JPH03132173A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH03132173A
JPH03132173A JP1268898A JP26889889A JPH03132173A JP H03132173 A JPH03132173 A JP H03132173A JP 1268898 A JP1268898 A JP 1268898A JP 26889889 A JP26889889 A JP 26889889A JP H03132173 A JPH03132173 A JP H03132173A
Authority
JP
Japan
Prior art keywords
transfer pulse
image sensor
transfer
circuit
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1268898A
Other languages
Japanese (ja)
Other versions
JP3323494B2 (en
Inventor
Toshiro Kinugasa
敏郎 衣笠
Takuya Imaide
宅哉 今出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26889889A priority Critical patent/JP3323494B2/en
Priority to US07/595,364 priority patent/US5060074A/en
Priority to KR90016519A priority patent/KR940006174B1/en
Publication of JPH03132173A publication Critical patent/JPH03132173A/en
Application granted granted Critical
Publication of JP3323494B2 publication Critical patent/JP3323494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To attain smooth picture movement by moving an area of a picture element for normal transfer while 2-line simultaneous readout is implemented at a pitch of one picture element. CONSTITUTION:The device is provided with an image pickup element 100, a scanning pulse generating circuit 102 supplying a scanning pulse for signal transfer to the image pickup element 100, and a scanning picture element area control circuit 103 supplying a control signal to the scanning pulse generating circuit 102 and the combination of vertical adjacent 2 picture elements read simultaneously by the control signal is deviated sequentially at one picture element pitch. Thus, the area of the picture element for 2-line simultaneous readout and for normal transfer, that is, the scanning picture element area is moved at a pitch of one picture element. Thus, smooth picture movement is realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は撮像装置に係わシ、特に撮像素子の信号を読出
す領域を変化させることを特徴とする撮像装置と関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an imaging device, and particularly to an imaging device characterized by changing a region from which signals of an imaging element are read.

〔従来の技術〕[Conventional technology]

近年、撮像装置は小形化、軽量化が進み、また、レンズ
のズーム倍率も高倍率化の傾向にあシ、手持ち撮影時に
は手振れによる画像振れが発生しやすくなっている。こ
の画像振れを抑圧する従来技術としては、lF#開昭d
o−143550号公報に記載されている方法が知られ
ている◎上記技術は。
In recent years, imaging devices have become smaller and lighter, and the zoom magnification of lenses has also tended to be higher, making it easier for image blur due to hand-held camera shake to occur during hand-held shooting. As a conventional technology to suppress this image blur, IF #Kaisho d
The method described in Japanese Patent No. 0-143550 is known. ◎The above technique is.

回転ジャイロで撮像装置の振れを検出し、その検出結果
に基づいて、レンズから撮像素子に至るまでの光学系を
動かすか、撮像素子の信号転送を高速転送と通常転送に
分けて、高速転送の転送個数を制御するものであシ、後
者は装置の小形化が可能であるという特徴を有する。
The vibration of the imaging device is detected by a rotating gyro, and based on the detection results, the optical system from the lens to the imaging device is moved, or the signal transfer of the imaging device is divided into high-speed transfer and normal transfer. The number of transfers is controlled, and the latter has the feature that it is possible to downsize the device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来技術は、撮像素子の重置方向2
画素を同時に読出す2行同時読出しについての配慮が表
されていなかった。この2行同時耽出しは%特に7レー
1残像を無くすための必要不可欠な方法であ〕12行同
時読出しを行ないながら、上記高速転送数を増減させる
と、通常転送を行なう画素の領域が最小でも2画素ピッ
チの単位でしか移動できないので、画像振れを抑圧した
映像はぎこちない動きとなってしまうという問題がちり
九〇 本発明の目的は、2行同時読出しを行ないながら1通常
転送を行なう画素の領域を1画素ピッチで移動できるよ
うにし、スムーズな画像の動きとなるよう和する仁とに
ある。
However, the above-mentioned conventional technology has two
No consideration was given to simultaneous readout of two rows in which pixels are read out simultaneously. This simultaneous reading of two rows is an indispensable method to eliminate the 7-ray 1 afterimage.) By increasing or decreasing the number of high-speed transfers mentioned above while reading 12 rows simultaneously, the pixel area for normal transfer can be minimized. However, since it can only be moved in units of 2 pixel pitches, there is a problem that the image with suppressed image blur becomes jerky. The goal is to allow the area to move at a pitch of one pixel, and to achieve smooth image movement.

