or cutting the stretchable material in the local area.

また、継目部分の伸縮により伸縮性樹脂材料に発生する
伸縮応力は、スラブ面に接着された碇着体を介して両側
のスラブに伝達され、その外側の打設舗装コンクリート
部とは応力的に断絶されるため、伸縮性材料の温度変化
等により生じる伸縮応力が舗装コンクリートを浮き上が
らせたり、それにひび割れを生じさせたりする結果とは
ならない。
In addition, the expansion and contraction stress generated in the stretchable resin material due to the expansion and contraction of the joint part is transmitted to the slabs on both sides via the anchoring bodies adhered to the slab surface, and the stress is Because of the disconnection, elastic stresses caused by temperature changes in the elastic material, etc., do not result in the paving concrete lifting or cracking.

(実施例) 以下に本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1図は本発明実施例の橋梁スラブ間の継目なし伸縮継
手の構造を示す一部断面説明図である。
FIG. 1 is a partially cross-sectional explanatory diagram showing the structure of a seamless expansion joint between bridge slabs according to an embodiment of the present invention.

図中、■はPi梁スス91間継目なし伸縮継手、2は高
速道路等の橋梁のコンクリートスラブ(床版)、3は継
目間隙1−4は樹脂含浸部、5はスライドプレート、6
は隔離シート、7は伸縮性樹脂モルタル(7,は上部樹
脂モルタル、72は下部樹脂モルタル)、8は碇着体、
9はアスコン舗装部で烏ろ。
In the figure, ■ is a seamless expansion joint between Pi beam soot 91, 2 is a concrete slab (floor slab) of a bridge such as an expressway, 3 is a joint gap 1-4 is a resin impregnated part, 5 is a slide plate, 6
is an isolation sheet, 7 is an elastic resin mortar (7, is an upper resin mortar, 72 is a lower resin mortar), 8 is an anchored body,
9 is Karasuro at Ascon Pavement Department.

第1図において、両側のスラブ2.2は両側の橋梁から
延出され、継目間隙3(p)を隔てて同じ高さで対向す
る。樹脂含浸部4.4は樹脂モノマー〈メチルメタクリ
レート(MMA)モノマー〉を含浸、硬化させて形成し
たコンクリートスラブ強化層であるが、必ずしも含浸層
である必要はなく金属、プラスチック、セラミック(滑
性面を有する)等の板を積層固着したものであってもよ
い。
In FIG. 1, the slabs 2.2 on both sides extend from the bridges on both sides and face each other at the same height across a seam gap 3(p). The resin-impregnated part 4.4 is a concrete slab reinforcement layer formed by impregnating and curing a resin monomer (methyl methacrylate (MMA) monomer), but it does not necessarily have to be an impregnated layer and can be applied to metals, plastics, ceramics (slip surface It may also be made by laminating and fixing plates such as

また、継目間隙3をまたぎ、樹脂含浸部4.4に対して
滑動自在にスライドプレート5が!!1架設される。前
記の両側のスラブ2.2及び樹脂含浸部4.4並びに中
央のスライドプレート5の上部には、隔離シート6を介
して、上下2層の伸縮性樹脂モルタル7、.72が打設
される。
Furthermore, a slide plate 5 is slidably slidable on the resin-impregnated portion 4.4 across the joint gap 3! ! 1 will be erected. Upper and lower layers of elastic resin mortar 7, . 72 is poured.

該樹脂モルタルはMMA樹脂を主材とし、その池バイン
ダ及び無機フィラーからなるものが好ましい、上層は無
機フィラーを多量配合し、アスコン舗装材と同様の耐摩
耗性を付与することが好ましい。下層はバインダとして
ゴム弾性を有するものを用い、無機バインダ量を少なく
して、粘弾性のあるものとすることが好ましい。
The resin mortar is preferably composed of an MMA resin as a main material, a binder and an inorganic filler, and the upper layer preferably contains a large amount of inorganic filler to impart wear resistance similar to that of Ascon paving material. It is preferable that the lower layer has rubber elasticity as a binder, and the amount of inorganic binder is reduced to make it viscoelastic.

前記の樹脂含浸部4.4R出部分及びスライドプレート
5の上面部は隔離シート6で被慢されるが、該シートと
しては、ポリエチレンシート、テフロンシートなどのよ
うな滑性面を有する(接着防止層)ものが好ましい。
The protruding portion of the resin-impregnated portion 4.4R and the upper surface of the slide plate 5 are covered with an isolation sheet 6, which has a slippery surface (to prevent adhesion) such as a polyethylene sheet or a Teflon sheet. layer) is preferred.

