JPH03134201A - Gas turbine moving blade and manufacture thereof - Google Patents

Gas turbine moving blade and manufacture thereof

Info

Publication number
JPH03134201A
JPH03134201A JP27132289A JP27132289A JPH03134201A JP H03134201 A JPH03134201 A JP H03134201A JP 27132289 A JP27132289 A JP 27132289A JP 27132289 A JP27132289 A JP 27132289A JP H03134201 A JPH03134201 A JP H03134201A
Authority
JP
Japan
Prior art keywords
blade
mold
gas turbine
alloy
dovetail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27132289A
Other languages
Japanese (ja)
Inventor
Akira Yoshinari
明 吉成
Minoru Morikawa
穣 森川
Teruo Hirane
平根 輝夫
Makoto Ichige
市毛 良
Akira Okayama
岡山 昭
Toshiaki Saito
斉藤 年旦
Katsuki Iijima
飯島 活己
Tadami Ishida
忠美 石田
Hideyo Kodama
英世 児玉
Ryozo Hashida
橋田 良造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27132289A priority Critical patent/JPH03134201A/en
Publication of JPH03134201A publication Critical patent/JPH03134201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To make it possible to improve corrosion resistance and creep strength in a blade part and high temperature strength in a dovetail part by continuously changing a composition between the blade part and the dovetail part. CONSTITUTION:In the case of an Ni-radical alloy-made gas turbine moving blade in which a blade part 10 is formed of a corrosion resistance alloy with a dovetail part 12 formed of a high temperature resistance high strength alloy, the blade part 10 is set to a 13wt.% or more Cr amount with the Cr amount gradually decreased from a shank part 11 over to the dovetail part 12, and the Cr amount is decreased in the dovetail part 12 having maximum strength. In this way, corrosion resistance and creep strength of the blade part 10 and high temperature strength of the dovetail part 12 can be improved. Accordingly, the extension of a life of the moving blade and the improvement of thermal efficiency of a gas turbine by increasing its combustion gas temperature can be contrived.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン用動翼に係り、特に耐食性や強度
に優れたガスタービン用動翼及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a gas turbine rotor blade, and more particularly to a gas turbine rotor blade with excellent corrosion resistance and strength, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

ガスタービンの動翼材料は、従来から主としてNi基の
超合金が使用されてきたが、ガスタービンの熱効率の向
上を図るため、年々燃焼ガス温度が上昇してきた。そし
て、それに伴い動翼の耐熱強度を上げるため、組織的に
は普通鋳造による等軸晶翼から一方向凝固による柱状晶
真夏には単結晶翼へと変化してきた。また成分的にも、
耐食性の優れた高Cr合金から、高強度な低Cr合金が
用いられるようになってきている。
Conventionally, Ni-based superalloys have been mainly used as materials for the moving blades of gas turbines, but combustion gas temperatures have been rising year by year in order to improve the thermal efficiency of gas turbines. Along with this, in order to increase the heat resistance strength of rotor blades, the structure has changed from equiaxed crystal blades made by ordinary casting to columnar crystal blades in midsummer that are unidirectionally solidified. Also, in terms of ingredients,
High-strength low-Cr alloys are being used instead of high-chromium alloys with excellent corrosion resistance.

柱状晶翼や単結晶翼は、耐熱強度に優れており航空機用
ジェットエンジンの動翼として用いられているが、合金
中のCr量が少く耐食性が悪いという問題がある。それ
にもかかわらず、ジェットエンジンの動翼と用いられて
いるのは、航空機用ジェットエンジンでは点検期間が短
く、且つ燃料も不純物の非常に少ないものを用いている
ため耐食性を重視する必要がなかったためである。
Columnar crystal blades and single crystal blades have excellent heat resistance and strength and are used as moving blades for aircraft jet engines, but there is a problem that the amount of Cr in the alloy is small and corrosion resistance is poor. Despite this, it is used as the moving blade of a jet engine because the inspection period for aircraft jet engines is short and the fuel used is very low in impurities, so there is no need to place emphasis on corrosion resistance. It is.

一方、陸上用ガスタービンは連続運転期間が長く、且つ
燃料も不純物の多いものを用いていることから、低Or
の柱状晶翼や単結晶翼を陸上用ガスタービンの動翼に適
用することは不可能であった。そのため陸上用ガスター
ビンの動翼では、耐食性向上のため、翼表面にAQ20
.やN1CoCrAQY等の耐食コーティングを行うと
共に、Cr量が14wt%以上の合金を用いてきた。こ
こでCr量が14#t%であるのは、Cr量が13wt
%以下では耐食性が急激に悪くなるためである。しかし
Cr量が13wt%以上になると強度が著るしく低下す
るため、翼内部に複雑な冷却孔を設け、動翼の温度上昇
を抑制し、強度を保つ方法がとられている。また、動翼
の回転により、非常に大きな遠心応力の発生するダブテ
ィル部の強度も十分でなく、翼の大きさやタービンの回
転数などに限界があった。
On the other hand, land-based gas turbines have a long continuous operation period and use fuel with many impurities, so they have low Or
It was impossible to apply columnar crystal blades or single crystal blades to the rotor blades of land-based gas turbines. For this reason, the rotor blades of land-based gas turbines are coated with AQ20 on the blade surface to improve corrosion resistance.
.. In addition to applying corrosion-resistant coatings such as N1CoCrAQY and N1CoCrAQY, alloys with a Cr content of 14 wt% or more have been used. Here, the Cr content is 14#t% because the Cr content is 13wt%.
% or less, corrosion resistance deteriorates rapidly. However, when the Cr content exceeds 13 wt%, the strength decreases significantly, so a method is used in which complicated cooling holes are provided inside the blade to suppress the temperature rise of the rotor blade and maintain the strength. Additionally, the strength of the dovetail section, where extremely large centrifugal stress is generated due to the rotation of the rotor blades, was insufficient, and there were limits to the size of the blades and the number of rotations of the turbine.