(11題を解決するための手段〕 上記目的を達成するために、撮像素子と、該撮像素子に
信号転送用の走査パルスを供給する走査パルス発生回路
と、該走査パルス発生回路に制御信号を供給する走査画
素領域制御回路を配し、上記制御信号によって同時に胱
出す1直隣接2画素の組み合わせを、1画素ピッチで序
々にずらせる。
(Means for Solving Problem 11) In order to achieve the above object, an image sensor, a scan pulse generation circuit that supplies a scan pulse for signal transfer to the image sensor, and a control signal to the scan pulse generation circuit are provided. A scanning pixel area control circuit for supplying the scanning pixel area is provided, and the combinations of two directly adjacent pixels that are simultaneously exposed are gradually shifted by one pixel pitch according to the control signal.

〔作用〕[Effect]

同時に読出す垂直隣接2画素の組み合わせを、1画素ピ
ッチで序々にずらせると、信号を通常転送する画素の領
域を1画素ピッチで移動させることができるので、映像
の動きはスムーズになる。
By gradually shifting the combination of two vertically adjacent pixels that are read out at the same time by one pixel pitch, the pixel area where signals are normally transferred can be moved by one pixel pitch, resulting in smooth video movement.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図によシ説明する。同図
において100は撮像素子、101は信号処理回路、1
02は転送パルス発生回路、1o3は走査画素領域制御
回路である・また、同図には転送パルス発生回路102
の具体例を破線で示しておj5.104は合成回路、1
o5は通常転送パルス発生回路、106は高速転送パル
ス発生回路であるも まず撮像素子100の動作を説明する口撮像素子はCC
Dff1とMOS型に大別され、第2図にCCD型の代
表的な撮像索子を示す。同図において1はホトダイオー
ド、2は垂直CCD、5は水平CCDで6D、ホトダイ
オード1はm行n列配されてお)、添字で行と列の番号
を示している。ホトダイオード1に蓄積した信号電荷は
転送パルスφマ1〜ha Kよりて垂直C0D2に転送
され、更に、順次水平〇CDに転送されて、図には省略
しているが、水平転送パルスによって出力される。
An embodiment of the present invention will be explained below with reference to FIG. In the figure, 100 is an image sensor, 101 is a signal processing circuit, and 1
02 is a transfer pulse generation circuit, and 1o3 is a scanning pixel area control circuit. Also, in the same figure, a transfer pulse generation circuit 102 is shown.
A specific example is shown with a broken line, j5.104 is a synthesis circuit, 1
o5 is a normal transfer pulse generation circuit, and 106 is a high-speed transfer pulse generation circuit.First, the operation of the image pickup device 100 will be explained.The mouth image pickup device is CC.
It is broadly classified into Dff1 and MOS type, and FIG. 2 shows a typical CCD type imaging probe. In the figure, 1 is a photodiode, 2 is a vertical CCD, 5 is a horizontal CCD (6D), and the photodiodes 1 are arranged in m rows and n columns), and the row and column numbers are indicated by subscripts. The signal charge accumulated in the photodiode 1 is transferred to the vertical C0D2 by the transfer pulses φma1 to haK, and then sequentially transferred to the horizontal CD, and is output by the horizontal transfer pulse, although it is not shown in the figure. Ru.

信号転送の様子を%%に2行同時読出しに着目して第5
図〜第6図を用いて説明する。第5図は第(21−1)
行のホトダイオードの信号521−1と、第(21)行
Oホトダイオードの信号S21とを同時に読出す場合の
転送パルスのタイきングチャートを示す。ここで1は自
然数である・期間T、でホトダイオード1から垂直CC
D2に信号S1を転送し、時刻t1〜t8で水平C(:
D 5に転送する。
Part 5 focuses on the simultaneous reading of two lines in terms of signal transfer.
This will be explained using FIGS. Figure 5 is number (21-1)
A timing chart of transfer pulses is shown when the signal 521-1 of the row photodiode and the signal S21 of the (21)th row O photodiode are read out simultaneously. Here, 1 is a natural number. During period T, vertical CC from photodiode 1
The signal S1 is transferred to D2, and the horizontal C(:
Transfer to D5.