これによって、上下2層の樹脂モルタル772が温度変
化に伴う伸縮時に、前記の樹脂含浸部4.4及びスライ
ドプレート5の上を容易に摺動、滑動する。さらに、仮
に上方からの浸水があっても、下部のスライドプレート
5、コンクリートスラブ2を浸水から防護する6さらに
また、伸縮性樹脂モルタルの打設作業を容易なものとす
る。
This allows the upper and lower two layers of resin mortar 772 to easily slide over the resin-impregnated portion 4.4 and the slide plate 5 when expanding and contracting due to temperature changes. Furthermore, even if water intrudes from above, the lower slide plate 5 and concrete slab 2 are protected from ingress 6, and furthermore, the work of placing the elastic resin mortar is facilitated.

なお、スライドプレート5は両面平滑な金属、プラスチ
ック、セラミック等の板であって、下部樹脂モルタル7
□が継目間隙3に落ち込むのを防止し、かつ補強継目間
隙の強化に役立つ。
The slide plate 5 is a plate made of metal, plastic, ceramic, etc. that is smooth on both sides, and the lower resin mortar 7
This prevents □ from falling into the joint gap 3 and helps strengthen the reinforced joint gap.

また、上下2層の樹脂モルタル71.7□は、両側のス
ラブ2.2、に対しては樹脂含浸部4.4の外側の碇着
体8.8で一体に固着される。
Further, the upper and lower two layers of resin mortar 71.7□ are integrally fixed to the slabs 2.2 on both sides by anchoring bodies 8.8 on the outside of the resin-impregnated portion 4.4.

上下2層の樹脂モルタル?+ 、72に発生する伸縮応
力は碇着体8.8を介して両側のスラブ2.2に伝えら
れる。
Two layers of resin mortar, top and bottom? +, 72 is transmitted to the slabs 2.2 on both sides via the anchoring bodies 8.8.

碇着体8.8は樹脂モルタル、樹脂コンクリド、金属、
プラスチック、セラミック、コンクリド等よりなる現場
打ち又は既成形品で、スラブコンクリートと実用上同程
度、の強度及び剛性を有するが、スラブコンクリート又
は鋼製スラブに接着あるいは、ボルト、アンカー又は爆
接その他により固着される。
Anchor body 8.8 is made of resin mortar, resin concrete, metal,
A cast-in-place or pre-formed product made of plastic, ceramic, concrete, etc. that has practically the same strength and rigidity as slab concrete, but cannot be bonded to slab concrete or steel slabs, or bonded with bolts, anchors, explosive welding, etc. Fixed.

碇着体8,8の形状は図示のごとき楔形が好ましく、そ
の大きな表面積によって樹脂モルタル7.72にかかる
収縮、圧縮応力を効果的に吸収し、かつ樹脂モルタルと
の接着力も強大なものとなし得る。
The shape of the anchoring bodies 8, 8 is preferably wedge-shaped as shown in the figure, and its large surface area effectively absorbs the shrinkage and compressive stress applied to the resin mortar 7.72, and also provides strong adhesive strength with the resin mortar. obtain.

また碇着体8.8が樹脂モルタル製の場合は、同系の浸
透性樹脂ブライマー及びスラブ2.2の浸透性樹脂含浸
層を介してスラブ2.2に強固に接着結合される。なお
、結合に埋込ボルトやアンカー等を併用することもある
If the anchoring body 8.8 is made of resin mortar, it is firmly adhesively bonded to the slab 2.2 via the same type of permeable resin brimer and the permeable resin impregnated layer of the slab 2.2. Note that embedded bolts, anchors, etc. may also be used for connection.

上記のごとく碇着体8.8は樹脂モルタル7に対して十
分な表面積をもって(前面が削がれた楔形となって)固
着しているので、樹脂モルタル7の歪量に対して実用上
問題がない。
As mentioned above, the anchoring body 8.8 is fixed to the resin mortar 7 with a sufficient surface area (in a wedge shape with a shaved front surface), so there is a practical problem with the amount of distortion of the resin mortar 7. There is no.

上部樹脂モルタル71は下部樹脂モルタル72より高い
弾性率を有しているが、スラブ2.2との碇着体8.8
は勾配(楔形)をもって結合して、上部伸縮区間長を下
部伸縮区間長より広幅にしているから、継目間隙3の伸
1a量を容易に吸収する。
The upper resin mortar 71 has a higher modulus of elasticity than the lower resin mortar 72, but the anchoring body 8.8 with the slab 2.2
are joined with a slope (wedge shape), and the length of the upper elastic section is made wider than the length of the lower elastic section, so that the amount of elongation 1a in the joint gap 3 can be easily absorbed.

