JPH03135357A - Linear motor - Google Patents

Linear motor

Info

Publication number
JPH03135357A
JPH03135357A JP1266744A JP26674489A JPH03135357A JP H03135357 A JPH03135357 A JP H03135357A JP 1266744 A JP1266744 A JP 1266744A JP 26674489 A JP26674489 A JP 26674489A JP H03135357 A JPH03135357 A JP H03135357A
Authority
JP
Japan
Prior art keywords
phase
coils
linear motor
speed
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1266744A
Other languages
Japanese (ja)
Other versions
JPH0797897B2 (en
Inventor
Jun Saito
潤 斎藤
Giichi Matsumoto
義一 松本
Hironobu Hori
宏展 堀
Yukihiko Okamura
幸彦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1266744A priority Critical patent/JPH0797897B2/en
Publication of JPH03135357A publication Critical patent/JPH03135357A/en
Publication of JPH0797897B2 publication Critical patent/JPH0797897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To permit speed control by detecting the speed of a motor from a total motor current by a method wherein the winding specification of either one of coils is made different from the winding specifications of other coils, in the multi-phase linear motor. CONSTITUTION:The movable block B of a linear motor is a 3-phase block, in which three pieces of electromagnets 8, consisting of a laminated core 2, coils 3 wound around the core 2, and a brush 4, contacted slidingly with a power supply substrate 5, to which one end of the coil 3 is connected, are arranged in series. Current is supplied to two phases among 3-phase coils 3a-3c and the movable block B is advanced by obtaining a thrust force in one given direction by a magnetomotive force generated upon conducting said two phases. In this case, the winding specification of the coil 3 of one-phase electromagnet 8 among 3-phase electromagnets 8a-8c is made different from the winding specifications of the coils 3 of the other electromagnets 8. According to this method, a change, indicating the advancing speed of a motor, may be generated in a total motor current and the advancing speed may be controlled by detecting the change.

Description

【発明の詳細な説明】 fil業上の利用分野1 本発明は、搬送用に用いられるリニアモータに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF APPLICATION IN FILM INDUSTRY 1 The present invention relates to a linear motor used for conveyance.

[従来の技術1 最近では搬送用にリニアモータを用いるようになってお
り、この種のリニアモータとしては複数のフィルに可動
ブロックの移動に応じて切換的に電流を流す。例えば、
可動コイル型のリニアモータで可動子ブロックが3相に
なったものでは、第9図に示すように、可動子ブロック
の各相のフィル3a−、’(cとして同じ巻線仕様のも
のを用い、夫々の相のコイル3a〜3Cの一端を共通接
続し、上記コイル3a〜3cの内のいずれか2個の他端
間に給電し、常時2相のコイル3に電流を流すようにし
である。
[Prior Art 1] Recently, linear motors have been used for conveyance, and in this type of linear motor, current is selectively passed through a plurality of fills in accordance with the movement of a movable block. for example,
In a moving coil type linear motor with a three-phase mover block, as shown in Fig. 9, the same winding specification is used as the fills 3a-,'(c) of each phase of the mover block. , one end of the coils 3a to 3C of each phase is commonly connected, and power is supplied between the other ends of any two of the coils 3a to 3c, so that current always flows through the coils 3 of the two phases. .

[発明が解決しようとする課題1 ところが、上述のような同じ巻線仕様の複数のコイル3
を用いた多相のリニアモータで、第10図(、)〜(e
)に示すように、常時いずれか2相のフィル3に電流を
流すとくなお、各相をU、V、W相と呼んでいる。)、
同図(d)に示すようにトータルのモータ電流に可動子
ブロックの進行速度を示す変化がほとんど現れない。し
かも、可動コイル型のリニアモータでは可動子ブロック
から分離した固定子ブロック側にコイル38〜3cに給
電回路を行う給電回路を有するので、各コイル3a〜3
cのいずれかに個別に流れる電流を検出するということ
は困難で、結果的には給電回路の出力電流、つまりはト
ータルのモータ電流からリニアモータの進行速度を検出
するしかない。従って、上述のようにトータルのモータ
電流の変化が小さいと、このモータ電流からリニアモー
タの進行速度を検出することが難しく、例えば給電回路
によりリニアモータに供給する電流を可変して速度制御
を行ったり、あるいはリニアモータの速度を検出して速
度を一定に制御するといった速度制御を行うことが難し
いという問題があった。
[Problem to be solved by the invention 1 However, when multiple coils 3 with the same winding specifications as described above
A polyphase linear motor using
), when a current is constantly passed through the fill 3 of any two phases, each phase is called the U, V, and W phase. ),
As shown in FIG. 3(d), there is almost no change in the total motor current that indicates the moving speed of the mover block. Moreover, in the moving coil type linear motor, a power supply circuit for supplying power to the coils 38 to 3c is provided on the stator block side separated from the mover block, so each coil 3a to 3
It is difficult to detect the current flowing through either of the motors individually, and as a result, the only way to detect the traveling speed of the linear motor is from the output current of the power supply circuit, that is, the total motor current. Therefore, if the change in the total motor current is small as described above, it is difficult to detect the traveling speed of the linear motor from this motor current. There is a problem in that it is difficult to perform speed control such as detecting the speed of the linear motor or controlling the speed to be constant.