その様子を第4図に示す。時刻t1で信号S2ト1とS
Ztを混合し、時刻taまでに信号Sf*S2  を水
平CCD5tで転送して順次読出す。次の水平期間も同
様に転送して時刻t9には信号Si*S4を水平CCl
115に転送する。菖5図は第(21)行Oホトダイオ
ードの信号S21と、第(21+1)行のホトダイオー
ドの信号S2□や、とを同時に読出す場合の転送パルス
のタイミングチャートを示す。
The situation is shown in Figure 4. At time t1, signals S2 and S
Zt is mixed, and the signal Sf*S2 is transferred by the horizontal CCD 5t and read out sequentially by time ta. The next horizontal period is transferred in the same way, and at time t9, the signal Si*S4 is transferred to the horizontal CCl.
Transfer to 115. Diagram 5 shows a timing chart of transfer pulses when the signal S21 of the O photodiode in the (21st) row and the signal S2□ of the photodiode in the (21+1)th row are read out simultaneously.

信号の転送の様子は第6図に示すように、第5図。The state of signal transfer is shown in FIG. 5, as shown in FIG.

第4図とは1行ずれた組合わせで読出される。通常は、
奇フィールドでは第3図、第4図の信号転送を、偶フィ
ールドでは第5図、第6図の信号転送を行ない、インタ
レースを行なっている。
The combinations are read out one row apart from those in FIG. 4. Normally,
In the odd field, the signal transfer shown in FIGS. 3 and 4 is performed, and in the even field, the signal transfer shown in FIGS. 5 and 6 is performed, thereby performing interlacing.

次にbiosmo代表的な撮像索子を示す・同図におい
て、4は水平シフトレジスタ、5は水平スタートパルス
(iiIN)入力端子、6.7は水平クロック(Hl、
[12)入力端子、8は垂直シフトレジスタ、9は垂直
スタートパルス(vrN)入力端子、10.11は垂直
クロック(Vl、V2)入力i子、129 15はフィ
ールドパルス(F A。
Next, a typical biosmo imaging cable is shown. In the figure, 4 is a horizontal shift register, 5 is a horizontal start pulse (iiIN) input terminal, and 6.7 is a horizontal clock (Hl,
[12) Input terminals, 8 is a vertical shift register, 9 is a vertical start pulse (vrN) input terminal, 10.11 is a vertical clock (Vl, V2) input terminal, 129 15 is a field pulse (FA).

FB)入力端子、14はホト2°イオード、15〜19
はMOSスイッデ、20は信号出力端子である◎また、
輝度信号は第8図に示すように、それぞれの出力信号を
加算して得られる。
FB) Input terminal, 14 is photo 2° iode, 15 to 19
is a MOS switch, 20 is a signal output terminal ◎ Also,
The luminance signal is obtained by adding the respective output signals, as shown in FIG.

第9図、第10図を用いて信号の読出しを説明する◎垂
直スタートパルスWINが入力すると、垂直クロックv
t、vzの周期で重置シフトレジスタ8から順次パルス
P1が出力される。このパルスP1は、フィールドパル
スFA、FBの極性によ#)MOSスイッチ15.16
で振シ分けられてパルスQ1となって、第(21−1)
行と第(21)行のホトダイオード14の信号521−
1eS21が同時に選択され、第9図には省略している
が、水平シフトレジスタ4からのパルスで順次読出され
る。
Signal readout will be explained using FIGS. 9 and 10. ◎When the vertical start pulse WIN is input, the vertical clock v
Pulses P1 are sequentially output from the superposed shift register 8 at periods of t and vz. This pulse P1 depends on the polarity of the field pulses FA and FB.
It is divided into pulses Q1 and pulse (21-1).
The signal 521- of the photodiode 14 in the row and (21)th row
1eS21 are selected at the same time, and although not shown in FIG. 9, they are sequentially read out by pulses from the horizontal shift register 4.