また、上部樹脂モルタル71は車輪の荷重に充分耐えら
れる強度とアスコン舗装9.9に近い耐磨耗性を有する
ものとすることが好ましい、そしてまた、下部樹脂モル
タル72は上部樹脂モルタル7、に較べて碇着体8.8
が接近し、下部伸縮区間長は短くなっているが、弾性率
を低くして継目間隙3の伸縮量に十分対応して伸縮でき
る軟らかさとしである。
Further, it is preferable that the upper resin mortar 71 has sufficient strength to withstand the load of the wheels and abrasion resistance close to that of Ascon pavement 9.9, and the lower resin mortar 72 has the same strength as the upper resin mortar 7. In comparison, the anchorage is 8.8.
are approaching, and the length of the lower elastic section is shortened, but the elastic modulus is lowered so that it is soft enough to expand and contract sufficiently to correspond to the amount of expansion and contraction of the seam gap 3.

なお、下部モルタル7、は車輪の荷重により無理な変形
や破壊を生じない強度のものとする。
Note that the lower mortar 7 is strong enough to prevent excessive deformation or destruction due to the load of the wheels.

以上のごとく2層の樹脂モルタル?、、7.は粘弾性が
あり、強靭であって、複層で上部より下部が軟かいゴム
弾性体であって、上部と下部の伸縮量に差をつける構造
を特徴としである。
Two layers of resin mortar as described above? ,,7. It is viscoelastic and strong, and is a multi-layer rubber elastic body whose lower part is softer than the upper part, and is characterized by a structure that differentiates the amount of expansion and contraction between the upper and lower parts.

次に、上記各構成部の材料として好適な材質、組成例を
下記に挙げる。
Next, examples of materials and compositions suitable for the above-mentioned constituent parts are listed below.

樹脂含浸部4の樹脂は前記のごとき常温硬IL型低粘性
樹脂が好ましく、例えばMMAI脂モノマーが挙げられ
、これはスラブコンクリートの強度と防水性の向上を図
ると共に、碇着体8との接着性を高める役割を果たす。
The resin in the resin-impregnated portion 4 is preferably an IL-type low-viscosity resin that hardens at room temperature as described above, such as MMAI fat monomer. It plays a role in enhancing sexuality.

隔離シート6としては、厚さ0.1mm〜3.OI程度
のポリエチレンシート、テフロンシート、あるいはMM
A樹脂と可塑性樹脂を主成分とする粘弾性シート等が好
ましく、例えばMMA樹脂と可塑性樹脂を主成分とする
樹脂(R)20〜80%とフィラーとしての炭酸カルシ
ウム粉微粉(F)80〜20%からなる混合物で造られ
たものが挙げられる。
The isolation sheet 6 has a thickness of 0.1 mm to 3.0 mm. OI grade polyethylene sheet, Teflon sheet, or MM
A viscoelastic sheet etc. whose main components are A resin and a plastic resin are preferable, for example, a resin (R) whose main components are an MMA resin and a plastic resin (R) 20 to 80% and a calcium carbonate powder fine powder (F) 80 to 20% as a filler. Examples include those made from a mixture consisting of %.

碇着体8としては、樹脂コンクリートが好ましく、特に
粘弾性樹脂コンクリートが好ましく、例えば、MMAを
主成分とする樹脂及び可塑性樹脂とを混合した常温重合
型樹脂(R)、けい石、石灰石、鉱滓等を主成分とする
粒径20s/m以下のフィラー(F)、及び粘弾性樹脂
固形物のチップ(粒径5〜50um)(C)を混きした
常温重き型樹脂コンクリートが挙げられる。
As the anchoring body 8, resin concrete is preferable, and viscoelastic resin concrete is particularly preferable, such as a cold polymerization type resin (R) mixed with a resin mainly composed of MMA and a plastic resin, silica stone, limestone, ore slag. Examples include room-temperature heavy-duty resin concrete in which a filler (F) with a particle size of 20 s/m or less and having a particle size of 20 s/m or less and (C) chips of a viscoelastic resin solid material (particle size of 5 to 50 um) (C) are mixed.

