JPH03131808A - Projection lens - Google Patents

Projection lens

Info

Publication number
JPH03131808A
JPH03131808A JP26888589A JP26888589A JPH03131808A JP H03131808 A JPH03131808 A JP H03131808A JP 26888589 A JP26888589 A JP 26888589A JP 26888589 A JP26888589 A JP 26888589A JP H03131808 A JPH03131808 A JP H03131808A
Authority
JP
Japan
Prior art keywords
lens
lenses
focal length
negative
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26888589A
Other languages
Japanese (ja)
Other versions
JP2691030B2 (en
Inventor
Hiroshi Kataoka
博 片岡
Kyohei Fukuda
京平 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26888589A priority Critical patent/JP2691030B2/en
Publication of JPH03131808A publication Critical patent/JPH03131808A/en
Application granted granted Critical
Publication of JP2691030B2 publication Critical patent/JP2691030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain a projection image which has a bright peripheral part by composing the projection lens of 1st - 7th lenses, i.e. seven lenses in order and compensating aberrations under specific conditions. CONSTITUTION:The 1st lens L1 compensate a spherical aberration and a comatic aberration, the 2nd lens L2 compensates a chromatic aberration, and the 3rd lens L3 compensates an aberration pertaining to an increase in the diameter; and the 4th lens L4 and 5th lens L5 has refracting power which is the majority of the refracting power of the whole system, and compensates a chromatic aberration by the combination of the positive lens with the negative lens, the 6th lens L6 compensates the aberration of the circumferential part of a picture plane, and the 7th lens L7 compensates curvature of field. Then requirements shown by inequalities I - IV are met and at least one surface of the lenses L1, L3, and L6 is made aspherical. In the inequalities I - IV, nu2 is the Abbe number of the 2nd lens L2, nu4 and nu5 are the Abbe numbers of the positive and negative lenses of the 4th and 5th lenses L4 and L5, (f) is the focal length of the whole system, f2 is the focal length of the 2nd lens L2, and f5 is the focal length of the negative lens of the 4th and 5th lenses L4 and L5. Consequently, an image with high definition can be projected brightly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、陰極線管の画面上の高精細画像を拡大投写す
るのに好適なプロジェクタ用投写レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projection lens for a projector suitable for enlarging and projecting a high-definition image on a screen of a cathode ray tube.

[従来の技術] 近年、高精細テレビジョンの出現により、F値が1.0
程度と明るく、かつ100OTV本の映像を拡大投写で
きるプロジェクタ用投写レンズが求められている。
[Prior art] In recent years, with the advent of high-definition television, the F value has increased to 1.0.
There is a need for a projection lens for a projector that is reasonably bright and capable of enlarging and projecting 100 OTV images.

一般にプロジェクタは、独立した赤、緑、青3本の陰極
線管の画像それぞれを、色毎に別の3本の投写レンズを
用いて投写するため、色収差の補正は不必要とされて来
た。しかし、100OTV本の映像を投写する場合、螢
光体の発光スペクトルによって生ずる色収差を補正する
必要がある。
In general, a projector projects images from three independent red, green, and blue cathode ray tubes using three different projection lenses for each color, so correction of chromatic aberration has been considered unnecessary. However, when projecting 100 OTV images, it is necessary to correct chromatic aberration caused by the emission spectrum of the phosphor.

特開昭61−249014号公報、特開昭64−322
15号公報には、F値1.05程度で色収差補正を施し
た投写レンズが記載されている。
JP-A-61-249014, JP-A-64-322
No. 15 describes a projection lens that is corrected for chromatic aberration with an F value of about 1.05.

しかし、これらのレンズは大口径化に伴う色収差の補正
が不十分で、100OTV本程度の高品位画像を投写す
る場合には結像性能が不十分である。
However, these lenses are insufficiently corrected for chromatic aberration due to their large apertures, and their imaging performance is insufficient when projecting high-quality images of about 100 OTVs.

例えば、特開昭61−249014号公報の第1実施例
では焦点距離100−のレンズで、d線とFIIAの縦
色収差が、llの高さにかかわらず、約0.8mである
。しかし、瞳の高さが高くなると結像性能に影響する横
色収差も大きくなるため、瞳の高さが高くなるにつれて
縦色収差を小さくする必要がある。
For example, in the first example of JP-A-61-249014, the longitudinal chromatic aberration of the d-line and FIIA for a lens with a focal length of 100- is about 0.8 m regardless of the height of ll. However, as the pupil height increases, the lateral chromatic aberration that affects imaging performance also increases, so as the pupil height increases, it is necessary to reduce the longitudinal chromatic aberration.