本発明は上述の点に鑑みて為されたものであり、その目
的とするところは、トータルのモータ電流から速度を検
出して速度制御を行うことができるリニアモータを提供
することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a linear motor that can perform speed control by detecting the speed from the total motor current.

[課題を解決するための手¥i1 上記目的を達成するために、本発明はいずれかのフィル
の巻線仕様を他のフィルの巻線仕様と異ならせである。
[Measures for Solving the Problems\i1] In order to achieve the above object, the present invention makes the winding specifications of one of the fills different from the winding specifications of the other fills.

[作用1 本発明は、上述のように構成することにより、トータル
のモータ電流に進行速度を表すはっきりとした変化が現
れるようにし、この変化を検出することで進行速度の制
御を行えるようにしたものである。
[Operation 1] By configuring as described above, the present invention allows a clear change to appear in the total motor current representing the traveling speed, and by detecting this change, it is possible to control the traveling speed. It is something.

[実施例] 第1図乃至第8図に本発明の一実施例を示す。[Example] An embodiment of the present invention is shown in FIGS. 1 to 8.

本実施例のリニアモータは可動コイル型であり、固定子
ブロックAに沿って可動子ブロックBfyt摺動する構
造になっている。
The linear motor of this embodiment is of a moving coil type, and has a structure in which a movable block Bfyt slides along a stator block A.

固定子ブロックAは、断面L′F−状で長尺の基体7と
、この基体7の横片7aの中央の全長にわたって配置さ
れた長尺の永久磁石1と、上記基体7の縦片7)〕の内
壁面に取り付けられ可動子ブロックBのフィル3に給電
を行う給電基板5とで構成しである。
The stator block A includes a long base body 7 with a cross section L'F-, a long permanent magnet 1 disposed over the entire length of the horizontal piece 7a of the base body 7, and a vertical piece 7 of the base body 7. )] and a power supply board 5 that is attached to the inner wall surface of the mover block B and supplies power to the filter 3 of the mover block B.

永久磁石1は第4図に示すように平板状で長手方向にお
いて一定ピッチでN極とS極とに交互に着磁しであると
共に、厚み方向においても第5図(b)あるいは同図(
c)に示すようにN極とS極とに着磁しである。そして
、この永久磁石1は基体7の横片7aに接着あるいはか
しめ等により取り付けである。なお、この永久磁石1の
長手方向におけるN極とS極とからなる1組の磁石片部
の長さは第4図に示すようにLとしである。
As shown in Fig. 4, the permanent magnet 1 has a flat plate shape and is magnetized alternately to N and S poles at a constant pitch in the longitudinal direction, and also in the thickness direction as shown in Fig. 5(b) or (
As shown in c), it is magnetized to N and S poles. The permanent magnet 1 is attached to the horizontal piece 7a of the base body 7 by gluing or caulking. The length of a pair of magnet pieces consisting of an N pole and an S pole in the longitudinal direction of the permanent magnet 1 is L as shown in FIG. 4.

給電基板5は第5図(、)に示すように中央部に一定間
隔で上下に直角に蛇行する絶M部5cを形成し、この絶
縁部5cで分離された上下部分を導体11s5a、5b
としである。そして上方の導体部5aから正電圧を後述
する可動子ブロックBのフィル3に印加すると共に、下
方の導体部5bから負電圧をコイル3に印加する。ここ
で、各導体部5a。
As shown in FIG. 5(, ), the power supply board 5 has an M section 5c that meanders vertically at a right angle at regular intervals in the center, and conductors 11s5a, 5b are connected to the upper and lower sections separated by the insulating section 5c.
It's Toshide. Then, a positive voltage is applied from the upper conductor part 5a to the fill 3 of the mover block B, which will be described later, and a negative voltage is applied to the coil 3 from the lower conductor part 5b. Here, each conductor portion 5a.