伸縮性樹脂モルタルとしては、MMAwA脂を主材とし
、その他バインダ及び無機フィラーからなるものが好ま
しい。上層は無機フィラーを多量配合し、アスコン舗装
材と同様の耐R粍性を付与することが好ましい。下層は
バインダとしてゴノ、弾性を有するものを用い、無機バ
インダ量を少なくして、粘弾性のあるものとすることが
好ましい。
Preferably, the stretchable resin mortar is made of MMAwA resin as a main material and also contains a binder and an inorganic filler. It is preferable that the upper layer contains a large amount of inorganic filler to impart the same R resistance as that of the Ascon paving material. For the lower layer, it is preferable to use a binder having elasticity and to reduce the amount of inorganic binder to make it viscoelastic.

例えば、MMAを主成分とする樹脂及び可塑性樹脂とを
混合した常温重合型樹脂(R)、けい石、石灰石、鉱滓
等を主成分とする粒径20*/m以下のフィラー(F)
、及び粘弾性樹脂固形物(無加硫斤成ゴム、天然ゴム等
)の粒径5〜50umのチップ(C)を混きした常温重
合型樹脂コンクリートが挙げられ、Rが40〜8%、F
が60〜92%、Cが50%以下からなるものが挙げら
れる。
For example, a room temperature polymerizable resin (R) which is a mixture of a resin whose main component is MMA and a plastic resin, a filler (F) whose main component is silica, limestone, slag, etc. and whose particle size is 20*/m or less.
, and room-temperature polymerization type resin concrete mixed with chips (C) of viscoelastic resin solids (unvulcanized synthetic rubber, natural rubber, etc.) having a particle size of 5 to 50 um, R of 40 to 8%, F
60 to 92% and C 50% or less.

該伸縮性樹脂モルタルにおいて、■Rが上記範囲−E限
量より多いと、耐流動性が小さくなり、柔らかすぎにな
ってしまい、上記範囲下限量より少なくなると、粘性が
低くなり、追随性がなくなる。
In the stretchable resin mortar, if R is more than the above range-E limit, the flow resistance will be low and it will become too soft, and if it is less than the lower limit of the above range, the viscosity will be low and there will be no followability. .

■Fが上記上限範囲量よりも多いと、固くかつ脆くなっ
て粘性が低くなり、追随性がなくなる。
(2) If the amount of F is greater than the above upper limit range, it will become hard and brittle, resulting in low viscosity and loss of followability.

またFが上限量よりも少なくなると、耐流動性が小さく
なり変形し易くなってしまう。
Furthermore, if the amount of F is less than the upper limit, the flow resistance will be reduced and the material will be easily deformed.

■Cが上限量よりも多いと、脆くなってしまう。■If the amount of C is more than the upper limit, it will become brittle.

なお、アスコン舗装部9.9は上下2層の樹脂モルタル
7、.72の外側に面一になるよう打設される。アスコ
ン舗装部9.9が厚い場合は3層以上の伸縮性樹脂モル
タルの組み合わせとすることもできる。
The ascon pavement section 9.9 has two upper and lower layers of resin mortar 7, . It is poured so that it is flush with the outside of 72. If the ascon pavement portion 9.9 is thick, a combination of three or more layers of elastic resin mortar may be used.

以上より、継目部分の伸縮により上下2層の樹脂モルタ
ル7、.7.に発生する応力は、碇着体8.8を介して
両側のスラブ2.2に伝達され、その外側に打設された
アスコン舗装部9.9とは応力的に断絶される。
From the above, the upper and lower two layers of resin mortar 7, . 7. The stress generated in the slab 2.2 is transmitted to the slab 2.2 on both sides via the anchorage 8.8, and is disconnected from the slab 2.2 placed on the outer side of the slab 2.2.

以上実施例においては耐摩耗性材料として、主に伸縮性
樹脂モルタルを打設してなる例について説明したが、こ
れを現場打設によらず、特に工場等においてプレキャス
トにより製造したものを、現場に撮大して本発明の橋梁
スラブ間の継目なし伸縮継手1′lI造の製作に適用す
ることは非常に有利である。すなわち、両側碇着体間の
隔離シート上の凹所に嵌装載置できる形状、寸法のプレ
キャスト板を現場l\搬入し、碇着体前面表面部に接着
剤を塗布して該所に嵌挿することによって、碇着体前面
表面部にプレキャスト板の両側端面を接着させるだけで
作業は完了する。よってこの場合は製作作業時間が大幅
に短縮でき、樹脂モルタルによる場きが1個所1〜2時
間であるのに対して、その2分の1以下の短時間で完了
することができる。
In the above examples, an example in which stretchable resin mortar was mainly cast as the wear-resistant material was explained. In particular, it is very advantageous to apply the present invention to the fabrication of seamless expansion joints between bridge slabs. That is, a precast board with a shape and size that allows the fitting device to be placed in the recess on the isolation sheet between both sides of the anchor body is brought to the site, adhesive is applied to the front surface of the anchor body, and the plate is fitted in the place. By inserting the precast board, the work is completed by simply gluing both end faces of the precast board to the front surface of the anchor body. Therefore, in this case, the manufacturing time can be significantly shortened, and whereas it takes 1 to 2 hours for one place using resin mortar, the work can be completed in less than half the time.