[発明が解決しようとする課題] 上記従来の技術は、収差の補正が不十分であり、特に大
口径化に伴う色収差の補正が不足していた。
[Problems to be Solved by the Invention] The above-mentioned conventional techniques are insufficient in correcting aberrations, and in particular, are insufficient in correcting chromatic aberrations associated with larger apertures.

本発明はF値が1.051i度と明るく、かつ高品位画
像の投写を可能とし、更に、ガラスパネルの内面に密着
して螢光体層との間に干渉膜を設け。
The present invention has a bright F value of 1.051i degrees, and enables the projection of high-quality images.Furthermore, an interference film is provided in close contact with the inner surface of the glass panel and between it and the phosphor layer.

発光方向に指向性を持たせた陰極線管と組合せても周辺
部が明るい投写画像が得られる投写レンズを提供するこ
とを目的とする。
It is an object of the present invention to provide a projection lens capable of obtaining a projected image with a bright peripheral area even when combined with a cathode ray tube having directivity in the light emission direction.

[課題を解決するための手段] 上記目的を達成するために本発明においては。[Means to solve the problem] In order to achieve the above object, the present invention.

スクリーン側から、少なくとも1面に非球面をもつ正の
第1レンズ、負の第2レンズ、少なくとも1面に非球面
をもつ正の第3レンズ、正レンズと負レンズ又は負レン
ズと正レンズよりなる第4、第5レンズ、少なくとも1
面に非球面をもつ負の第6レンズ、スクリーン側の面が
強い凹面である第7レンズの順に並んだ7枚のレンズよ
りなる構成とし、大口径、広角にもかかわらず、各種の
収差を充分に補正するようにした。
From the screen side, a positive first lens with an aspherical surface on at least one surface, a negative second lens, a positive third lens with an aspherical surface on at least one surface, a positive lens and a negative lens, or a negative lens and a positive lens. the fourth and fifth lenses, at least one
The structure consists of seven lenses arranged in the following order: a negative sixth lens with an aspheric surface, and a seventh lens with a strongly concave surface facing the screen, and despite its large aperture and wide angle, it eliminates various aberrations. I have made sufficient corrections.

〔作用〕[Effect]

本発明レンズの第1レンズは球面収差とコマ収差を補正
し、第2レンズは色収差を補正している。
The first lens of the lens of the present invention corrects spherical aberration and coma, and the second lens corrects chromatic aberration.

第3レンズは大口径化に伴う収差を補正している。The third lens corrects aberrations caused by increasing the aperture.

第4、第5レンズは全系の大部分の屈折力を有しており
、正レンズと負レンズの組合せにより色収差を補正して
いる。第6レンズは両面周辺部の収差を補正しており、
第7レンズは像面湾曲補正用である。
The fourth and fifth lenses have most of the refractive power of the entire system, and correct chromatic aberration by a combination of a positive lens and a negative lens. The sixth lens corrects aberrations in the peripheral areas on both sides,
The seventh lens is for field curvature correction.

上記の補正機能を十分に果たすためには、第1レンズ、
第3レンズ、第6レンズのそれぞれ少なくとも1面に非
球面を用いることが望ましい、第4、第5レンズをガラ
スとすれば、温度によるフォーカスのずれの小さなレン
ズを実現することが可能である。
In order to fully perform the above correction function, the first lens,
It is desirable to use an aspherical surface on at least one surface of each of the third lens and the sixth lens.If the fourth and fifth lenses are made of glass, it is possible to realize a lens with small focus shift due to temperature.

色収差を有効に取り除くためには、以下の条件を満たす
ことが望ましい。
In order to effectively remove chromatic aberration, it is desirable to satisfy the following conditions.

ν、くν、     ・・・(1) ν、〈ν、      ・・・(2) −0,5<f/f、<−0,3・・・(3)−0,6<
f/f、<−0,4・ (4)但し、ν3は第2レンズ
のアツベ数、νいν、は第4.第5レンズにおいて、そ
れぞれ正レンズ。
ν, kuν, ...(1) ν, <ν, ...(2) -0,5<f/f, <-0,3...(3) -0,6<
f/f, <-0,4. (4) However, ν3 is the Abbe number of the second lens, and ν is the fourth lens. Each of the fifth lenses is a positive lens.

負レンズのアツベ数、fは全系の焦点距離、f3は第2
レンズの焦点距離、f、は第4、第5レンズにおける負
レンズの焦点距離である。
The Abbe number of the negative lens, f is the focal length of the entire system, and f3 is the second
The focal length of the lens, f, is the focal length of the negative lens among the fourth and fifth lenses.

