JPH03134968A - Nickel-zinc storage battery and charging method thereof - Google Patents

Nickel-zinc storage battery and charging method thereof

Info

Publication number
JPH03134968A
JPH03134968A JP1273152A JP27315289A JPH03134968A JP H03134968 A JPH03134968 A JP H03134968A JP 1273152 A JP1273152 A JP 1273152A JP 27315289 A JP27315289 A JP 27315289A JP H03134968 A JPH03134968 A JP H03134968A
Authority
JP
Japan
Prior art keywords
zinc
capacity
charging
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1273152A
Other languages
Japanese (ja)
Inventor
Toshiyuki Atsuta
敏之 温田
Yoshihiro Eguchi
能弘 江口
Kazuya Okabe
一弥 岡部
Kenkichi Fujii
健吉 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1273152A priority Critical patent/JPH03134968A/en
Publication of JPH03134968A publication Critical patent/JPH03134968A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve energy density and extend a battery life by making the capacity of a nickel hydroxide positive electrode larger than the capacity of a zinc negative electrode, and completing the charging at 1.85-2.0 V for a unit cell. CONSTITUTION:Zinc oxide and metal zinc are mixed, for example, a sheet- shaped zinc active material is manufactured by the calendar roll method, and it is pressed and molded to a current collector made of a copper punch metal and having the thickness 0.1 mm and the porosity about 50% to form a 3-AH negative electrode. A positive electrode is made of three sintered nickel electrodes with the same size 5cm X 3cm X 0.6mm as the negative electrode and has a 4-AH capacity. A battery formed with them and a separator and an electrolyte made of a KOH aqueous solution with the specific gravity 1.35 is charged, and the charging is completed at 2.0 V for each cell at 20 deg.C with the 0.1C equivalent current. No dendrite is generated, and about 300 cycles are obtained until the life line at 60% of the initial capacity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケル亜鉛蓄電池に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to nickel-zinc storage batteries.

従来技術とその問題点 周知のごとく電気自動車をはじめポータプル機器に至る
まで電池の高エネルギー密度化あるいは高性能化に対す
る要求はたいへん大きなものがある。その中で亜鉛を負
極活物質とした電池は単位重量当りのエネμギー密度が
大きくしかも安価であると言った利点を有する。一方、
この亜鉛極を蓄電池の負極として動作させる場合、亜鉛
活物質が放電過程あるいは充電過程において溶解析出し
ていわゆるシェイグチェンジやデンドライトシ四−トと
言った問題を引き起こす。充電過程では、亜鉛酸イオン
から析出される亜鉛金属結晶は特に水素ガス発生を伴っ
た場合、水素の触媒作用によってプントフィト結晶にな
り易く、電池のショートを引き起こす。
BACKGROUND OF THE INVENTION As is well known, there is a great demand for higher energy density and higher performance of batteries used in electric vehicles and portable devices. Among these, batteries using zinc as a negative electrode active material have the advantage of having a high energy density per unit weight and being inexpensive. on the other hand,
When this zinc electrode is operated as a negative electrode of a storage battery, the zinc active material is dissolved and deposited during the discharging or charging process, causing problems such as so-called Scheig change and dendrite shift. During the charging process, zinc metal crystals precipitated from zincate ions tend to become puntophyte crystals due to the catalytic action of hydrogen, especially when accompanied by hydrogen gas generation, causing a short circuit in the battery.

そのため従来より充電末期になっても負極から水素発生
させぬよう負極の容量を正極の容量より増加させ、充電
末期においても常に酸化亜鉛が残存している状態にする
ことで正極から酸素ガスの発生のみを生じるよう?こし
、負極からは水素ガスを発生させないようeこしてプン
トフィト状の析出が起こらないようeこ工夫されている
Therefore, in order to prevent hydrogen generation from the negative electrode even at the end of charging, the capacity of the negative electrode is larger than that of the positive electrode, and by making sure that zinc oxide always remains even at the end of charging, oxygen gas is generated from the positive electrode. Only to cause? In addition, measures are taken to prevent hydrogen gas from being generated from the negative electrode and to prevent puntophyte-like precipitation from occurring.