〈発明の効果) 以上に説明したとおり本発明によれば、特に隔離シート
によりスラブ面とその上方の耐摩耗性を有する伸縮性材
料層下面とを滑動可能に隔離した構成としたため、温度
変化によりスラブが膨張、収縮して生じる、両側のスラ
ブ先端の継目隙間部分における長さlの変化分Δlは、
伸縮性材料層全体の長さL部分で分散吸収される結果、
継目隙間部分子の直上局部の伸縮性材#]部に伸縮応力
がかかる問題は無くなり、よって該局部の伸縮性材料層
に亀裂、切断が発生する危険は発生しない。
<Effects of the Invention> As explained above, according to the present invention, the slab surface and the lower surface of the abrasion-resistant stretchable material layer above it are slidably isolated by the isolation sheet, so The change Δl in the length l in the joint gap between the ends of both slabs, which occurs when the slab expands and contracts, is
As a result of being dispersed and absorbed in the length L portion of the entire stretchable material layer,
There is no longer a problem that stretching stress is applied to the stretchable material #] portion directly above the joint gap molecule, and therefore there is no risk of cracking or cutting of the stretchable material layer in this local region.

また、継目部分の伸縮により伸縮性材料層に発生する伸
縮応力は、スラブ面に接着された碇着体を介して両側の
スラブに伝達され、その外側の打設舗装コンクリート部
とは応力的に断絶されるため、伸縮性モルタルの温度変
化等により生じる伸縮応力が舗装コンクリートを浮き上
がらせたり、それにひび割れと生じさせたりする結果と
はならない。
In addition, the expansion and contraction stress generated in the elastic material layer due to the expansion and contraction of the joint part is transmitted to the slabs on both sides via the anchoring bodies adhered to the slab surface, and the stress is transmitted to the poured pavement concrete on the outside. Because of this disconnection, the expansion and contraction stresses caused by temperature changes in the elastic mortar will not cause the paving concrete to lift or crack.

さらにまた11梁スラブ間の継目部分において、継目間
隙を隔てて対向する両側のスラブ前方面上にスライドプ
レートを滑動自在に架設載置し、それらのト面に、隔離
シートをTIl、WIシ、その上に耐京粍性を有する伸
縮竹材料を打設しているため、17両か継手部分を通過
する際に不快な振動が発生することが防止でき、かつ継
手部に局所的外力の集中が加わらないので、従来例のご
とくスラブ部まで欠損し易くなることはない。
Furthermore, at the joint between the 11 beam slabs, slide plates are slidably mounted on the front surfaces of the slabs on both sides facing each other across the joint gap, and isolation sheets are placed on the top surfaces of the slabs. Since a stretchable bamboo material that is resistant to mechanical damage is placed on top of this, it is possible to prevent unpleasant vibrations from occurring when the 17 cars pass through the joints, and to prevent local external forces from concentrating on the joints. Since no additional damage is added, the slab portion is not likely to be damaged as in the conventional example.

また、摩耗等により損傷した場合でも、容易、迅速に補
修できるので、交通量の多い橋梁においても、作業に要
する時間が短く、車両の長時間にわたる交通規制を・ピ
・要としない。
In addition, even if the bridge is damaged due to wear or the like, it can be easily and quickly repaired, so even on bridges with heavy traffic, the time required for work is short and long-term traffic control is not required.

そして、スラブ部へ砂塵や雨水等が入り込むことが阻止
できるため、スラブ部鉄筋等が犯されることがなく、橋
梁の長寿命化に寄与する。
Since it is possible to prevent dust, rainwater, etc. from entering the slab portion, the reinforcing bars and the like of the slab portion are not damaged, contributing to extending the life of the bridge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の橋梁スラブ間の継目なし伸縮継
手の構造を示す断面説明画である。 図中、 1:本発明実施例の橋梁スラブ間の継目なし伸縮継手、
2:高速道路等の橋梁のスラブ、3:継目間隙、4:M
A脂含浸部、5ニスライドプレート、6:隔離シート、
7:樹脂モルタル(7,二重部樹脂モルタル、7□ :
下部樹脂モルタル)、8:碇着体、9:アスコン舗装部
FIG. 1 is a cross-sectional explanatory drawing showing the structure of a seamless expansion joint between bridge slabs according to an embodiment of the present invention. In the figure, 1: Seamless expansion joint between bridge slabs according to the embodiment of the present invention,
2: Slabs of bridges such as expressways, 3: Joint gaps, 4: M
A fat-impregnated part, 5 Ni-Ride plate, 6: Isolation sheet,
7: Resin mortar (7, double-part resin mortar, 7□:
(lower resin mortar), 8: anchoring body, 9: ascon pavement section,