第10図においては、フィールドパルスFA、FBの極
性を反転して、パルスQ1で選択される行の組み合わせ
を1行ずらし、第(21)行と第(21+1)行のホト
ダイオードの信号821と821+1が同時に出力され
る。通常の信号読出しにおいては、奇フィールドで第9
図の信号読出しを、偶フィールドで第10図の信号読出
しを行なってインタレースを行なう・ 次に高速転送を組み合わせた場合について説明する。第
11図は第3図、第5図において、転送パルスφ、4を
代表として、Aフィールドの転送パルスφマ4(A)@
Bフィールドの転送パルスφマ4(B)における信号出
力を示している。この転送パルスに1それぞれN個の高
速転送パルスを付加したφ、(AIN)φマn(B*N
)では、信号は第12図に示すように2N行ずれて通常
転送で読出される。
In FIG. 10, the polarities of the field pulses FA and FB are inverted, and the combination of rows selected by the pulse Q1 is shifted by one row, so that the signals 821 and 821+1 of the photodiodes of the (21)th row and the (21+1)th row are are output at the same time. In normal signal readout, the 9th
The signal readout shown in FIG. 10 is performed in even fields to perform interlacing. Next, a case will be described in which high-speed transfer is combined. FIG. 11 shows the transfer pulse φ, 4 of the A field as a representative in FIGS. 3 and 5.
It shows the signal output in the transfer pulse φ master 4 (B) of the B field. This transfer pulse is added with N high-speed transfer pulses, (AIN)φman (B*N
), the signal is read out by normal transfer with a shift of 2N lines as shown in FIG.

この時の走査画素領域は第2N行から始まる・ことで、
走査画素領域を1行ずらした場合を第13図に示す・第
13図OAフィールドにおいて、第12図OBフィール
ドと同じ転送パルスφy4(B*N)を用いることkよ
シ、1行ずれた組み合わせで信号が読出される。第13
図のBフィールドにおいては、第12図の転送パルスφ
マ4(A、N)に高速転送を1個追加した転送パルスφ
74(AsN+1)を用いることにょシ、1行ずれた組
み合わせで信号が読出される。
At this time, the scanning pixel area starts from the 2Nth row.
Figure 13 shows the case where the scanning pixel area is shifted by one line.In the OA field in Figure 13, the same transfer pulse φy4 (B*N) as in the OB field in Figure 12 is used, but the combination is shifted by one line. The signal is read out. 13th
In field B in the figure, the transfer pulse φ in FIG.
Transfer pulse φ with one high-speed transfer added to master 4 (A, N)
By using 74 (AsN+1), signals are read out in combinations shifted by one row.

次にMOS聾の撮像素子の場合について説明する。第1
4図は第9図、第10図においてパルスFA、FB、W
IN、Vlを代表として、N個の高速パルスを付加した
時の信号読出しを示す0CCD型と同様に、N個の高速
パルスを付加することで、走査画素領域は第2N行から
始まる・ことで、走査画素領域を1行ずらした場合を第
15図に示す。第15図OAフィールドにおいて、第1
4図OBフィールドのパルスを用いるととくよシ、1行
ずれた組み合わせで信号が読出される。第15図OBフ
ィールドにおいては、第14図のパルスに高速パルスを
1個追加することによシ、1行ずれた組み合わせで信号
が読出される。
Next, the case of a MOS deaf image sensor will be explained. 1st
Figure 4 shows pulses FA, FB, W in Figures 9 and 10.
Similar to the 0CCD type, which shows signal readout when N high-speed pulses are added using IN and Vl as representatives, by adding N high-speed pulses, the scanning pixel area starts from the 2Nth row. FIG. 15 shows a case where the scanning pixel area is shifted by one line. In the OA field in Figure 15, the first
In particular, when the pulses in the OB field in FIG. 4 are used, signals are read out in combinations shifted by one row. In the OB field of FIG. 15, by adding one high-speed pulse to the pulses of FIG. 14, signals are read out in a combination shifted by one row.

水平和関してはインタレースを行なわないので、単純に
高速転送の個数を変化させればよいので、説明は省略す
る。
Regarding water peace, since interlacing is not performed, it is sufficient to simply change the number of high-speed transfers, so a description thereof will be omitted.

以上の説明を要約すると、第1図に示す通常転送パルス
制御信号Fでどちらのフィールドの通常転送パルスを撮
像素子100に供給するかを制御し、高速パルス数制御
信号m、nでそれぞれ垂直。
To summarize the above description, the normal transfer pulse control signal F shown in FIG. 1 controls which field's normal transfer pulse is to be supplied to the image sensor 100, and the high-speed pulse number control signals m and n control vertical transfer pulses, respectively.