(1)、(2)式は縦色収差を補正するための条件であ
る。(3)、(4)式は大口径化に伴う横色収差を補正
する条件である。(3)、(4)式の下限を超えると、
負レンズの屈折率が大きくなり、近軸から離れた光線の
色収差が大きくなる。
Equations (1) and (2) are conditions for correcting longitudinal chromatic aberration. Equations (3) and (4) are conditions for correcting lateral chromatic aberration that accompanies an increase in aperture. If the lower limit of equations (3) and (4) is exceeded,
The refractive index of the negative lens increases, and the chromatic aberration of light rays away from the paraxial axis increases.

(3)、(4)式の1哄を超えると色収差の補正能力が
小さくなる。
If the value exceeds 1 in equations (3) and (4), the ability to correct chromatic aberration decreases.

レンズのF値を小さくするためには、以下の条件を満た
すことすが望ましい。
In order to reduce the F value of the lens, it is desirable to satisfy the following conditions.

0.4<f/f、<0.6  ・ (5)0.6<D/
f<0.8   ・・・(6)但し、fは全系の焦点距
離、flは第1レンズの焦点距離、Dは第5レンズと陰
極線管の螢光面との間の距離である。
0.4<f/f, <0.6 ・ (5) 0.6<D/
f<0.8 (6) where f is the focal length of the entire system, fl is the focal length of the first lens, and D is the distance between the fifth lens and the fluorescent surface of the cathode ray tube.

(5)式は全系における第1レンズのパワー配分を規定
しており、(6)式は第4、第5レンズの位置を規定し
ている。(5)式の規定により、第1レンズに大きなパ
ワーを持たせると全系のパワーがスクリーン側によるた
め、第4.第5レンズを螢光面側に寄せることができる
。その効果により螢光面中心の光のレンズによる取り込
み角度を拡げることが可能になる。
Equation (5) defines the power distribution of the first lens in the entire system, and Equation (6) defines the positions of the fourth and fifth lenses. According to formula (5), if the first lens has a large power, the power of the entire system will depend on the screen side. The fifth lens can be moved closer to the fluorescent surface side. This effect makes it possible to widen the angle at which light from the center of the fluorescent surface is taken in by the lens.

(6)式の上限を超えると螢光面中心の光のレンズによ
る取り込み角度が小さくなりF[を小さくすることが不
可能になる。(6)式の下限を超えると画面周辺部の収
差を低減することが不可能になる。
If the upper limit of equation (6) is exceeded, the angle at which the light at the center of the phosphorescent surface is captured by the lens becomes small, making it impossible to reduce F[. If the lower limit of equation (6) is exceeded, it becomes impossible to reduce aberrations at the periphery of the screen.

陰極線管のガラスパネルの内面に密着して螢光体層との
間に干渉膜を設け、発光方向に指向性を持たせた陰極線
管がニス アイ デイ−88ダイジエスト(SID  
DIGEST  88)の第218〜221頁に紹介さ
れている。この干ta付き陰極線管は螢光面に直角に近
い方向の輝度を増やし、その方向と大きく異なる方向の
輝度を減らす特性があり、この陰極線管を用いれば、プ
ロジェクタの輝度を大きく上げることができる。
A cathode ray tube that adheres closely to the inner surface of the glass panel of the tube and has an interference film between it and the phosphor layer to provide directivity in the direction of light emission is the Niss I Day-88 Digest (SID).
DIGEST 88), pages 218-221. This cathode ray tube with a lamp has the characteristic of increasing the brightness in a direction close to perpendicular to the fluorescent surface and reducing the brightness in a direction that is significantly different from that direction, and by using this cathode ray tube, the brightness of a projector can be greatly increased. .

第2図にSIDの資料の第4図から作った干渉膜付き陰
極線管の輝度分布を、パネル螢光面の法線となす角度α
に対して示す、縦軸は干渉膜のない陰極線管の輝度を1
としたときの相対輝度を示す、αが0〜35度の場合、
干渉膜付き陰極線管は通常の陰極線管より輝度が高い、
F1、0程度のレンズでは、螢光面画面中心から出た光
でレンズに取り込まれた光は陰極線管パネルガラスに到
達するまでに最大26程度拡がるため、干渉膜付き陰極
線管を用いれば、従来通常の陰極線管の場合よりも明る
い画像を投写することができる。
Figure 2 shows the brightness distribution of a cathode ray tube with an interference film, which was created from Figure 4 of the SID data, at an angle α between the normal to the panel's fluorescent surface.
The vertical axis shows the brightness of a cathode ray tube without an interference film at 1
When α is 0 to 35 degrees, which indicates the relative brightness when
Cathode ray tubes with interference films have higher brightness than regular cathode ray tubes.
With an F1.0 lens, the light emitted from the center of the phosphor screen and captured by the lens will spread by up to 26 degrees before reaching the cathode ray tube panel glass, so if you use a cathode ray tube with an interference film, It is possible to project brighter images than with ordinary cathode ray tubes.