以上のことから陸上用ガスタービンは、翼部は高Crで
耐食性に優れ、且つ高強度であり、ダブティル部は高強
度であることが望まれている。
In view of the above, it is desired that the airfoils of land-based gas turbines have high Cr, excellent corrosion resistance, and high strength, and that the dovetail portions have high strength.

特開昭56−1.63232号公報には、電極棒の組成
を変えたエレクトロスラグ法で、銅製鋳型を用いて翼部
は高Cr合金、ダブティル部は低Cr合金からなる動翼
の製造法が示されている。
JP-A No. 56-1.63232 discloses a method for manufacturing a rotor blade using a copper mold using a high Cr alloy for the blade portion and a low Cr alloy for the dovetail portion using an electroslag method in which the composition of the electrode rod is changed. It is shown.

しかし、この方法では銅製金型を用いているため、凝固
組織は微細な等軸晶となり、翼部のクリープ強度は十分
でなかった。また、エレクトロスラグ法では、複雑な形
状を有する冷却孔を作ることは不可能であった。
However, since this method uses a copper mold, the solidified structure becomes fine equiaxed crystals, and the creep strength of the wing portion is insufficient. Furthermore, with the electroslag method, it was impossible to create cooling holes with complicated shapes.

したがって、上記方法で製造した動翼は、翼部のクリー
プ強度が不十分であり、更に翼の冷却効率が悪いため、
動翼の寿命及び燃焼ガス温度の上昇による熱効率の向上
を図ることが不可能であった。
Therefore, the rotor blades manufactured by the above method have insufficient creep strength in the blade portion, and furthermore, the cooling efficiency of the blades is poor.
It has been impossible to improve thermal efficiency by increasing the lifespan of the rotor blades and increasing the combustion gas temperature.

また、別な方法として、組成の異なる合金を用いて翼部
とダブティル部を別々に鋳造し、その後両方を拡散接合
する方法も考えられる。しかしこの方法では接合界面が
直線上となり、衝撃力に対して弱くなることや、接合界
面に介在物等の欠陥が入りやすくクリープ強度が大幅に
低下すること、又接合が完全であるかどうかを検査する
有効な手段が無いことなどから、信頼性に乏しく接合翼
を動翼に用いることは適切でない。
Another possible method is to separately cast the wing section and the dovetail section using alloys with different compositions, and then diffusion bond them together. However, with this method, the bonding interface is on a straight line, which makes it weak against impact force, the bonding interface is prone to defects such as inclusions, and the creep strength decreases significantly, and it is difficult to determine whether the bonding is complete. Since there is no effective means for inspection, it is not appropriate to use bonded blades as rotor blades due to their lack of reliability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術による動翼は、翼部に要求される特性とダ
ブティル部に要求される特性を同時に満足する組織や組
成になっておらず、ガスタービンにこれら動翼を適用し
ても、どちらかの特性によって使用条件が限定されるた
め、動翼の長寿命化と熱効率の向上を図ることができな
かった。
The rotor blades according to the prior art described above do not have a structure or composition that simultaneously satisfies the characteristics required for the blade section and the characteristics required for the dovetail section, and even if these rotor blades are applied to a gas turbine, either Because the conditions of use are limited by the characteristics of rotor blades, it has not been possible to extend the life of the rotor blades and improve thermal efficiency.

本発明の目的は、翼部は耐食性とクリープ強度に優れ、
ダブティル部は高温強度に優れたガスタービン用動翼及
びその製造法を提供することにある。
The object of the present invention is that the wing portion has excellent corrosion resistance and creep strength,
The purpose of the dovetail section is to provide a gas turbine rotor blade with excellent high-temperature strength and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明に係るガスタービン用
動翼は、翼部は耐食性合金で形成され、ダブティル部は
対高温高強度性合金で形成されているNi基合金製のガ
スタービン動翼において、前記翼部とダブティル部間の
組成が連続的に変化しているものである。ここで、動翼
の内部に冷却孔が設けられているものがよい。また、翼
部はOrを13重量%以上含む合金であり、ダブティル
部はCrを13重量%以下含む合金であるものがよい。
In order to achieve the above object, the gas turbine rotor blade according to the present invention is a gas turbine rotor blade made of a Ni-based alloy, in which the blade portion is made of a corrosion-resistant alloy and the dovetail portion is made of a high-temperature high-strength alloy. The composition between the wing portion and the dovetail portion changes continuously. Here, it is preferable that cooling holes are provided inside the rotor blade. Further, the wing portion is preferably made of an alloy containing 13% by weight or more of Or, and the dovetail portion is preferably made of an alloy containing 13% by weight or less of Cr.