水平の高速パルス数を制御すれば良い・例えば、垂直の
一方向に1行ずらせる場合のフローチャートを第16図
に示す。このフローチャートに従って、転送パルス発生
回路102は転送パルスP(F、m、n)を出力する。
The number of horizontal high-speed pulses can be controlled. For example, a flowchart for shifting one line in one vertical direction is shown in FIG. According to this flowchart, transfer pulse generation circuit 102 outputs transfer pulse P(F, m, n).

ここでrは通常転送パルスがAフィールド用かBフィー
ルド用かを表わし、m、nはそれぞれ垂直、水平の高速
パルス数を表わす。ここでは、垂直の一方向lIC1行
ずらせる場合を示したが、この反対方向でも、あるいは
複数行ずらせる場合も同様にできる。また、以上の説明
から明らかなように、2フィールドに渡って連続して走
査画素領域を変化させる場合には、Aフィールド用、あ
るいはBフィールド用の通常転送パルスを連続して撮像
素子100に供給することになる。
Here, r represents whether the normal transfer pulse is for the A field or the B field, and m and n represent the number of vertical and horizontal high speed pulses, respectively. Here, the case where the IC is shifted by one line in one vertical direction is shown, but the same can be done in the opposite direction or the case where it is shifted by multiple lines. Furthermore, as is clear from the above explanation, when changing the scanning pixel area continuously over two fields, normal transfer pulses for A field or B field are continuously supplied to the image sensor 100. I will do it.

また1通常転送パルスの切換え、及び高速転送パルス数
の切換えは垂直帰線期間で行なうことだよシ、映像信号
の乱れを防げるので、制御信号F。
In addition, the switching of the normal transfer pulse and the number of high-speed transfer pulses should be performed during the vertical retrace period.In order to prevent disturbance of the video signal, control signal F is used.

m、nの変化は垂直帰線期間で行なうことが望ましい・ 第17図に、画像振れ抑圧の実施例を示す@同図におい
て104は動き検出回路である◇動き検出回路は角速度
センナを用いて撮像装置の振れを検出しても良いし、映
像信号から振れを検出しても良い。動き検出回路で画像
がどの方向に何画素分動いたかを表わす動き検出信号を
走査画素領域制御回路に供給し、上記検出信号に基づい
て走査画素領域を制御する・ 第18図に、画面をスクロールする実施例を示す。同図
において105はカウンタ回路である。
It is desirable to change m and n during the vertical retrace period. Figure 17 shows an example of image blur suppression. In the figure, 104 is a motion detection circuit. The motion detection circuit uses an angular velocity sensor. The shake of the imaging device may be detected, or the shake may be detected from the video signal. The motion detection circuit supplies a motion detection signal indicating how many pixels the image has moved in which direction to the scanning pixel area control circuit, and controls the scanning pixel area based on the detection signal. An example is shown below. In the figure, 105 is a counter circuit.

カウンタ回路によシ、序々に値が増加、あるいは減少す
る制御信号を走査画素領域制御回路に供給することによ
シ、序々に画像がモニタ画面上で上がったシ下がったシ
、あるいは左右に移動するスクロールをスムーズな動き
で実現することができる・ 〔発明の効果〕 本発明によれば、2行同時読出しを行ないながら、通常
転送を行なう画素の領域、すなわち走査画素領域を1画
素ピッチで移動させることができるので、スムーズな画
像の動きを実現することができる。
By supplying a control signal whose value increases or decreases gradually to the scanning pixel area control circuit, the counter circuit causes the image to gradually rise, fall, or move left or right on the monitor screen. [Effects of the Invention] According to the present invention, while reading two lines simultaneously, the pixel area where normal transfer is performed, that is, the scanning pixel area, is moved at a one-pixel pitch. Therefore, smooth image movement can be realized.

第1図の撮像素子の具体構造例と動作の説明を示す図、
第7図〜第10図は第1図の撮像素子の別の具体構造例
と動作の説明を示す図、第11図〜第16図は第1図の
動作を説明する図、第17図は別の実施例を示す図、第
18図は更に別の実施例を示す図である。
A diagram showing an example of a specific structure and an explanation of the operation of the image sensor shown in FIG.
7 to 10 are diagrams showing another specific structural example and explanation of the operation of the image sensor shown in FIG. 1, FIGS. 11 to 16 are diagrams explaining the operation of FIG. 1, and FIG. FIG. 18 is a diagram showing still another embodiment.