しかし、画面周辺部の光が、陰極線管パネル面の法線に
対して35度以上の角度で入射する場合。
However, when the light from the periphery of the screen is incident at an angle of 35 degrees or more with respect to the normal to the cathode ray tube panel surface.

周辺光量が劣化する可能性が生じる。これを避けるため
1本発明では、第7レンズのスクリーン側の有効半径H
1と螢光面物高1の光線の光軸からの距離H2の間に下
記の関係が成り立つという条件を付ける。
There is a possibility that the amount of peripheral light will deteriorate. In order to avoid this, in the present invention, the effective radius H of the seventh lens on the screen side is
1 and the distance H2 from the optical axis of the light beam of the fluorescent surface object height 1.

0.77<H1/H2・・・(7) 本発明では、通常の陰極線管を使用した場合、物高1の
光線が螢光面で25度拡がれば周辺光量比30%を確保
でき使用可能である。干渉膜付き陰極線管を用いた場合
、物高1の光束が25度に拡がり、かつ光量が減少しな
いためには、第2図から、物高1の光束が20度以下の
光を取り込む必要がある。そのためHlとH2の間に(
7)式が必要となる。
0.77<H1/H2...(7) In the present invention, when a normal cathode ray tube is used, a peripheral illuminance ratio of 30% can be secured if the light beam at an object height of 1 is spread by 25 degrees on the fluorescent surface. Available for use. When using a cathode ray tube with an interference film, in order for the luminous flux at object height 1 to spread to 25 degrees and the light intensity not to decrease, from Figure 2, it is necessary to capture light whose luminous flux at object height 1 is 20 degrees or less. be. Therefore, between Hl and H2 (
7) Eq.

[実施例] 第1図は本発明第1実施例レンズの構成図である。また
、第11頁の第1表にそのレンズデータを示す、スクリ
ーン側から順に第2レンズL2゜第2レンズL2、第3
レンズI、3、第4レンズL4、第5レンズL5.第6
レンズL6、第7レンズL7.冷却液(エチレングリコ
ールとグリセリンの混合液)E、陰極線管ガラスパネル
Pから構成されている。第1表中、fは全系の焦点距離
、Rは曲率半径、Tは面間隔、CLは有効半径、Nは波
長545nmでの媒質の屈折率、νはd線のアツベ数で
ある。CG、AD、AE、AF、AGは非球面係数であ
り、光軸方向へのレンズ面の変位量2を光軸からの距離
rで表わしたとき、次の式に含まれる係数である。
[Example] FIG. 1 is a block diagram of a lens according to a first example of the present invention. In addition, the lens data is shown in Table 1 on page 11. In order from the screen side, the second lens L2, the second lens L2, and the third lens
Lens I, 3, fourth lens L4, fifth lens L5. 6th
Lens L6, seventh lens L7. It consists of a cooling liquid (mixture of ethylene glycol and glycerin) E and a cathode ray tube glass panel P. In Table 1, f is the focal length of the entire system, R is the radius of curvature, T is the interplanar spacing, CL is the effective radius, N is the refractive index of the medium at a wavelength of 545 nm, and ν is the Abbe number of the d-line. CG, AD, AE, AF, and AG are aspheric coefficients, which are included in the following equation when the displacement amount 2 of the lens surface in the optical axis direction is expressed by the distance r from the optical axis.