Claims (10)

【特許請求の範囲】[Claims] (1)橋梁スラブ間の継目構造において、 (a)両側の橋梁から延出され継目間隙を隔てて対向す
る両側のスラブ、 (b)前記の継目間隙をまたぎ両側のスラブ面に対し滑
動自在に架設載置された中央のスライドプレート、 (c)前記スライドプレートの後方にあって、下面がス
ラブ面に接着され、背面が舗装コンクリート部に接着さ
れてなる両側に設けられた碇着体、 (d)前記スライドプレート及びスラブ露出部の表面に
被覆された隔離シート、 (e)前記隔離シートの上に打設され、両端が少なくと
も碇着体前面に接着されてなり、かつ表面が舗装コンク
リート面と面一に設けられてなる耐摩耗性を有する伸縮
性材料層、及び (f)前記耐摩耗性を有する伸縮性材料層の外側に面一
になるように打設された舗装コンクリート部、 とから構成されたことを特徴とする橋梁スラブ間の継目
なし伸縮継手構造。
(1) In the joint structure between bridge slabs, (a) the slabs on both sides extend from the bridge on both sides and face each other across the joint gap; (b) the slabs extend across the joint gap and can slide freely on the slab surfaces on both sides; (c) anchoring bodies provided on both sides of the slide plate, the lower surface of which is bonded to the slab surface and the back surface of which is bonded to the paving concrete section; d) an isolation sheet that covers the surfaces of the slide plate and the exposed portion of the slab; (e) an isolation sheet that is cast on the isolation sheet and has both ends adhered to at least the front surface of the anchor body, and whose surface is a paved concrete surface; and (f) a paving concrete part cast flush with the outer side of the wear-resistant stretchable material layer. A seamless expansion joint structure between bridge slabs, characterized by comprising:
(2)耐摩耗性を有する伸縮性材料層が、耐摩耗性を有
する伸縮性樹脂モルタル硬化物層であることを特徴とす
る請求項1記載の橋梁スラブ間の継目なし伸縮継手構造
(2) The seamless expansion joint structure between bridge slabs according to claim 1, wherein the wear-resistant stretchable material layer is a wear-resistant stretchable resin mortar cured material layer.
(3)耐摩耗性を有する伸縮性材料層が、耐摩粍性を有
するプレキャスト樹脂モルタル板であることを特徴とす
る請求項1記載の橋梁スラブ間の継目なし伸縮継手構造
(3) The seamless expansion joint structure between bridge slabs according to claim 1, wherein the wear-resistant stretchable material layer is a wear-resistant precast resin mortar plate.
(4)伸縮性樹脂モルタル硬化物層を上下複数層で構成
し、上部層は舗装コンクリート材に近い耐摩耗性のもの
とし、下部層は上部層樹脂モルタルより軟かいゴム弾性
を有するものとしたことを特徴とする請求項2記載の橋
梁スラブ間の継目なし伸縮継手構造。
(4) The elastic resin mortar cured material layer is composed of multiple upper and lower layers, with the upper layer having wear resistance similar to that of paving concrete, and the lower layer having softer rubber elasticity than the upper layer resin mortar. The seamless expansion joint structure between bridge slabs according to claim 2.
(5)耐摩耗性を有するプレキャスト樹脂モルタル板が
、上下複数層で構成され、上部層は舗装コンリート材に
近い耐摩耗性のものとし、下部層は上部樹脂モルタルよ
りも軟らかいゴム弾性を有するものとしたことを特徴と
する請求項3記載の橋梁スラブ間の継目なし伸縮継手構
造。
(5) A precast resin mortar board with wear resistance is composed of upper and lower layers, with the upper layer having wear resistance similar to that of paving concrete material, and the lower layer having softer rubber elasticity than the upper resin mortar. 4. The seamless expansion joint structure between bridge slabs according to claim 3.
(6)碇着体は、前方部が先薄に削がれた楔状体である
ことを特徴とする請求項1ないし5のいずれかに記載の
橋梁スラブ間の継目なし伸縮継手構造。
(6) The seamless expansion joint structure between bridge slabs according to any one of claims 1 to 5, wherein the anchoring body is a wedge-shaped body whose front part is tapered.
(7)継目部分の伸縮により伸縮性樹脂モルタルに発生
する伸縮応力は、すべて碇着体を介して両側のスラブに
伝達され、その外側の打設舗装スラブ部とは応力的に断
絶されていることを特徴とする請求項1ないし6のいず
れかに記載の橋梁スラブ間の継目なし伸縮継手構造。
(7) All the expansion and contraction stress generated in the elastic resin mortar due to expansion and contraction of the joint part is transmitted to the slabs on both sides via the anchoring bodies, and is disconnected from the outside part of the poured pavement slab. The seamless expansion joint structure between bridge slabs according to any one of claims 1 to 6.
(8)スラブがコンクリートスラブであることを特徴と
する請求項1ないし7のいずれかに記載の橋梁スラブ間
の継目なし伸縮継手構造。
(8) The seamless expansion joint structure between bridge slabs according to any one of claims 1 to 7, wherein the slabs are concrete slabs.
(9)両側のスラブの各前方表層部が、樹脂含浸コンク
リートスラブ層であることを特徴とする請求項8記載の
橋梁スラブ間の継目なし伸縮継手構造。
(9) The seamless expansion joint structure between bridge slabs according to claim 8, wherein each front surface layer of the slabs on both sides is a resin-impregnated concrete slab layer.
(10)スラブが、鋼床板であることを特徴とする請求
項1ないし7記載の橋梁スラブ間の継目なし伸縮継手構
造。
(10) The seamless expansion joint structure between bridge slabs according to any one of claims 1 to 7, wherein the slab is a steel deck plate.
JP1145888A 1989-06-08 1989-06-08 Seamless expansion joint structure between bridge slabs Expired - Lifetime JP2738025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1145888A JP2738025B2 (en) 1989-06-08 1989-06-08 Seamless expansion joint structure between bridge slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1145888A JP2738025B2 (en) 1989-06-08 1989-06-08 Seamless expansion joint structure between bridge slabs