5bの中央側に突出する部分の幅はL/3に形成してあ
り、両導体部5 a、 S b間に位置する絶縁部5C
の幅はL/6に形成しである。
The width of the part protruding toward the center of 5b is L/3, and the insulating part 5C located between both conductor parts 5a and Sb
The width is L/6.

可動子ブロックBは、略コ字状の継鉄を積層して形成さ
れた鉄心2と、この鉄心2に巻回されたコイル3と、こ
のコイル3の一端が接続され上記給電基板5に摺接する
ブラシ4とからなる電磁石8を3個列股した3相となっ
ている。なお、コイル3のfl!lu端は第9図に示す
ように共通接続しである。そして、各電磁石8の基体7
の長手方向に沿う長さはL/3を越えない長さにしであ
る。つまり、鉄心2の固定子ブロックAの長手方向に沿
う長さをPlとした場合に1.<L/3とし、且つフィ
ル3を巻装した場合の電磁石8の長さも上記し/3を越
えないようにしである。各電磁石8毎に設けられ絶縁板
20によって可動子ブロックBに取り付けられたブラシ
4の夫々の間隔はL/3にしてあり、これらブラシ4は
第5図(&)に−点鎖線で示す給電基板4の中央位置に
接触する。
The mover block B includes an iron core 2 formed by laminating substantially U-shaped yoke, a coil 3 wound around this iron core 2, and one end of this coil 3 connected to the above-mentioned power supply board 5. It has a three-phase structure in which three electromagnets 8 each consisting of a brush 4 in contact with each other are arranged in a row. In addition, fl of coil 3! The lu ends are commonly connected as shown in FIG. And the base 7 of each electromagnet 8
The length along the longitudinal direction is not more than L/3. In other words, if the length of the iron core 2 along the longitudinal direction of the stator block A is Pl, then 1. <L/3, and the length of the electromagnet 8 when the filler 3 is wound is also set not to exceed /3 as described above. The interval between the brushes 4 provided for each electromagnet 8 and attached to the mover block B by an insulating plate 20 is L/3, and these brushes 4 are connected to the power supply shown by the dashed line in FIG. It contacts the center position of the substrate 4.

上記固定子ブロックA及び可動子ブロックBは第3図に
示すように矩形筒状のがイドレール6内に配設され、こ
の〃イドレール6の下面中央には長手方向に沿って〃イ
ド溝9を穿設しである。可動子ブロックBには例えば装
飾品等の被搬送物を連結する連結体10を一体に固定し
、この連結体10から突設された連結片10mを上記が
イドレール6の〃イド溝9がら突出させて可動子ブロッ
クBはガイドレール6内に収められる。なお、連結体1
0の両側には可動子ブロックBの移動をスムーズにする
ためのコロ11を設けてあり、可動子ブロックBの鉄心
1が基体7に摺接する部分には摩擦係数の小さいスリッ
プ板12を取り付けである。また、連結片10&に形成
された孔16は被搬送物を連結するためのものである。
As shown in FIG. 3, the stator block A and movable block B are rectangular cylindrical pieces arranged in the idle rail 6, and an idle groove 9 is formed in the center of the lower surface of the idle rail 6 along the longitudinal direction. It is perforated. A connecting body 10 for connecting conveyed objects such as ornaments is integrally fixed to the mover block B, and a connecting piece 10m protruding from the connecting body 10 is inserted through the idle groove 9 of the idle rail 6. The movable block B is then housed within the guide rail 6. In addition, the connected body 1
Rollers 11 are provided on both sides of the mover block B to smooth the movement of the mover block B, and a slip plate 12 with a small friction coefficient can be attached to the part where the iron core 1 of the mover block B slides on the base 7. be. Further, the holes 16 formed in the connecting pieces 10& are for connecting objects to be transported.