100・・・撮像素子、102・・・転送パルス発生回
路、10S・・・走査画素領域制御回路。
100...Imaging element, 102...Transfer pulse generation circuit, 10S...Scanning pixel area control circuit.

Claims (1)

【特許請求の範囲】 1、撮像素子(100)と、 該撮像素子から出力する信号を処理して映像信号を生成
する信号処理回路(101)と、上記撮像素子から信号
を読出すための転送パルスを上記撮像素子に供給する転
送パルス発生回路(102)と、 上記撮像素子の走査画素領域を制御する制御信号を上記
転送パルス発生回路に供給する走査画素領域制御回路(
103)と、 を有し、 上記撮像素子に配列され、垂直方向に隣接する画素の信
号を同時に読出し、かつ、走査画素領域を最小1画素ピ
ッチで変化させるように構成されることを特徴とする撮
像装置。 2、撮像素子(100)と、 該撮像素子から出力する信号を処理して映像信号を生成
する信号処理回路(104)と、上記撮像素子から信号
を読出すための転送パルスを上記撮像素子に供給する転
送パルス発生回路(102)と、 上記撮像素子の走査画素領域を制御する制御信号を上記
転送パルス発生回路に供給する走査画素領域制御回路(
103)と、 を有し、 上記撮像素子に配列され、垂直方向に隣接する画素の信
号を上記転送パルスによって同時に読出し、かつ、上記
制御信号が変化しない時には上記転送パルス発生回路は
奇フィールド用の転送パルスと偶フィールド用の転送パ
ルスを交互に出力し、上記制御信号に一定の変化が生じ
た場合には、奇フィールド用あるいは偶フィールド用の
転送パルスを連続して出力するように構成されることを
特徴とする撮像装置。 3、上記転送パルス発生回路は、 通常転送パルス発生回路(105)と、 高速転送パルス発生回路(106)と、 該通常転送パルス発生回路から出力される通常転送パル
スと該高速転送パルス発生回路から出力される高速転送
パルスとを合成する合成回路(104)と、 を有し、 走査画素領域においては上記通常転送パルスで信号を読
出すように構成される請求項1または請求項2に記載の
撮像装置。 4、上記走査画素領域の変化、あるいは上記転送パルス
の切換えの周期を、フィールド周期、あるいはフィール
ド周期の倍数とした請求項1、2または3に記載の撮像
装置。 5、上記転送パルスを垂直ブランキング期間内で切換え
る請求項1、2または3に記載の撮像装置。 6、上記映像信号が振れたことを検出する動き検出回路
(104)を有し、上記振れを補正する請求項1、2、
3、4または5に記載の撮像装置。 7、カウンタ回路(105)を有し、画像を垂直、水平
方向にスクロールさせる請求項1、2、3、4または5
に記載の撮像装置。
[Claims] 1. An image sensor (100), a signal processing circuit (101) that processes signals output from the image sensor to generate a video signal, and a transfer circuit for reading signals from the image sensor. a transfer pulse generation circuit (102) that supplies pulses to the image sensor; and a scan pixel area control circuit (102) that supplies the transfer pulse generation circuit with a control signal that controls the scan pixel area of the image sensor.
103), and is arranged in the image sensor and configured to simultaneously read out signals of vertically adjacent pixels, and to change the scanning pixel area at a minimum pitch of one pixel. Imaging device. 2. An image sensor (100), a signal processing circuit (104) that processes a signal output from the image sensor to generate a video signal, and a transfer pulse for reading a signal from the image sensor to the image sensor. a transfer pulse generation circuit (102) for supplying a transfer pulse, and a scanning pixel area control circuit (102) for supplying a control signal for controlling a scanning pixel area of the image sensor to the transfer pulse generation circuit;
103), and when the signals of vertically adjacent pixels arranged in the image sensor are simultaneously read out by the transfer pulse, and when the control signal does not change, the transfer pulse generating circuit reads out the signals of pixels arranged in the image sensor and adjacent in the vertical direction, and when the control signal does not change, the transfer pulse generating circuit It is configured to alternately output transfer pulses and even field transfer pulses, and to continuously output odd field or even field transfer pulses when a certain change occurs in the control signal. An imaging device characterized by: 3. The above-mentioned transfer pulse generation circuit includes a normal transfer pulse generation circuit (105), a high-speed transfer pulse generation circuit (106), and a normal transfer pulse output from the normal transfer pulse generation circuit and the high-speed transfer pulse generation circuit. 3. A synthesis circuit (104) for synthesizing the output high-speed transfer pulses, and configured to read out signals using the normal transfer pulses in the scanning pixel area. Imaging device. 4. The imaging device according to claim 1, 2 or 3, wherein the period of the change in the scanning pixel area or the switching of the transfer pulse is a field period or a multiple of the field period. 5. The imaging device according to claim 1, 2 or 3, wherein the transfer pulse is switched within a vertical blanking period. 6. Claims 1 and 2, further comprising a motion detection circuit (104) for detecting shake of the video signal, and correcting the shake.
6. The imaging device according to 3, 4 or 5. 7. Claim 1, 2, 3, 4 or 5, comprising a counter circuit (105) and scrolling the image in vertical and horizontal directions.
The imaging device described in .
JP26889889A 1989-10-18 1989-10-18 Imaging device and control method of imaging device Expired - Lifetime JP3323494B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26889889A JP3323494B2 (en) 1989-10-18 1989-10-18 Imaging device and control method of imaging device
US07/595,364 US5060074A (en) 1989-10-18 1990-10-10 Video imaging apparatus
KR90016519A KR940006174B1 (en) 1989-10-18 1990-10-17 Video image apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26889889A JP3323494B2 (en) 1989-10-18 1989-10-18 Imaging device and control method of imaging device