第1実施例のレンズは、110インチスクリーン用であ
って1倍率17.7倍、F値1.06、半画角22.4
度である。第1.第3、第6、第7レンズは非球面を用
いたレンズで、第1、第3レンズでコマ収差と球面収差
を、第6レンズで画面周辺部の収差を、第7レンズで像
面湾曲を補正第1表〔I実施卸 f=183.o   F値=1.06 倍坤L17.7   半画*22.[ Na    RT     CL   N     ν
o    O,03397,0 本1  133,85  29.0   g6  1.
4935 57.8* 2  423.74   18
.981 863 −800.0   4.0  86
  1.7921  25.74  800.0   
45.579 86*5 −4974.6   17.
0  86  1.4935 57.Jlネ6 −72
5.47   2.833 86?   117.09
  60.0  84  1.6229 60.38 
−185.0   4.0   &4  1.7921
  6.79 −594.80  32.172 84
$10  813.46  10.687 72  1
.4935 57.8$11  732.91  46
.715 67本12   −82.844    6
.5    64    1.4935   57.8
13   −100.0      17.625  
 67     1.444714    G、0  
 14.0     1.539915 −1000.
0 か・・非球面 非球面係数 CCAD     AE     AF      A
Gl  −6,590893,01610X104−4
.49745X10−” 5.19540X10” −
4,36065X10””2 −7.15697−4.
221137X10’ −4,74774X10−” 
3,98515xlO” −9,76709X10″5
 −3254.50−2.84813XlO” −9,
19185X10”−8,17676XlO”  2.
44160X10”6 −25.2782−2.361
77X10’ −1,20170X10−” 8.E1
641XlO”’  2.85166X10”10 1
20.11O5−6,01091X10°’ −5,6
2218XlO” 3.70942X1σ″−3,72
439XIG”11 44.7333−3.05116
XlO’ −2,88778XlO” 3.40735
110” −2,93989X10”12 −2.67
658−1.67016xlO°’ −1,03298
xlO” 2.97026xlO” −4,42624
xlO”している、第2.第5の凹レンズは、第1.第
4の凸レンズとあわせて色収差補正を行っている。
The lens of the first example is for a 110-inch screen, with a magnification of 17.7 times, an F value of 1.06, and a half angle of view of 22.4.
degree. 1st. The third, sixth, and seventh lenses are lenses that use aspheric surfaces, and the first and third lenses eliminate comatic aberration and spherical aberration, the sixth lens eliminates aberrations at the periphery of the screen, and the seventh lens eliminates field curvature. Corrected Table 1 [I implementation wholesale f=183. o F value=1.06 Double L17.7 Half stroke*22. [ Na RT CL N ν
o O,03397,0 book 1 133,85 29.0 g6 1.
4935 57.8* 2 423.74 18
.. 981 863 -800.0 4.0 86
1.7921 25.74 800.0
45.579 86*5 -4974.6 17.
0 86 1.4935 57. Jl Ne 6 -72
5.47 2.833 86? 117.09
60.0 84 1.6229 60.38
-185.0 4.0 &4 1.7921
6.79 -594.80 32.172 84
$10 813.46 10.687 72 1
.. 4935 57.8$11 732.91 46
.. 715 67 pieces 12 -82.844 6
.. 5 64 1.4935 57.8
13 -100.0 17.625
67 1.444714 G, 0
14.0 1.539915 -1000.
0...Aspherical surface Aspherical surface coefficient CCAD AE AF A
Gl-6,590893,01610X104-4
.. 49745X10-"5.19540X10"-
4,36065X10””2 -7.15697-4.
221137X10'-4,74774X10-"
3,98515xlO"-9,76709X10"5
-3254.50-2.84813XlO” -9,
19185X10”-8, 17676X1O”2.
44160X10"6 -25.2782-2.361
77X10'-1, 20170X10-” 8.E1
641XlO"'2.85166X10"10 1
20.11O5-6,01091X10°'-5,6
2218XlO"3.70942X1σ"-3,72
439XIG”11 44.7333-3.05116
XlO'-2,88778XlO" 3.40735
110”-2,93989X10”12-2.67
658-1.67016xlO°' -1,03298
xlO"2.97026xlO" -4,42624
The second and fifth concave lenses, which have an angle of xlO'', perform chromatic aberration correction together with the first and fourth convex lenses.

このレンズの螢光面における球面収差、非点収差をそれ
ぞれ第3図(、)、(b)に、特高0の横収差を第4図
に示す。
The spherical aberration and astigmatism on the fluorescent surface of this lens are shown in FIGS. 3(a) and 3(b), respectively, and the lateral aberration at zero extra height is shown in FIG. 4.

比較のために、特開昭61−249014号公報に第1
実施例として記載のレンズの球面収差。
For comparison, Japanese Patent Application Laid-Open No. 61-249014
Spherical aberration of lenses described as examples.

非点収差をそれぞれ第5図(a)、(b)に、特高0の
横収差を第6図に示す、上記本発明第1実施例レンズは
この従来例レンズに比べて、焦点距離が1.8倍長いに
もがかわらず、近軸での色収差は約半分になっている。
The astigmatism is shown in FIGS. 5(a) and 5(b), and the lateral aberration at a special height of 0 is shown in FIG. 6. The lens of the first embodiment of the present invention has a focal length that is smaller than that of the conventional lens. Despite being 1.8 times longer, the paraxial chromatic aberration is about half that.

また駄の高さが高い位置では縦色収差がOになる特徴を
もっており、結像性能を表わす横色収差を瞳の高さが高
い位置で小さくするのに有効である。
Furthermore, it has the characteristic that the longitudinal chromatic aberration becomes O at a position where the height of the lens is high, which is effective in reducing the lateral chromatic aberration, which indicates the imaging performance, at a position where the pupil height is high.