このリニアモータでは上述の構造とすることで、給電基
板5から3相のコイル3a〜3cの内のいずれか2相に
常時電流を流し、この時に生じる起磁力によって一定方
向への推進力を得て可動子ブロック13が進行する。な
お、可動子ブロックBを逆方向に進行させる場合には給
電基板5の導体部5m。
In this linear motor, with the above-described structure, a current is constantly passed from the power supply board 5 to any two of the three-phase coils 3a to 3c, and the magnetomotive force generated at this time obtains a propulsive force in a fixed direction. The mover block 13 moves forward. In addition, when moving the movable block B in the opposite direction, the conductor portion 5m of the power supply board 5.

5bの電圧の正負を逆にすれば良い。The polarity of the voltage of 5b may be reversed.

ところで、本実施例では3相の電磁石8a〜8cの内の
1相の電磁石8のコイル3の巻線仕様を他の相の電磁石
8のコイル3の巻線仕様と異ならせである。なお、以下
の説明では第2図における電磁石8bのコイル3bの巻
線仕様を異ならせた場合について説明する。なお、以下
の説明では電磁石88を(I相、8bをV相、8cをW
相と呼び、各相は従来の場合と同様に第6図(&)〜(
c)に示すように給1!すれる。この場合、具体的に[
1相とW相とのフィル3 a= 3 cのコイル抵抗を
2Ω、■相のフィル3bのコイル抵抗を8Ω、給電基板
5から供給される駆動電源を24Vとした場合に、U 
−V相及び■−W相に給電が為された場合のモータ電流
11は、 1、=24/(2+8)=2.4(A)となり、U−W
相に給電された場合のモータ電流■2は、 I、=24/(2+2)=6(A) となる。つまり、上述のように3相の内のいずれh・1
相のコイル3の巻線仕様を異ならせることにより、モー
タ電流に進行速度に応じた変化が生じることになる。従
って、この周期的な変化を検出すれば、リニアモータの
速度制御を行うことが可能となる。
Incidentally, in this embodiment, the winding specifications of the coil 3 of the electromagnet 8 of one phase among the three-phase electromagnets 8a to 8c are different from the winding specifications of the coil 3 of the electromagnet 8 of the other phases. In the following explanation, a case will be explained in which the winding specifications of the coil 3b of the electromagnet 8b in FIG. 2 are different. In addition, in the following explanation, the electromagnet 88 (I phase, 8b is V phase, 8c is W phase)
6 (&) to () as in the conventional case.
As shown in c), pay 1! I can pass. In this case, specifically [
When the coil resistance of the 1-phase and W-phase fill 3a=3c is 2Ω, the coil resistance of the ■phase fill 3b is 8Ω, and the drive power supplied from the power supply board 5 is 24V, U
The motor current 11 when power is supplied to the -V phase and -W phase is 1, = 24/(2 + 8) = 2.4 (A), and U-W
The motor current ■2 when power is supplied to the phase is I, = 24/(2+2) = 6 (A). In other words, as mentioned above, any of the three phases h・1
By varying the winding specifications of the phase coils 3, the motor current changes in accordance with the traveling speed. Therefore, by detecting this periodic change, it is possible to control the speed of the linear motor.