また、本発明は、翼部は耐食性合金で形成され、ダブテ
ィル部は対高温高強度性合金で形成されているNi基合
金製のガスタービン動翼において、前記翼部とダブティ
ル部間の組成が連続的に変化していると共に、その組織
は柱状晶組織又は単結晶組織のものである。
The present invention also provides a gas turbine rotor blade made of a Ni-based alloy, in which the blade portion is formed of a corrosion-resistant alloy and the dovetail portion is formed of an alloy with high strength against high temperatures, in which the composition between the blade portion and the dovetail portion is It changes continuously and its structure is a columnar crystal structure or a single crystal structure.

また、本発明は、翼部は耐食性合金で形成され、ダブテ
ィル部は対高温高強度性合金で形成されているNi基合
金製のガスタービン動翼において、前記翼部とダブティ
ル部間の組成が連続的に変化していると共に、そのM織
は、翼部が柱状晶組織又は単結晶組織であり、ダブティ
ル部は等軸晶組織のものである。
The present invention also provides a gas turbine rotor blade made of a Ni-based alloy, in which the blade portion is formed of a corrosion-resistant alloy and the dovetail portion is formed of an alloy with high strength against high temperatures, in which the composition between the blade portion and the dovetail portion is The M weave changes continuously, and the wing part has a columnar crystal structure or a single crystal structure, and the dovetail part has an equiaxed crystal structure.

前記のいずれかの動翼において、ガスタービン用動翼は
翼部からダブティル部に向う方向に鋳型より引出されて
凝固される一方向凝固法で一体的に製造されているもの
がよい。
In any of the above rotor blades, it is preferable that the gas turbine rotor blade be integrally manufactured by a one-way solidification method in which the rotor blade is pulled out from a mold in a direction from the blade portion toward the dovetail portion and solidified.

また、本発明に係る鋳造品の製造方法は、鋳造用原料を
鋳型内に鋳込む工程と、鋳型を高温領域より相対的に引
き抜いて鋳造品を一端側より他端側に漸次凝固させ、そ
の凝固の時間差を利用して鋳造品の組成を一端側より他
端側に連続的に変化させる工程とを含むものである。
Furthermore, the method for manufacturing a cast product according to the present invention includes a step of pouring a casting raw material into a mold, and a step of relatively pulling out the mold from a high temperature region to gradually solidify the cast product from one end to the other end. This method includes a step of continuously changing the composition of the cast product from one end to the other end by utilizing the solidification time difference.

また、本発明に係るガスタービン用動翼の製造方法は、
Crを含有するNi基合金よりなるガスタービン動翼用
原料を鋳型内に鋳込む工程と、鋳型を高温領域より相対
的に引き抜いて鋳造品を翼部側よりダブティル側に漸次
凝固させると共に、その引き抜き途中で真空度、鋳型加
熱温度及び鋳型引き抜き速度を調整してNi基合金中の
Crの蒸発量を制御し、鋳造品の組成を翼部側はCrを
13重量%以上含有し、ダブティル側はCrを13重量
%以下含有するよう連続的に変化させる工程とを含むも
のである。ここで、鋳型の引き抜き途中で組成の異なる
鋳造用原料を鋳型内に追加チャージして組成を連続的に
変化させる工程を含むものでもよい。
Furthermore, the method for manufacturing a gas turbine rotor blade according to the present invention includes:
A process of casting a raw material for gas turbine rotor blades made of a Ni-based alloy containing Cr into a mold, and a process of relatively pulling out the mold from a high temperature region to gradually solidify the cast product from the blade side to the dovetail side. During drawing, the degree of vacuum, mold heating temperature, and mold drawing speed are adjusted to control the amount of Cr evaporation in the Ni-based alloy. This method includes a step of continuously changing the content of Cr to 13% by weight or less. Here, the method may include a step of continuously changing the composition by additionally charging a casting raw material having a different composition into the mold during drawing of the mold.

〔作用〕[Effect]

ガスタービン動翼の翼部は、高温の燃焼ガスに直接さら
されるため、高耐食性が必要であり、また高温で遠心応
力がかがるため高いクリープ強度が要求されている。高
耐食性を与えるためには、合金中のCr量を多くすれば
良いことが経験的に知られており、Cr量が多くなると
翼表面にクロム酸化物が形成されて耐食性が向上する。
The blades of gas turbine rotor blades are directly exposed to high-temperature combustion gas, so they need to have high corrosion resistance, and they also need to have high creep strength because centrifugal stress increases at high temperatures. It has been empirically known that in order to provide high corrosion resistance, it is sufficient to increase the amount of Cr in the alloy, and when the amount of Cr increases, chromium oxide is formed on the blade surface, improving corrosion resistance.

この場合、Cr量が13wt%以下では、耐食性が急激
に悪くなるため、−実用的には13wt%以上のCrが
含まれていることが必要である。一方、クリープ強度は
、耐食性とは逆に、合金中のCr量が13wt%以上に
なると急激に低下する。これを改善する手法として、翼
部の組織を柱状晶又は単結晶とすることで、高Crであ
りながら、クリープ強度を大巾に向上できる。
In this case, if the Cr content is 13 wt% or less, the corrosion resistance will deteriorate rapidly, so it is practically necessary to contain 13 wt% or more of Cr. On the other hand, contrary to corrosion resistance, creep strength rapidly decreases when the amount of Cr in the alloy exceeds 13 wt%. As a method to improve this, by making the structure of the wing part columnar crystal or single crystal, the creep strength can be greatly improved despite the high Cr content.