また、上述の電池をサイクル使用した場合において正極
から発生した酸素が電池の糸外に漏れてしまうと正極と
負極の容量バランスが崩れてしまい、いずれ負極からの
水素発生を生じ亜鉛のプントフィト析出により電池寿命
となる。したがってサイクル使用中の正極と負極の容量
バランスを保つために、電池の電解液量を制限し、充電
末期に発生した酸素ガスを負極で吸収リサイクルさせる
いわゆるノイマン方式が採用されているものもある。
In addition, when the above-mentioned battery is used repeatedly, if oxygen generated from the positive electrode leaks out of the battery thread, the capacity balance between the positive and negative electrodes will be disrupted, and eventually hydrogen will be generated from the negative electrode, resulting in puntophyte precipitation of zinc. The battery life will end. Therefore, in order to maintain the capacity balance between the positive and negative electrodes during cycle use, some batteries use the so-called Neumann method, in which the amount of electrolyte in the battery is limited and the oxygen gas generated at the end of charging is absorbed and recycled by the negative electrode.

しかしながら亜鉛極を二次電池の負極として使用する場
合前述の亜鉛活物質の移動を防止するためのセパレータ
の採用が不可欠であり、そのセパレータが酸素ガスの拡
散に影響を与え、酸素ガス吸収が効率よく行いに<<、
酸素ガスが電池の系外に漏れ酸化亜鉛が無くなることで
亜鉛のデンドライトを生じ、短寿命となるという問題点
がある・ 発明の目的 本発明は上記従来の問題点に鑑みなされたちのであり、
エネルギー密度に優れた、長寿命のニッケル亜鉛蓄電池
を提供することを目的とするものである。
However, when using a zinc electrode as a negative electrode of a secondary battery, it is essential to use a separator to prevent the movement of the zinc active material mentioned above, and the separator affects the diffusion of oxygen gas, making oxygen gas absorption less efficient. Good behavior<<,
There is a problem in that oxygen gas leaks out of the battery system and zinc oxide disappears, causing zinc dendrites and shortening the battery life.Purpose of the InventionThe present invention was made in view of the above-mentioned conventional problems.
The purpose is to provide a long-life nickel-zinc storage battery with excellent energy density.

発明の構成 本発明は上記目的を達成するべく、 亜鉛を主たる活物質とする負極の容量より、水酸化ニッ
ケμを主たる活物質とする正極の容量を大としたことを
特徴とするニッケ/l/亜鉛蓄電池である。
Structure of the Invention In order to achieve the above-mentioned object, the present invention provides a nickel/l oxide film characterized in that the capacity of a positive electrode whose main active material is nickel hydroxide μ is larger than that of a negative electrode whose main active material is zinc. / Zinc storage battery.

又、負極の容量よりも正極の容量を大としたニッケル亜
鉛蓄電池の充電において、電池電圧が単位セル当91.
85V以上2.0V以下で充電完了とすることを特徴と
する二7ケμ亜鉛蓄電池の充電方法である。
In addition, when charging a nickel-zinc storage battery in which the capacity of the positive electrode is larger than that of the negative electrode, the battery voltage is 91% per unit cell.
This is a method for charging a 27μ zinc storage battery, characterized in that charging is completed at 85V or more and 2.0V or less.

実施例 以下、本発明の詳細について実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

実施例1 第1図は本発明による電池の水平断面図である。Example 1 FIG. 1 is a horizontal sectional view of a battery according to the invention.

1は亜鉛極で、あらかじめ酸化亜鉛及び金属亜鉛を混合
し、さらにカレンダーローμ法によりシート状の亜鉛活
物質層を作製し、そのシートを厚み0.1鴎で開孔率約
50%の銅パンチングメタル集電体の両サイドに加圧成
形し縦5cm×横3 cm X厚み0.6閣の亜鉛電極
を得た。また、活物質はペーヌティング法により塗布し
てもかまわない。4は焼結式ニッケ電極であり亜鉛極2
枚と同寸法の焼結式ニッケtV極5枚とを微孔性フィル
ムとセロファン膜等のセパレータ6並びにナイロン不織
布等の保液紙2からなるセパレータ層を介して交互に積
重ねて電池容量が5AHの本発明のニッケρの亜鉛電池
Aを作製した。5は電槽である。電解液は比重1.35
のKOH水溶液であり、LiOHを添加しである。この
電解液を正極、負極、セパレータの全空隙の80〜95
%を注入しである。また比較として従来から知られてい
る正極容量より負極容量が多いニッケル亜鉛電池Bも同
様の方法で作製した。
1 is a zinc electrode. Zinc oxide and metallic zinc are mixed in advance, and a sheet-like zinc active material layer is prepared by the calendering method. The sheet is then coated with copper with a porosity of about 50% and a thickness of 0.1 mm. Zinc electrodes measuring 5 cm long x 3 cm wide x 0.6 cm thick were obtained by pressure forming on both sides of a punched metal current collector. Further, the active material may be applied by a painting method. 4 is a sintered nickel electrode, and zinc electrode 2
A battery capacity of 5AH is achieved by stacking 5 sintered nickel TV electrodes of the same size alternately through separator layers consisting of a microporous film, a separator 6 such as a cellophane membrane, and a liquid-retaining paper 2 such as a nylon nonwoven fabric. A nickel ρ zinc battery A of the present invention was prepared. 5 is a battery case. The electrolyte has a specific gravity of 1.35
KOH aqueous solution with LiOH added. This electrolyte is applied to the positive electrode, negative electrode, and separator to cover 80-95% of the total voids.
It is injected with %. For comparison, a conventionally known nickel-zinc battery B having a larger negative electrode capacity than the positive electrode capacity was also fabricated in the same manner.