Publications (2)

Publication Number Publication Date
JPH0313604A true JPH0313604A (en) 1991-01-22
JP2738025B2 JP2738025B2 (en) 1998-04-08

Family

ID=15395372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1145888A Expired - Lifetime JP2738025B2 (en) 1989-06-08 1989-06-08 Seamless expansion joint structure between bridge slabs

Country Status (1)

Country Link
JP (1) JP2738025B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462821B1 (en) * 2002-05-21 2004-12-20 라영주 the processing way and its device for an expansion joint of concrete construction which is required to the water stop function
JP2007309032A (en) * 2006-05-22 2007-11-29 Kajima Corp Serial structure of bridge joint part
KR100847725B1 (en) * 2008-04-02 2008-07-23 (주)삼우아이엠씨 Joint structure of road and its construction method
JP2011162981A (en) * 2010-02-08 2011-08-25 Okubo Osamu Expansion device for use in bridge, and method for manufacturing the same
JP2013036176A (en) * 2011-08-04 2013-02-21 Akira Okubo Expansion device used for bridge and manufacturing method for the same
CN103669202A (en) * 2013-07-10 2014-03-26 孟献春 Road and bridge expansion joint structure
JP2014080853A (en) * 2012-09-26 2014-05-08 Allen:Kk Construction method of resin pavement body in road joint part, and road joint part structure comprised of resin pavement body
CN108004917A (en) * 2017-12-29 2018-05-08 中铁第六勘察设计院集团有限公司 A kind of suspension type rail traffic bridge realizes seamless flexible method
CN110158793A (en) * 2019-06-04 2019-08-23 上海阳森精细化工有限公司 A kind of expanded joint structure
CN110468699A (en) * 2019-09-10 2019-11-19 江西科技学院 Bridge stretches damping device
CN110792035A (en) * 2019-11-13 2020-02-14 成都市新筑路桥机械股份有限公司 Reinforced seamless elastomer expansion device and construction method thereof
CN111705640A (en) * 2020-06-05 2020-09-25 常州市市政工程设计研究院有限公司 Seamless expansion joint structure for bridge joint treatment and construction process thereof
CN114737473A (en) * 2022-05-11 2022-07-12 广州鑫冠建设工程有限公司 Simple seamless expansion joint structure for bridge
CN114855605A (en) * 2022-03-04 2022-08-05 浙江科技学院 Assembly type integrated elastic body seamless expansion joint structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144190B1 (en) * 2005-06-29 2006-12-05 Saint-Goban Technical Fabrics Canada, Ltd Road surfacing material over roadway joints, method of manufacturing, and method using the same
KR100994026B1 (en) 2010-04-15 2010-11-11 김은주 Anti expansion joint bridge