更に、翼内部に複雑な形状の冷却孔を設け、翼部温度の
上昇を抑えることで動翼の長寿命化を図ることができる
Furthermore, by providing complex-shaped cooling holes inside the blade and suppressing the rise in temperature of the blade, it is possible to extend the life of the rotor blade.

次にダブティル部は温度が低く、耐食性を考慮する必要
が無いため、高温強度が優れていればよく、従ってCr
量が13wt%以下の低Cr合金が適している。
Next, since the temperature of the dovetail part is low and there is no need to consider corrosion resistance, it is only necessary to have excellent high temperature strength.
Low Cr alloys with an amount of 13 wt% or less are suitable.

しかし、今までは、以上述べたような翼部とダブティル
部で要求される特性を同時に満足し、且つ複雑な内部冷
却孔を有する動翼は製造できなかった。そこでこのよう
な特性を有する動翼の製造法について検討を行い、以下
に述べる方法を開発した。
However, until now, it has not been possible to manufacture a rotor blade that simultaneously satisfies the characteristics required for the blade portion and the dovetail portion as described above and has complicated internal cooling holes. Therefore, we investigated a method for manufacturing rotor blades with such characteristics, and developed the method described below.

以下、上記動翼の製造法について説明する。柱状晶又は
単結晶の製造は、鋳型引出し式一方向法で行う。この場
合、翼部を下側としダブティル部より先に凝固させるこ
とが望ましいがダブティル部を先に凝固させる方法でも
何ら問題はない。
The method for manufacturing the rotor blade described above will be explained below. The production of columnar crystals or single crystals is carried out by a one-way mold pull-out method. In this case, it is preferable to solidify the wing part on the lower side before the dovetail part, but there is no problem with a method in which the dovetail part is solidified first.

水冷銅チル上に固定され、合金の融点以上に加熱した鋳
型に溶けた合金を鋳込み、その後鋳型を下方に引き出し
下方から徐々に一方向に凝固させる。このとき、鋳型内
部に中子を入れておけば、複雑形状な冷却孔を形成する
ことができる。
The molten alloy is poured into a mold that is fixed on a water-cooled copper chiller and heated above the melting point of the alloy, and then the mold is pulled downward and gradually solidified in one direction from below. At this time, if a core is placed inside the mold, cooling holes with a complex shape can be formed.

ここで翼部から凝固させる場合について述べると、翼部
が凝固する間は低真空又はAr雰囲気で行い、Crの蒸
発を抑制し、その後は高真空とする。高真空にすると溶
湯からCrが蒸発し、ダブティル部は高強度の低Cr合
金となり、翼部は耐食性に優れ、ダブティル部は高強度
で組織は柱状晶や単結晶である動翼が得られる。この方
法ではCrの蒸発量をコントロールすることが重要であ
るが、鋳型加熱温度と真空度及び鋳型の引出し速度を変
化させることにより、Crの蒸発量を精度よく再現でき
ることがわかった。
Here, the case of solidifying from the wing section will be described. While the wing section is solidifying, it is performed in a low vacuum or an Ar atmosphere to suppress evaporation of Cr, and then a high vacuum is applied. When a high vacuum is applied, Cr evaporates from the molten metal, the dovetail portion becomes a high-strength, low-Cr alloy, the blade portion has excellent corrosion resistance, the dovetail portion has high strength, and a rotor blade having a columnar crystal or single crystal structure is obtained. Although it is important to control the amount of Cr evaporation in this method, it was found that the amount of Cr evaporation could be accurately reproduced by changing the mold heating temperature, degree of vacuum, and mold withdrawal speed.

また、最初に鋳込む合金のCr量は10tyt%以上あ
れば、この方法が適用できるが、前に述べたように耐食
性の面から13wt%以上が望ましい。
Further, this method can be applied as long as the Cr content of the initially cast alloy is 10% by weight or more, but as mentioned earlier, from the viewpoint of corrosion resistance, it is preferably 13% by weight or more.

ここで最初の合金のCr量を10wt%以上としたのは
、Cr量が10wt%を越えると、蒸発量が多くなり、
ダブティル部のCr量を低くすることが容易なためであ
る。
Here, the reason why the Cr content in the first alloy was set to be 10 wt% or more is because when the Cr content exceeds 10 wt%, the amount of evaporation increases.
This is because it is easy to reduce the amount of Cr in the dovetail portion.

以上は、凝固中のCrの蒸発を利用する方法であるが、
別な方法として追加チャージにより、前記特性を有する
動翼を得ることができる。すなわち、最初は翼部の体積
と等しい量の合金を鋳込み、一方向凝固させて柱状晶又
は単結晶とする。翼部の凝固がほぼ終了するときに、組
成が異なり高温強度の優れた合金を追加チャージして、
一方向凝固させる。このようにすることでも、翼部は耐
食性やクリープ強度に優れ、ダブテイル部は高温強度に
優れた柱状晶又は単結晶動翼が得られる。
The above is a method that utilizes evaporation of Cr during solidification,
Alternatively, a rotor blade with the above-mentioned properties can be obtained by additional charging. That is, first, an amount of alloy equal to the volume of the wing is cast, and solidified in one direction to form columnar crystals or single crystals. When the solidification of the blade is almost complete, an alloy with a different composition and superior high-temperature strength is additionally charged.
Solidify in one direction. By doing so, it is also possible to obtain a columnar or single-crystal rotor blade in which the blade portion has excellent corrosion resistance and creep strength, and the dovetail portion has excellent high-temperature strength.