それらをまとめて第1表に示した。They are summarized in Table 1.

5− 第  1  表 上記の電池A、Hについて充放電サイクル試験を行った
。試験条件は、充電を0.1C相当電流とし充電々圧が
20℃の時七μ当り2.07時点で充電を終了した。放
電は0.2C相当電流で終止電圧1.20Vとした。こ
の充放電を繰返した。
5-Table 1 A charge/discharge cycle test was conducted on the above batteries A and H. The test conditions were that charging was carried out at a current equivalent to 0.1 C, and charging was terminated at a time point of 2.07 μm per 7 μm when the charging pressure was 20° C. The discharge was carried out at a current equivalent to 0.2C and a final voltage of 1.20V. This charging and discharging process was repeated.

第2図に充電特性を示した。Figure 2 shows the charging characteristics.

このカーブAの点線部が示すように充電をセル当り2.
0■でカットしなければセ/l/’!圧は約2.2vま
で上昇し、この時点では負極から水素ガスが発生しプン
トフィト成長が起こる。しかし本発明では、最大2.0
■で充電々流をカットするため水素発生は起こらずデン
ドライトは発生しない。また、充電末期の顕著な電圧上
昇が6 起こり始めるのが1.85Vあたりにあるため、検出電
圧としてはこれ以上必要である。また、充電中の電圧特
性が安定化され従来電池Bに比べ充電末電圧の立上りが
非常に大きく充電末期の電圧検出が容易である。
As shown by the dotted line part of this curve A, charging is performed at 2.5 times per cell.
If you don't cut it with 0■, ce/l/'! The pressure rises to about 2.2V, at which point hydrogen gas is generated from the negative electrode and puntophyte growth occurs. However, in the present invention, the maximum
■Because the charging current is cut, hydrogen generation does not occur and dendrites do not occur. Furthermore, since a significant voltage increase at the end of charging begins to occur around 1.85 V, a detection voltage higher than this is required. In addition, the voltage characteristics during charging are stabilized, and the rise of the voltage at the end of charging is much larger than that of conventional battery B, making it easy to detect the voltage at the end of charging.

第6図にサイクル寿命特性比較を示した。従来電池は初
期のサイクル性能は比較的良いが約200〜で容量低下
を起こしている。これは酸素ガス吸収効率が悪く、充放
電サイクμ中電池の系外に酸素ガスが漏れ出たため、負
極中金属亜鉛の量が増加して正極と負極の容量パヲンス
を崩し、デンドライトショートを引き起こしたためであ
る。一方、本発明の電池Aは初期性能も従来品とほとん
ど変わらずしかも初期容量の60%の寿命フィンまで約
600サイクルが得られ、かつ電池のショートの傾向は
見受けられず、良好な特性を示している。
Figure 6 shows a comparison of cycle life characteristics. Conventional batteries have relatively good initial cycle performance, but their capacity decreases after about 200 cycles. This is because the oxygen gas absorption efficiency is poor, and oxygen gas leaks out of the battery system during the charge/discharge cycle, which increases the amount of metallic zinc in the negative electrode, disrupts the capacity balance between the positive and negative electrodes, and causes a dendrite short circuit. It is. On the other hand, the battery A of the present invention has almost the same initial performance as the conventional product, and has a lifespan of about 600 cycles up to 60% of the initial capacity, and shows no tendency for battery short-circuiting, showing good characteristics. ing.