Publications (2)

Publication Number Publication Date
JPH03132173A true JPH03132173A (en) 1991-06-05
JP3323494B2 JP3323494B2 (en) 2002-09-09

Family

ID=17464804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26889889A Expired - Lifetime JP3323494B2 (en) 1989-10-18 1989-10-18 Imaging device and control method of imaging device

Country Status (1)

Country Link
JP (1) JP3323494B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549736A1 (en) * 1991-06-17 1993-07-07 Georgia Tech Research Corporation Image reading system
US6963361B1 (en) 1998-02-24 2005-11-08 Canon Kabushiki Kaisha Image sensing method and apparatus capable of performing vibration correction when sensing a moving image

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0549736A1 (en) * 1991-06-17 1993-07-07 Georgia Tech Research Corporation Image reading system
EP0549736B1 (en) * 1991-06-17 1998-01-07 Georgia Tech Research Corporation Image reading system
US6963361B1 (en) 1998-02-24 2005-11-08 Canon Kabushiki Kaisha Image sensing method and apparatus capable of performing vibration correction when sensing a moving image
US7518635B2 (en) 1998-02-24 2009-04-14 Canon Kabushiki Kaisha Method and apparatus for image sensing

Also Published As

Publication number Publication date
JP3323494B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
US5060074A (en) Video imaging apparatus
US7839444B2 (en) Solid-state image-pickup device, method of driving solid-state image-pickup device and image-pickup apparatus
EP1148712B1 (en) Solid-state image pickup apparatus
KR100367537B1 (en) Solid state imaging device
JPH01280977A (en) Method and apparatus for displaying slave picture of television system
JP2595077B2 (en) Imaging device
US7671913B2 (en) Method for converting image data, converting circuit for image, and electronic camera
US6809770B1 (en) Imaging device and a digital camera having same
GB2162019A (en) Compensating for camera movement
JPH03132173A (en) Image pickup device
JP3517885B2 (en) Solid-state imaging device, solid-state imaging device image stabilization method, and camera
JPH05236364A (en) High-speed photographing device
JP2002199266A (en) Digital camera and its operation control method
JP2618661B2 (en) Imaging device
JP2010206591A (en) Solid-state imaging apparatus, integrated circuit, and program
JPH10336510A (en) Solid-state image-pickup device
JPH01170280A (en) Solid-state image pickup device
JPH10257380A (en) Solid-state image-pickup device and camera using the same
JPH06253203A (en) Solid-state image pickup element inspecting instrument
JP2006074440A (en) Imaging apparatus
JPH0318186A (en) Telecamera
JP4427538B2 (en) Digital camera and operation control method thereof
JP3483899B2 (en) Electronic imaging device
JPH02231873A (en) Video camera device
JPH0353683A (en) Solid-state image pickup element and image pickup device using same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8