この方法では、追加チャージを数回くり返すことにより
、組成が連続的に変化する動翼を得ることも可能である
In this method, by repeating additional charging several times, it is also possible to obtain a rotor blade whose composition changes continuously.

また、追加チャージする合金を等軸品用の合金とするこ
とで、ダブティル部を等軸晶とすることも可能である。
Further, by using an alloy for equiaxed products as the alloy to be additionally charged, it is also possible to make the dovetail part equiaxed.

これにより鋳造時間を短縮できる。This reduces casting time.

尚、ダブティル部を先に凝固させる場合には、最初に低
Crの高強度合金を鋳込み、次に高Cr合金を追加チャ
ージすることで、余ったく同様な特性を有する動翼を得
ることができる。
In addition, if the dovetail portion is solidified first, a rotor blade with similar characteristics can be obtained by first casting a low-Cr high-strength alloy and then additionally charging a high-Cr alloy. .

以上の方法により、複雑形状な内部冷却孔を有し、翼部
は耐食性及びクリープ強度に優れ、ダブティル部は高温
強度に優れ、しかも連続した組織からなる動翼が容易に
製造できる。
By the above method, it is possible to easily manufacture a rotor blade having a complex-shaped internal cooling hole, the blade portion having excellent corrosion resistance and creep strength, the dovetail portion having excellent high-temperature strength, and having a continuous structure.

ところで、本発明の上記製造方法は、使用条件によって
一端と他端とで異なる特性を要求される他の構造要素部
材の製造方法にも適用できる。ガスタービン以外の構造
要素部材用の原料に対し、上記一方向凝固法で鋳造する
ことにより、例えば一端側が耐摩耗性で他端側は靭性を
要求される構造要素部材も製造可能である。
By the way, the above manufacturing method of the present invention can also be applied to methods of manufacturing other structural element members that require different characteristics at one end and the other end depending on usage conditions. By casting raw materials for structural element members other than gas turbines using the above-mentioned unidirectional solidification method, it is also possible to manufacture structural element members that require wear resistance on one end and toughness on the other end, for example.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。第4図に本発明に係る
タービン用動翼の斜視図を示す。10は翼部、11はシ
ャンク部、12はダブティル部を示す。第5図は本発明
に係るタービン用動翼を僅えたガスタービンの構成図を
示す。図において、13は本発明に係るタービン用動翼
を示す。
The present invention will be explained in detail below. FIG. 4 shows a perspective view of a rotor blade for a turbine according to the present invention. 10 is a wing portion, 11 is a shank portion, and 12 is a dovetail portion. FIG. 5 shows a configuration diagram of a gas turbine with fewer turbine rotor blades according to the present invention. In the figure, 13 indicates a turbine rotor blade according to the present invention.

〈実施例1〉 第1図に本発明で得られた動翼のCr量の分析結果を示
す。翼部のCr量は14wt%であり、シャンク部から
ダブティル部にかけてCrJiは徐々に減少して最も高
強度を有するダブティル部のCr量は10wt%となっ
ている。
<Example 1> Fig. 1 shows the analysis results of the Cr content of the rotor blade obtained by the present invention. The amount of Cr in the wing portion is 14 wt%, and CrJi gradually decreases from the shank portion to the dovetail portion, and the amount of Cr in the dovetail portion, which has the highest strength, is 10 wt%.

次に、第2図を用いて第1図に示した動翼の製造方法に
ついて説明する。
Next, a method for manufacturing the rotor blade shown in FIG. 1 will be explained using FIG. 2.

最初、水冷チル6とに固定した鋳型5を合金の融点以上
に加熱する。次に溶解炉1で溶かした合金を鋳型5に鋳
込み、その後水冷チルを下降させて、鋳型5を鋳型加熱
炉2から引き出し、一方向凝固させた。この場合鋳型5
が完全に引き出され、凝固が終了するまで鋳型加熱炉は
高温に保たれている。又上記鋳造工程は全て真空中で行
なわれる。
First, the mold 5 fixed to the water-cooled chiller 6 is heated to a temperature higher than the melting point of the alloy. Next, the alloy melted in the melting furnace 1 was cast into a mold 5, and then the water-cooled chiller was lowered to pull out the mold 5 from the mold heating furnace 2 and solidify it in one direction. In this case mold 5
The mold heating furnace is kept at a high temperature until the mold is completely drawn out and solidification is complete. Further, all of the above casting steps are performed in a vacuum.

第1表に鋳造した合金の組成を示す。鋳型加熱炉の温度
は1550 ’C一定とし、鋳型の引出しは、最初の3
0分間は20 an / hの速度で行い、その後Lo
an/hで30分間、更に5 an / hの速度で1
時間引出した。鋳型引出し中の真空は、真空調整バルブ
7の開閉で調整し、最初の30分間は1〜2X10−”
Torrとし、その後は凝固終了まで2〜4×10″″
’Torrとした。
Table 1 shows the composition of the cast alloy. The temperature of the mold heating furnace was kept constant at 1550'C, and the mold was drawn out for the first 3
0 min at a speed of 20 an/h, then Lo
an/h for 30 minutes and then at a rate of 5 an/h for 1
I pulled out the time. The vacuum inside the mold drawer is adjusted by opening and closing the vacuum adjustment valve 7, and for the first 30 minutes the vacuum is 1 to 2 x 10-"
Torr, and then 2 to 4 x 10'' until the end of solidification.
'Torr.