本発明レンズと組合せる陰極線管のパネル内面の螢光面
は電子銃側に凸面を向けた球面形吠であり1周辺光量を
多く取り込む形になっている。第1実施例のレンズは周
辺光量比49%を確保している。
The fluorescent surface on the inner surface of the panel of the cathode ray tube used in combination with the lens of the present invention has a spherical shape with the convex surface facing the electron gun side, and is designed to take in a large amount of light per periphery. The lens of the first example secures a peripheral light amount ratio of 49%.

陰極線管パネルガラスの内面、螢光体層との間に干渉膜
を設け、螢光面に直角に近い方向への輝度を向上させた
陰極線管を用いる場合でも、螢光面上で特高1の光は陰
極線管パネルガラスへ、螢光面法線に対して13.7〜
49.2度の角度で入射するため、十分な周辺光量を得
ることがで゛きる。
Even when using a cathode ray tube in which an interference film is provided between the inner surface of the cathode ray tube panel glass and the phosphor layer to improve brightness in a direction close to perpendicular to the phosphor surface, the extra-high 1. The light of 13.7~ to the cathode ray tube panel glass with respect to the normal to the fluorescent surface.
Since the light is incident at an angle of 49.2 degrees, a sufficient amount of peripheral light can be obtained.

第7図に第1実施例の縁壁光体に対するMTF特性を示
す* 490 n m、545nm、590nmの3波
長の相対輝度比を1:3:lで計算し。
FIG. 7 shows the MTF characteristics for the edge wall light body of the first embodiment. *The relative brightness ratio of the three wavelengths of 490 nm, 545 nm, and 590 nm was calculated as 1:3:l.

空間周波数はアスペクト比16:9で算出した。Spatial frequency was calculated using an aspect ratio of 16:9.

1000TV本でも良好なMTF特性を示しており、高
品位テレビジ1ンに使用可能なレンズであることが判る
It shows good MTF characteristics even with 1000 TV lines, indicating that it is a lens that can be used for high-definition television.

第2.第3.第4実施例のレンズデータをそれぞ九第1
4頁の第2表、第15頁の第3表、第16頁の第4表に
、MTF特性をそ九ぞれ第8図、第9図、第10図に示
す。
Second. Third. The lens data of the fourth example is
The MTF characteristics are shown in Table 2 on page 4, Table 3 on page 15, and Table 4 on page 16, and FIGS. 8, 9, and 10, respectively.

各実施例のf/f□、f/fい f/f、、D/f、H
1/ H2の値を第17頁の第5表にまとめて示す、第
3.第4実施例はH1/H2の値が(7)式%式% 第3表(2)3実施卸 f=181.3   FiE=1.05倍≠17.8 
 半画422.4度 RTQ。
f/f□, f/f, f/f, , D/f, H of each example
The values of 1/H2 are summarized in Table 5 on page 17. In the fourth example, the value of H1/H2 is (7) formula % formula % Table 3 (2) 3 implementation wholesale f = 181.3 FiE = 1.05 times ≠ 17.8
Half-stroke 422.4 degrees RTQ.

0.0  3397.0 129.16  26.0  86 328、+5  21.μ5186 −800.0   4.0  86 800.0   47.8’+2 86377.76 
 17.0  86 2・175.3   2.B33 86122.17 
  シt、o   g。
0.0 3397.0 129.16 26.0 86 328, +5 21. μ5186 -800.0 4.0 86 800.0 47.8'+2 86377.76
17.0 86 2・175.3 2. B33 86122.17
Shit, o g.