上記リニアモータの速度制御を行う給電回路としての一
例を第7図に示す、この給電回路では、リニアモータM
に流れる電流の周期的な変化からリニアモータMの進行
速度を検知して、この検知出力に応じた信号をスイッチ
ング電源回路13の制御部14にフィードバックしてリ
ニアモータMを設定された速度で一定に駆動させる定速
度制御手段17を備え、カレントトランスT2、波形整
形回路15、周波数・電圧変換回路(以下、FV変換回
路と呼ぶ、)16、及び差動増幅回路A、で上記定速度
制御手段17を構成しである。カレントトランスT2は
スイッチング電源回路13の出力にリニアモータMと共
に直列に接続してあり、このカレントトランスT2によ
ってリニアモータMに流れる電流の周期的な変化、つま
りはすこ7モ一タMの速度を検知する。なお、第8図(
a)にリニアモータMに流れる電流INを示す、このカ
レン))ランスT2の2大出力v1は第8図(b)に示
す信号波形となる。この2人出カ■、を、コンパレータ
A2、グイオードD1、抵抗R7及び基準電圧E2から
なる波形整形回路15で波形整形すると、@8図(c)
に示す波形整形出力v2が得られる。そして、FV変換
回路16は上記波形整形出力V2を第8M(d)に示す
速度に応じた電圧信号VFに変換する。この電圧信号V
、は差動増幅回路Aに入力され、リニアモータMの速度
を可変する場合に電圧がWRgされる速度設定電圧E、
とで差動増幅され、この差動増幅出力が制御部14の制
御端子に入力されるにの差動増幅出力が入力された制御
部14では、この差動増幅出力に応じて出力のテ゛ニー
ティを可変して、リニアモータMの速度を速度設定電圧
E1で設定された速度に一定させるようにスイッチング
素子Q、のオン、オフを制御する。つまり、この給電回
路では、定速度制御手段17でリニアモータMの速度を
検知し、この速度に応じた信号をスイッチング電源回路
13のlll1lfRS14にフィードバックすること
により、リニアモータMを定速度制御するようにしであ
る。
An example of a power supply circuit that controls the speed of the linear motor is shown in FIG. 7. In this power supply circuit, the linear motor M
The traveling speed of the linear motor M is detected from periodic changes in the current flowing through the circuit, and a signal corresponding to this detection output is fed back to the control unit 14 of the switching power supply circuit 13 to keep the linear motor M at a constant speed. The constant speed control means 17 includes a current transformer T2, a waveform shaping circuit 15, a frequency/voltage conversion circuit (hereinafter referred to as an FV conversion circuit) 16, and a differential amplifier circuit A. It consists of 17. The current transformer T2 is connected in series with the linear motor M to the output of the switching power supply circuit 13, and the current transformer T2 controls periodic changes in the current flowing through the linear motor M, that is, the speed of the seven motors M. Detect. In addition, Figure 8 (
The current IN flowing through the linear motor M is shown in a), and the two major outputs v1 of the lance T2 have the signal waveform shown in FIG. 8(b). When these two outputs (■) are waveform-shaped by a waveform-shaping circuit 15 consisting of a comparator A2, a guiode D1, a resistor R7, and a reference voltage E2, the result is shown in Figure 8 (c).
A waveform shaped output v2 shown in is obtained. Then, the FV conversion circuit 16 converts the waveform shaped output V2 into a voltage signal VF according to the speed shown in No. 8 M(d). This voltage signal V
, is input to the differential amplifier circuit A, and is a speed setting voltage E whose voltage is WRg when varying the speed of the linear motor M.
The differential amplification output is input to the control terminal of the control unit 14.The control unit 14, to which the differential amplification output is input, adjusts the output tonnage according to the differential amplification output. The switching element Q is controlled to be turned on and off so that the speed of the linear motor M is kept constant at the speed set by the speed setting voltage E1. That is, in this power supply circuit, the speed of the linear motor M is detected by the constant speed control means 17, and a signal corresponding to this speed is fed back to the ll1lfRS14 of the switching power supply circuit 13, so that the linear motor M is controlled at a constant speed. It's Nishide.

なお、上述の説明では定速度制御の場合について説明し
たが、進行速度を可変調整する速度制御にも適用できる
ことは言うまでもなく、また固定コイル型のリニアモー
タに本考案を適用しても良い [発明の効果1 本発明は上述のように、多相のリニアモータにおいて、
いずれかのコイルの@線仕様を他のコイルの巻線仕様と
異ならせであるので、トータルのモータ電流に進行速度
を表す変化を生じさせることができ、この変化を検出す
ることで進行速度の制御を行うことができる。
Although the above explanation deals with constant speed control, it goes without saying that it can also be applied to speed control that variably adjusts the traveling speed, and the present invention may also be applied to fixed coil type linear motors. Effect 1 As described above, the present invention has the following advantages in a multiphase linear motor:
Since the @ wire specifications of one of the coils are different from the winding specifications of the other coils, it is possible to cause a change in the total motor current that represents the traveling speed, and by detecting this change, the traveling speed can be changed. can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の正面図、第2図は同上の斜
視図、第3図は〃イドレールを設けた場合の斜視図、$
4図は同上の要部の構造を示す斜視図、第5図(a)は
給電基板の正面図、同図(b)、(e)は給電基板によ
る可動ブロックの駆動状態を示す説明図、第6図は同上
のモータ電流を示す動作説明図、第7図は給電回路の回
路図、第8図は同上の動作説明図、第9図はフィルの結
線図、第10図は従来のモータ電流の説明図である。 Aは固定子ブロック、Bは可動子ブロック、3a〜3C
はコイルである。
Fig. 1 is a front view of an embodiment of the present invention, Fig. 2 is a perspective view of the same as the above, and Fig. 3 is a perspective view when an idle rail is provided.
Figure 4 is a perspective view showing the structure of the main parts of the same as above, Figure 5 (a) is a front view of the power supply board, Figures (b) and (e) are explanatory diagrams showing the driving state of the movable block by the power supply board, Fig. 6 is an operation explanatory diagram showing the motor current as above, Fig. 7 is a circuit diagram of the power supply circuit, Fig. 8 is an explanatory diagram of the same operation as above, Fig. 9 is a connection diagram of the fill, and Fig. 10 is a conventional motor It is an explanatory diagram of electric current. A is stator block, B is mover block, 3a to 3C
is a coil.