上記で示したように、一方向凝固途中で鋳型引出し速度
と真空度を変えることで、第1図に示した組成の動翼を
製造できた。
As shown above, by changing the mold withdrawal speed and degree of vacuum during the unidirectional solidification, a rotor blade having the composition shown in FIG. 1 could be manufactured.

第  1  表 次に実施例1で得られた動翼の特性を第2表に示す。第
2表は従来の方法で製造した動翼と本発明で製造した動
翼の翼部のクリープ破断時間及びダブティル部の引張強
度を示したものであり、本発明により翼部及びダブティ
ル部、両方の特性が向上した。
Table 1 Next, Table 2 shows the characteristics of the rotor blade obtained in Example 1. Table 2 shows the creep rupture time and tensile strength of the dovetail portion of the rotor blade manufactured by the conventional method and the rotor blade manufactured by the present invention. characteristics have been improved.

第2表 たく同じ方法で単結晶質を得ることも容易にできる。更
に、ダブティル部は等軸品にして製造時間を短縮しても
よい。
Single crystals can also be easily obtained by the same method as shown in Table 2. Additionally, the dovetail portion may be equiaxed to reduce manufacturing time.

第3表 〈実施例2〉 第3図に本発明の1つの方法である追加チャージ法で得
られた動翼の分析結果を示す。製造方法は、第2図に示
した装置で行った。
Table 3 (Example 2) FIG. 3 shows the analysis results of the rotor blade obtained by the additional charging method, which is one method of the present invention. The manufacturing method was carried out using the apparatus shown in FIG.

実施例1と同様に鋳型を加熱後、第3表の合金Aを鋳込
んだ。鋳込み量は鋳型のシャンク部の中央までの重量と
した。次に水冷チル6を10cm/hの速度で引き出し
、60分後に、第3表の合金Bを溶解炉1で溶解し、追
加チャージした。その後は、10cm/hの速度で凝固
終了まで鋳型を引き出した。この時は、真空度は1〜2
X10−’T orrとし、又鋳型加熱炉の温度はL5
00’C−定とした。追加チャージを行っても1組織の
乱れはなく連続した結晶粒からなる柱状晶翼が得られた
。尚、実施例2は柱状品質を製造したが、全っ〔発明の
効果〕 本発明に係るタービン用動翼によれば、附食性及び高ク
リープ強度を有する翼部と、附高温高強度を有するダブ
ティル部からなる動翼が得られるため、該動にの長寿命
化と燃焼ガス温度の上昇によるガスタービンの熱効率の
向上を図ることに効果がある。
After heating the mold in the same manner as in Example 1, alloy A shown in Table 3 was cast. The pouring amount was defined as the weight up to the center of the shank of the mold. Next, the water-cooled chiller 6 was pulled out at a speed of 10 cm/h, and after 60 minutes, Alloy B shown in Table 3 was melted in the melting furnace 1 and additionally charged. Thereafter, the mold was pulled out at a speed of 10 cm/h until solidification was completed. At this time, the degree of vacuum is 1 to 2.
The temperature of the mold heating furnace is L5.
It was set to 00'C-constant. Even when additional charging was performed, there was no disturbance in one structure, and columnar crystal wings consisting of continuous crystal grains were obtained. In addition, although the columnar quality was manufactured in Example 2, all [effects of the invention] According to the turbine rotor blade according to the present invention, the rotor blade has a blade portion having corrosion resistance and high creep strength, and a blade portion having high strength at high temperatures. Since a rotor blade consisting of a dovetail portion is obtained, it is effective to extend the life of the rotor and to improve the thermal efficiency of the gas turbine by increasing the combustion gas temperature.

また、本発明に係るガスタービン用動翼の製造方法によ
れば、上記の動翼を簡単に製造することができる。
Further, according to the method for manufacturing a gas turbine rotor blade according to the present invention, the above rotor blade can be easily manufactured.

また、本発明に係る鋳造品の製造方法によれば。Further, according to the method for manufacturing a cast product according to the present invention.

一端と他端で要求される特性の異なる構造要素部材を適
宜原料を選定することにより簡単に製造することができ
る。
Structural element members having different properties required at one end and the other end can be easily manufactured by appropriately selecting raw materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る動翼のCrの分析値を
示す図、第2図は第1図に示した動翼の製造方法の概略
図を示し、第3図は本発明の他の実施例に係る動翼のC
rの分析値を示す図、第4図はガスタービン用動翼の概
略斜視図、第5図は本発明に係るタービン用動翼を備え
たガスタービンの構成図を示す。 1・・・溶解炉、 2・・・鋳型加熱炉、3・・・溶湯
   4・・・鋳物、 5・・・鋳型、  6・・・水冷チル。 10・・・翼部、11・・・シャンク部、12・・・ダ
ブテイル部。
FIG. 1 is a diagram showing analytical values of Cr of a rotor blade according to an embodiment of the present invention, FIG. 2 is a schematic diagram of a method for manufacturing the rotor blade shown in FIG. 1, and FIG. C of the rotor blade according to another embodiment of
FIG. 4 is a schematic perspective view of a gas turbine rotor blade, and FIG. 5 is a diagram showing the configuration of a gas turbine equipped with a turbine rotor blade according to the present invention. 1... Melting furnace, 2... Mold heating furnace, 3... Molten metal, 4... Casting, 5... Mold, 6... Water-cooled chill. 10... wing section, 11... shank section, 12... dovetail section.