−1&5.0   4.0  8゜ −614,8644,95880 1203,110,68760 614,2639,60260 −85,36,559,5 −100,013,625B1 0.0   14.0 −1000.0 枦・・非球面 1.4935 1.7921 1.4935 57.8 25.7 57.8 1.6229   ω、3 1.7921  25.7 1.4935 1.4!11.’(5 1,4447 1,5309 57,8 57,8 第4表(2)4実施卸 f=180.2    F値=1.05倍坤L−17.
8   半1i角鴨2.[NaRTCLN     ν o    O,03400,O ml   129.12  22.0  86  1.
4935 57.8本2  315.52  24.1
93 863 −900.0   4.0  86  
1,7921  25.74  900.0   49
.829  部ネ5  お2.36  13.0  8
6  1.4935 57.8*6  44g、6  
 2.5  867  124.66  54.0  
80  1.6229 60.38 −170.0  
 4.0  80  1.7921  25.79 −
526.89  44.717  開本10    B
274,9     10.687   60    
1.4935   57.8to   11g3,5 
  38.994 60本12    −8:11.8
82     6.5     58.5   1.4
935   57.813 −100.0   13.
625 60  1.449714   0.0   
14.0     1.539915 −1000.0 本・・・)四面 非球面係数 CCAD     AE     AF      A
Gl  −7,730733,91417×10”−6
,03Z34xtσ″6.85a55X10°14−4
.48169xlσ”2 1.06483−2,086
75X10’ −9,12774X10”” 1,49
162X10−” −1,60838X10”’5 0
.0  −1.66115X104−5.73876X
10”−3,16367XlO°”  3.29654
xlO”6 0.0  −1.26032X1σ’ −
1,46947X1σ”−1,41114X10”  
1.84366X1σ”10205.764 −7.0
3739X104−5.65617X10” 5.45
082X10” −5,68017X10”11−44
.6086 −4.24523X10−7−6.449
69X10”” 4.19783X10−” −3,2
2195X10−12−3.36074−1.8789
7X10” −8,35774X10” 2.1862
6X10” −2,46664XIO−”を満たしてい
ないが、これは干渉膜付き陰極線管対応となっていない
ためである。
-1&5.0 4.0 8゜-614,8644,95880 1203,110,68760 614,2639,60260 -85,36,559,5 -100,013,625B1 0.0 14.0 -1000.0 ...Aspherical surface 1.4935 1.7921 1.4935 57.8 25.7 57.8 1.6229 ω, 3 1.7921 25.7 1.4935 1.4!11. '(5 1,4447 1,5309 57,8 57,8 Table 4 (2) 4 implementation wholesale f = 180.2 F value = 1.05 times L-17.
8 Half 1i square duck 2. [NaRTCLN ν o O, 03400, O ml 129.12 22.0 86 1.
4935 57.8 pieces 2 315.52 24.1
93 863 -900.0 4.0 86
1,7921 25.74 900.0 49
.. 829 Part 5 O2.36 13.0 8
6 1.4935 57.8*6 44g, 6
2.5 867 124.66 54.0
80 1.6229 60.38 -170.0
4.0 80 1.7921 25.79 -
526.89 44.717 Open book 10 B
274,9 10.687 60
1.4935 57.8to 11g3,5
38.994 60 pieces 12 -8:11.8
82 6.5 58.5 1.4
935 57.813 -100.0 13.
625 60 1.449714 0.0
14.0 1.539915 -1000.0 book...) Four-sided aspheric coefficient CCAD AE AF A
Gl-7,730733,91417×10”-6
,03Z34xtσ''6.85a55X10°14-4
.. 48169xlσ”2 1.06483-2,086
75X10'-9,12774X10"" 1,49
162X10-"-1,60838X10"'5 0
.. 0 -1.66115X104-5.73876X
10"-3,16367XlO°" 3.29654
xlO"6 0.0 -1.26032X1σ' -
1,46947X1σ"-1,41114X10"
1.84366X1σ"10205.764 -7.0
3739X104-5.65617X10" 5.45
082X10”-5,68017X10”11-44
.. 6086 -4.24523X10-7-6.449
69X10""4.19783X10-"-3,2
2195X10-12-3.36074-1.8789
7X10"-8,35774X10" 2.1862
6X10''-2,46664XIO-'' is not satisfied because it is not compatible with cathode ray tubes with interference films.

第5表 以上の実施例では、第4レンズを正、第5レンズを負と
したが、第4レンズを負、第5レンズを正としても同様
な効果を得ることができろ、[発明の効果コ 以上説明したように本発明によれば、高f’#lな画像
を明るく投写できるF値1.05程度のレンズが得られ
、特に大口径化に伴う色収差を補正しであるため、10
0OTV本程度の高品位画像を投写する場合に効果があ
る。また、非球面プラスチックレンズの使用により、全
ガラス製の投写レンズに比べて1枚数低減、軽量化が可
能である。
In the examples shown in Table 5 and above, the fourth lens is positive and the fifth lens is negative, but it is possible to obtain the same effect even if the fourth lens is negative and the fifth lens is positive. Effects As explained above, according to the present invention, a lens with an F value of about 1.05 that can brightly project a high f'#l image can be obtained, and in particular, the chromatic aberration that accompanies a large aperture is corrected. 10
This is effective when projecting high-quality images of about 0 OTV lines. Furthermore, by using an aspherical plastic lens, the number of lenses can be reduced by one and the weight can be reduced compared to an all-glass projection lens.