Claims (1)

【特許請求の範囲】[Claims] (1)複数のコイルに可動ブロックの移動に応じて切換
的に電流を流す多相のリニアモータにおいて、いずれか
のコイルの巻線仕様を他のコイルの巻線仕様と異ならせ
て成るリニアモータ。
(1) A multi-phase linear motor in which current is selectively passed through multiple coils according to the movement of a movable block, in which the winding specifications of one of the coils are different from the winding specifications of the other coils. .
JP1266744A 1989-10-14 1989-10-14 Linear motor Expired - Lifetime JPH0797897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1266744A JPH0797897B2 (en) 1989-10-14 1989-10-14 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1266744A JPH0797897B2 (en) 1989-10-14 1989-10-14 Linear motor

Publications (2)

Publication Number Publication Date
JPH03135357A true JPH03135357A (en) 1991-06-10
JPH0797897B2 JPH0797897B2 (en) 1995-10-18

Family

ID=17435105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266744A Expired - Lifetime JPH0797897B2 (en) 1989-10-14 1989-10-14 Linear motor

Country Status (1)

Country Link
JP (1) JPH0797897B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227728A (en) * 1992-02-15 1993-09-03 Matsushita Electric Works Ltd Linear motor
KR20000072874A (en) * 1999-05-01 2000-12-05 정명식 Synchronous linear motor comprising with double-sided coil
US7312540B2 (en) * 2002-01-18 2007-12-25 Kabushiki Kaisha Yasakawa Denki Linear motor armature and linear motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238451A (en) * 1988-03-17 1989-09-22 Fuji Electric Co Ltd Armature for ring coil type three-phase two-pole linear induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238451A (en) * 1988-03-17 1989-09-22 Fuji Electric Co Ltd Armature for ring coil type three-phase two-pole linear induction motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227728A (en) * 1992-02-15 1993-09-03 Matsushita Electric Works Ltd Linear motor
KR20000072874A (en) * 1999-05-01 2000-12-05 정명식 Synchronous linear motor comprising with double-sided coil
US7312540B2 (en) * 2002-01-18 2007-12-25 Kabushiki Kaisha Yasakawa Denki Linear motor armature and linear motor

Also Published As

Publication number Publication date
JPH0797897B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US4641065A (en) Moving coil type linear motor
US4760294A (en) Linear motor with independently controlled coils
US5661350A (en) Electromechanical converter device, producing linear motion
JPH0349554A (en) Linear motor
WO2006038510A1 (en) Linear motor system
JPH03135357A (en) Linear motor
JP3430770B2 (en) Door opening / closing linear motor
JP2000228858A (en) Coil structure of linear motor
JP2868381B2 (en) Electric curtain equipment
JP3266030B2 (en) DC linear motor
JP4078870B2 (en) Moving coil linear motor
JPH04210771A (en) Power supply board connection structure for linear motor
JP2824785B2 (en) Linear motor
JPS63245244A (en) Self-travelling slider device
JPH0937540A (en) Linear induction synchronous motor
JPH06165470A (en) Linear motor
JPH0623197Y2 (en) Constant velocity moving coil type linear motor
JPS61210867A (en) Linear dc motor
Onuki et al. Improvement of short primary member linear induction motor performance by partial adoption of the wound secondary
JPH05227728A (en) Linear motor
JPS5936160Y2 (en) Brushless DC linear motor drive control device
SU433601A1 (en) MACHINE
US838547A (en) Electric motor and method of controlling the same.
JPH1052026A (en) Brushless dc linear motor
JPS61177104A (en) Traveling vehicle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 14

EXPY Cancellation because of completion of term