Claims (1)

【特許請求の範囲】 1、翼部は耐食性合金で形成され、ダブティル部は耐高
温高強度性合金で形成されているNi基合金製のガスタ
ービン動翼において、前記翼部とダブティル部間の組成
が該翼部の強度より高い強度となるように連続的に変化
しているものであることを特徴とするガスタービン用動
翼。 2、請求項1において、動翼の内部に冷却孔が設けられ
ているガスタービン用動翼。 3、請求項1又は2において、翼部はCrを13重量%
以上含む合金であり、ダブティル部はCrを13重量%
以下含む合金であるガスタービン用動翼。 4、翼部は耐食性合金で形成され、ダブティル部は耐高
温高強度性合金で形成されているNi基合金製のガスタ
ービン動翼において、前記翼部とダブティル部間の組成
が連続的に変化していると共に、その組織は柱状晶組織
又は単結晶組織のものであることを特徴とするガスター
ビン用動翼。 5、翼部は耐食性合金で形成され、ダブティル部は対高
温高強度性合金で形成されているNi基合金製のガスタ
ービン動翼において、前記翼部とダブティル部間の組成
が該翼部の強度より高い強度になるように連続的に変化
していると共に、その組織は、翼部が柱状晶組織又は単
結晶組織であり、ダブティル部は等軸晶組織であること
を特徴とするガスタービン用動翼。 6、請求項1〜5のいずれかにおいて、ガスタービン用
動翼は翼部からダブティル部に向う方向に鋳型より引出
されて凝固される一方向凝固法で一体的に製造されてい
るものであるガスタービン用動翼。 7、鋳造用原料を鋳型内に鋳込む工程と、鋳型を高温領
域より相対的に引き抜いて鋳造品を一端側より他端側に
漸次凝固させ、その凝固の時間差を利用して鋳造品の組
成を一端側より他端側に連続的に変化させる工程とを含
む鋳造品の製造方法。 8、原料を鋳型内に鋳込む工程と、鋳型を高温領域より
相対的に引き抜いて鋳造品を漸次凝固させると共に、そ
の引き抜き途中で真空度、鋳型加熱温度及び鋳型引き抜
き速度を調整して合金中の金属の蒸発量を制御し、鋳造
品の組成を連続的に変化させる工程とを含む鋳造品の製
造方法。 9、請求項7又は8において、鋳型の引き抜き途中で組
成の異なる鋳造用原料を鋳型内に追加チャージして組成
を連続的に変化させる工程を含む鋳造品の製造方法。 10、Crを含有するNi基合金よりなるガスタービン
動翼用原料を鋳型内に鋳込む工程と、鋳型を高温領域よ
り相対的に引き抜いて鋳造品を翼部側よりダブティル側
に漸次凝固させると共に、その引き抜き途中で真空度、
鋳型加熱温度及び鋳型引き抜き速度を調整してNi基合
金中のCrの蒸発量を制御し、鋳造品の組成を翼部側は
Crを13重量%以上含有し、ダブティル側はCrを1
3重量%以下含有するよう連続的に変化させる工程とを
含むガスタービン用動翼の製造方法。
[Claims] 1. In a gas turbine rotor blade made of a Ni-based alloy, the blade portion is made of a corrosion-resistant alloy and the dovetail portion is made of a high-temperature resistant high-strength alloy, the blade portion is formed of a corrosion-resistant alloy and the dovetail portion is made of a high-temperature-resistant high-strength alloy. 1. A rotor blade for a gas turbine, characterized in that the composition changes continuously so that the strength is higher than the strength of the blade portion. 2. The rotor blade for a gas turbine according to claim 1, wherein cooling holes are provided inside the rotor blade. 3. In claim 1 or 2, the wing portion contains 13% by weight of Cr.
The dovetail part contains 13% by weight of Cr.
Gas turbine rotor blades made of alloys containing the following: 4. In a gas turbine rotor blade made of a Ni-based alloy, in which the blade portion is formed of a corrosion-resistant alloy and the dovetail portion is formed of a high-temperature-resistant high-strength alloy, the composition between the blade portion and the dovetail portion changes continuously. A moving blade for a gas turbine, characterized in that the structure is a columnar crystal structure or a single crystal structure. 5. In a gas turbine rotor blade made of a Ni-based alloy in which the blade portion is formed of a corrosion-resistant alloy and the dovetail portion is formed of a high-temperature high-strength alloy, the composition between the blade portion and the dovetail portion is the same as that of the blade portion. A gas turbine characterized in that the strength is continuously changed so that the strength is higher than the strength, and the structure thereof is a columnar crystal structure or a single crystal structure in the blade part and an equiaxed crystal structure in the dovetail part. moving blades. 6. In any one of claims 1 to 5, the gas turbine rotor blade is integrally manufactured by a unidirectional solidification method in which the rotor blade is drawn from a mold in a direction from the blade portion to the dovetail portion and solidified. Moving blades for gas turbines. 7. The process of pouring the casting raw material into the mold, and the process of relatively pulling the mold out of the high-temperature region to gradually solidify the cast product from one end to the other, and using the time difference in solidification to determine the composition of the cast product. A method for manufacturing a cast product, comprising the step of continuously changing the amount from one end to the other end. 8. The process of pouring the raw material into the mold, and gradually solidifying the cast product by relatively withdrawing the mold from the high-temperature region, and adjusting the degree of vacuum, mold heating temperature, and mold withdrawal speed during the withdrawal to form an alloy. A method for manufacturing a cast product, comprising: controlling the amount of evaporation of the metal in the process, and continuously changing the composition of the cast product. 9. A method for manufacturing a cast product according to claim 7 or 8, comprising the step of continuously changing the composition by additionally charging a casting raw material having a different composition into the mold during drawing of the mold. 10. A step of casting a raw material for a gas turbine rotor blade made of a Ni-based alloy containing Cr into a mold, and a step of relatively pulling out the mold from a high temperature region to gradually solidify the cast product from the blade side to the dovetail side. , the degree of vacuum during the extraction,
The mold heating temperature and mold withdrawal speed are adjusted to control the evaporation amount of Cr in the Ni-based alloy, and the composition of the cast product is adjusted such that the wing side contains 13% by weight or more of Cr and the dovetail side contains 1% or more of Cr.
A method for manufacturing a gas turbine rotor blade, comprising a step of continuously changing the content so that the content is 3% by weight or less.
JP27132289A 1989-10-18 1989-10-18 Gas turbine moving blade and manufacture thereof Pending JPH03134201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27132289A JPH03134201A (en) 1989-10-18 1989-10-18 Gas turbine moving blade and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27132289A JPH03134201A (en) 1989-10-18 1989-10-18 Gas turbine moving blade and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03134201A true JPH03134201A (en) 1991-06-07