第2表に本発明の電池Aと従来電池Bとのエネルギー密
度を比較した。本発明は従来品に比らべ、亜鉛極の大巾
な削減が可能となりエネルギー密度が約25%向上した
Table 2 compares the energy density of battery A of the present invention and conventional battery B. Compared to conventional products, the present invention enables a large reduction in the number of zinc electrodes and improves energy density by about 25%.

発明の効果 上述した如く、本発明はエネルギー密度に優れた、長寿
命のニッケμ亜鉛蓄電池を提供することが出来るので、
その工業的価値は極めて大である。
Effects of the Invention As mentioned above, the present invention can provide a long-life nickel μ zinc storage battery with excellent energy density.
Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池の水平断面図、第2図は充電特性
比較の図、第5図はサイクル寿命の比較の図である。 1・・・負極板     2・・・保液紙3・・・セパ
レータ   4・・・正極板5・・・電槽
FIG. 1 is a horizontal sectional view of the battery of the present invention, FIG. 2 is a comparison of charging characteristics, and FIG. 5 is a comparison of cycle life. 1...Negative electrode plate 2...Liquid retaining paper 3...Separator 4...Positive electrode plate 5...Battery container

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛を主たる活物質とする負極の容量より、水酸
化ニッケルを主たる活物質とする正極の容量を大とした
ことを特徴とするニッケル亜鉛蓄電池。
(1) A nickel-zinc storage battery characterized in that the capacity of the positive electrode, whose main active material is nickel hydroxide, is larger than the capacity of the negative electrode, whose main active material is zinc.
(2)負極の容量よりも正極の容量を大としたニッケル
亜鉛蓄電池の充電において、電池電圧が単位セル当り1
.85V以上2.0V以下で充電完了とすることを特徴
とするニッケル亜鉛蓄電池の充電方法。
(2) When charging a nickel-zinc storage battery in which the capacity of the positive electrode is larger than that of the negative electrode, the battery voltage is 1% per unit cell.
.. A method for charging a nickel-zinc storage battery, characterized in that charging is completed at 85V or more and 2.0V or less.
JP1273152A 1989-10-19 1989-10-19 Nickel-zinc storage battery and charging method thereof Pending JPH03134968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1273152A JPH03134968A (en) 1989-10-19 1989-10-19 Nickel-zinc storage battery and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1273152A JPH03134968A (en) 1989-10-19 1989-10-19 Nickel-zinc storage battery and charging method thereof

Publications (1)

Publication Number Publication Date
JPH03134968A true JPH03134968A (en) 1991-06-07

Family

ID=17523838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1273152A Pending JPH03134968A (en) 1989-10-19 1989-10-19 Nickel-zinc storage battery and charging method thereof

Country Status (1)

Country Link
JP (1) JPH03134968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970018830A (en) * 1995-09-30 1997-04-30 김광호 Charging method of sealed nickel-zinc battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970018830A (en) * 1995-09-30 1997-04-30 김광호 Charging method of sealed nickel-zinc battery

Similar Documents

Publication Publication Date Title
CN109904517B (en) Lithium ion battery and preparation method thereof
US11296325B2 (en) Electrode for secondary battery including electrode protecting layer
JP2020526909A (en) Lithium metal battery
WO2004047214A1 (en) Lithium-ion secondary battery system and method for operating lithium-ion secondary battery
TWI744948B (en) Composite separator, battery and battery pack
KR20160059974A (en) Battery system and redox flow battery comprising same
JPH1167273A (en) Lithium secondary battery
JP3390309B2 (en) Sealed alkaline storage battery
JPS60250567A (en) Enclosed type nickel-zinc storage battery
JPH03134968A (en) Nickel-zinc storage battery and charging method thereof
KR101464514B1 (en) Anode electrode of nickel base secondary battery improving battery service life and electrode structure of nickel base secondary battery including the same
JP2884570B2 (en) Sealed alkaline secondary battery
JP7256175B2 (en) Electrodes with multiple current collector arrays
CN112786844B (en) Zinc secondary battery
CN111033821B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2734523B2 (en) Battery separator
JPH0696795A (en) Sealed nickel-zinc battery
JPH01100872A (en) Sealed type nickel-zinc cell
KR100413735B1 (en) Ni-secondary battery comprising gel alkaline electrolyte
JPH01315962A (en) Alkali secondary battery
JPH05182686A (en) Sealed nickel zinc storage battery
JPH05159766A (en) Nonaqueous electrolyte secondary battery
JPH0722028A (en) Sealed alkaline zinc storage battery
JPS63261670A (en) Alkaline zinc storage battery
CN117317130A (en) Negative pole piece and battery