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462821B1 (en) * 2002-05-21 2004-12-20 라영주 the processing way and its device for an expansion joint of concrete construction which is required to the water stop function
JP2007309032A (en) * 2006-05-22 2007-11-29 Kajima Corp Serial structure of bridge joint part
JP4675826B2 (en) * 2006-05-22 2011-04-27 鹿島建設株式会社 Continuous structure of bridge joints
KR100847725B1 (en) * 2008-04-02 2008-07-23 (주)삼우아이엠씨 Joint structure of road and its construction method
JP2011162981A (en) * 2010-02-08 2011-08-25 Okubo Osamu Expansion device for use in bridge, and method for manufacturing the same
JP2013036176A (en) * 2011-08-04 2013-02-21 Akira Okubo Expansion device used for bridge and manufacturing method for the same
JP2014080853A (en) * 2012-09-26 2014-05-08 Allen:Kk Construction method of resin pavement body in road joint part, and road joint part structure comprised of resin pavement body
CN103669202B (en) * 2013-07-10 2016-05-25 孟献春 Highway-bridge Expansion Joints structure
CN103669202A (en) * 2013-07-10 2014-03-26 孟献春 Road and bridge expansion joint structure
CN108004917A (en) * 2017-12-29 2018-05-08 中铁第六勘察设计院集团有限公司 A kind of suspension type rail traffic bridge realizes seamless flexible method
CN110158793A (en) * 2019-06-04 2019-08-23 上海阳森精细化工有限公司 A kind of expanded joint structure
CN110158793B (en) * 2019-06-04 2023-12-12 上海阳森精细化工有限公司 Expansion joint structure
CN110468699A (en) * 2019-09-10 2019-11-19 江西科技学院 Bridge stretches damping device
CN110792035A (en) * 2019-11-13 2020-02-14 成都市新筑路桥机械股份有限公司 Reinforced seamless elastomer expansion device and construction method thereof
CN110792035B (en) * 2019-11-13 2021-05-25 成都市新筑路桥机械股份有限公司 Reinforced seamless elastomer expansion device and construction method thereof
CN111705640A (en) * 2020-06-05 2020-09-25 常州市市政工程设计研究院有限公司 Seamless expansion joint structure for bridge joint treatment and construction process thereof
CN114855605A (en) * 2022-03-04 2022-08-05 浙江科技学院 Assembly type integrated elastic body seamless expansion joint structure
CN114737473A (en) * 2022-05-11 2022-07-12 广州鑫冠建设工程有限公司 Simple seamless expansion joint structure for bridge
CN114737473B (en) * 2022-05-11 2023-06-30 广州鑫冠建设工程有限公司 Simple seamless expansion joint structure of bridge

Also Published As

Publication number Publication date
JP2738025B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JPH0313604A (en) Seamless expansion joint structure between bridge slabs
US5190395A (en) Expansion joint method and system
US6694690B2 (en) Concrete constructions employing the use of a ductile strip
US6039503A (en) Expansion joint system
US4668548A (en) Integrally-anchored fiber-reinforced concrete overlays and surfacings and method of making same
US5197250A (en) Wide expansion joint system
US3375763A (en) Elastomeric expansion joint
US3932051A (en) Highway construction
US4653956A (en) Highway pavement
US4531857A (en) Prefabricated pavement module
Biswas Precast bridge deck design systems
CA1286137C (en) Exodermic deck conversion method
CN108755405B (en) Assembly type steel plate bridge deck continuous structure and construction method
US5171100A (en) Preformed expansion joint system
McKenna et al. Strengthening of reinforced concrete flexural members using externally applied steel plates and fibre composite sheets—A survey
JP3762782B1 (en) Method for reinforcing floor slab and existing floor slab
US6409423B1 (en) Prestressed pavement system
JP2001234504A (en) Bridge expansion joint
JP3267015B2 (en) Repair girder bridge structure and repair girder repair method
JPH1193106A (en) Paving structure for expansion spacing of highway bridge
KR100408895B1 (en) Construction method of expansion joint for bridge
Burke Jr Cracking of concrete decks and other problems with integral-type bridges
JP4131322B2 (en) Road bridge structure
CN110847005A (en) Gradient reinforced full-seamless bridge wiring pavement structure
JP3727057B2 (en) Structure of buried joints in bridges