Family

ID=17498441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27132289A Pending JPH03134201A (en) 1989-10-18 1989-10-18 Gas turbine moving blade and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03134201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140894A (en) * 2015-02-03 2016-08-08 株式会社Ihi Ni ALLOY CASTING MANUFACTURING METHOD AND Ni ALLOY CASTING
JP2017136641A (en) * 2015-11-15 2017-08-10 ゼネラル・エレクトリック・カンパニイ Casting methods and articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140894A (en) * 2015-02-03 2016-08-08 株式会社Ihi Ni ALLOY CASTING MANUFACTURING METHOD AND Ni ALLOY CASTING
WO2016125575A1 (en) * 2015-02-03 2016-08-11 株式会社Ihi MANUFACTURING METHOD FOR Ni ALLOY CASTING AND Ni ALLOY CASTING
US10421121B2 (en) 2015-02-03 2019-09-24 Ihi Corporation Method of manufacturing Ni alloy casting and Ni alloy casting
JP2017136641A (en) * 2015-11-15 2017-08-10 ゼネラル・エレクトリック・カンパニイ Casting methods and articles

Similar Documents

Publication Publication Date Title
JP7368641B2 (en) Nickel-based high temperature alloys, their manufacturing methods, parts and uses
US3847203A (en) Method of casting a directionally solidified article having a varied composition
CN112921206B (en) High gamma prime content nickel-base superalloy powder for additive manufacturing, method of use thereof, and nickel-base superalloy component
CN100460543C (en) High strength antithermal corrosion low segregation directional high temp alloy
KR0185206B1 (en) Gas turbine, gas turbine blade used therefor and manufacturing method for gas turbine blade
CN105420554B (en) Heat corrosion resistant directionally-solidified nickel-based high temperature alloy and preparation method thereof
CN108396200B (en) A kind of cobalt base superalloy and preparation method thereof and the application in heavy duty gas turbine
US20100071812A1 (en) Unidirectionally-solidification process and castings formed thereby
JPH11131163A (en) Ni-base single crystal alloy and its production
CN108441741B (en) High-strength corrosion-resistant nickel-based high-temperature alloy for aerospace and manufacturing method thereof
US20130022803A1 (en) Unidirectionally-solidification process and castings formed thereby
US4637448A (en) Method for production of combustion turbine blade having a single crystal portion
CN109321786A (en) A kind of cobalt base superalloy and preparation method thereof
CN108913952A (en) A kind of high temperature alloy and preparation method thereof
CN112981186B (en) High-temperature alloy with low-layer fault energy, structural component and application thereof
CN109371288A (en) The nickel-base high-temperature single crystal alloy and its manufacturing method of low rhenium, high-intensitive corrosion and heat resistant
CN114606413B (en) High-temperature alloy for additive manufacturing and application thereof
Lacaze et al. Directionally Solidified Materials: Nickel‐base Superalloys for Gas Turbines
US4184900A (en) Control of microstructure in cast eutectic articles
JPH0119992B2 (en)
CN114737072B (en) K417G nickel-based high-temperature alloy refining preparation and forming method
JPH03134201A (en) Gas turbine moving blade and manufacture thereof
CA1068454A (en) Control of microstructure in cast eutectic articles
CN109554584A (en) A kind of nickel-base alloy, preparation method and manufacture article
CN109554580A (en) A kind of nickel-base alloy, preparation method and manufacture article