また、干渉膜付き陰極線管と組合せて用いる場合にも1
周辺光量を劣化させずに画像を投写することが可能であ
る。
Also, when used in combination with a cathode ray tube with an interference film, 1
It is possible to project an image without deteriorating the amount of peripheral light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1実施例のレンズ構成図、第2図は干
渉膜付き陰極線管の螢光面の法線に対する角度αと其の
方向の相対輝度の関係を示す図、第3図(a)は第1実
施例レンズの球面収差図、第3図(b)は第1実施例レ
ンズの非点収差図。 第4図は第1実施例レンズの特高Oの横収差図。 第5図(a)は比較例レンズの球面収差図、第5図(b
)は比較例レンズの非点収差図、第6図は比較例レンズ
の特高0の横収差図、第7図は第1実施例レンズのMT
F特性図、第8図は第2実施例レンズのMTF特性図、
第9図は第3実施例レンズのMTF特性図、第10図は
第4実施例レンズのMTF特性図である。 Ll・・・第1レンズ、 L2・・・第2レンズ。 L3・・・第3レンズ。 L4・・・第4レンズ。 L5・・・第5レンズ、 L6・・・第6レンズ。 L7・・・第7レンズ、 E・・・冷却液、 P・・・l13極線管パネル。 ヌ10 第20 5 0 5 0 べ(A) M3図 第4図 積収先(物品0) −・−4qO1l景 Σ)−LL  区 Σ%−LL  メ Σ)−LL  メ
FIG. 1 is a diagram showing the lens configuration of the first embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the angle α to the normal to the fluorescent surface of the cathode ray tube with an interference film and the relative brightness in that direction, and FIG. (a) is a spherical aberration diagram of the lens of the first example, and FIG. 3(b) is an astigmatism diagram of the lens of the first example. FIG. 4 is a diagram showing the transverse aberration of the lens of the first example at an extra height of O. Fig. 5(a) is a spherical aberration diagram of a comparative lens, Fig. 5(b)
) is an astigmatism diagram of the comparative example lens, Figure 6 is a lateral aberration diagram of the comparative example lens at special height 0, and Figure 7 is the MT of the first example lens.
F characteristic diagram, FIG. 8 is an MTF characteristic diagram of the second example lens,
FIG. 9 is an MTF characteristic diagram of the lens of the third example, and FIG. 10 is an MTF characteristic diagram of the lens of the fourth example. Ll...first lens, L2...second lens. L3...Third lens. L4... 4th lens. L5...Fifth lens, L6...Sixth lens. L7...Seventh lens, E...Cooling liquid, P...l1 triode tube panel. Nu 10 20th 5 0 5 0 Be (A) M3 Figure 4 Collection destination (goods 0) -・-4qO1lviewΣ)-LL Ward Σ%-LL MeΣ)-LL Me

Claims (1)

【特許請求の範囲】 1、陰極線管の表示画像をスクリーンに拡大投写する投
写形テレビジョン用の投写レンズにおいて、スクリーン
側から、少なくとも1面に非球面をもつ正の第1レンズ
、負の第2レンズ、少なくとも1面に非球面をもつ正の
第3レンズ、正レンズと負レンズ又は負レンズと正レン
ズよりなる第4、第5レンズ、少なくとも1面に非球面
をもつ負の第6レンズ、スクリーン側の面が強い凹面で
ある第7レンズの順に並んだ7枚のレンズを備え、第2
レンズのアッベ数をν_2、第4、第5レンズ中の正レ
ンズ、負レンズのアッベ数をそれぞれν_4、ν_5と
する時、下記条件ν_2<ν_4 ν_5<ν_4 を満足することを特徴とする投写レンズ。 2、請求項1記載の投写レンズにおいて、全系の焦点距
離をf、第2レンズの焦点距離をf_2、第4、第5レ
ンズの中の負レンズの焦点距離をf_5とするとき、下
記条件 −0.5<f/f_2<−0.3 −0.6<f/f_5<−0.4 を満足することを特徴とする投写レンズ。 3、請求項1記載の投写レンズにおいて、全系の焦点距
離をf、第1レンズの焦点距離をf_1、第5レンズと
陰極線管の螢光面の間の距離をDとするとき、下記条件 0.4<f/f_1<0.6 0.6<D/f<0.8 を満足することを特徴とする投写レンズ。 4、請求項1記載の投写レンズにおいて、第7レンズの
スクリーン側の有効半径をH1、螢光面上の物高1の光
線の光軸からの距離をH2とするとき、下記条件 0.77<H1/H2 を満足することを特徴とする投写レンズ。
[Claims] 1. In a projection lens for a projection television that enlarges and projects a display image of a cathode ray tube onto a screen, from the screen side, a positive first lens having an aspherical surface on at least one surface, a negative lens having an aspherical surface on at least one surface; 2 lenses, a positive third lens having an aspherical surface on at least one surface, a fourth and fifth lens consisting of a positive lens and a negative lens or a negative lens and a positive lens, and a negative sixth lens having an aspherical surface on at least one surface. , has seven lenses arranged in order, with the seventh lens having a strongly concave surface facing the screen, and the second lens having a strongly concave surface.
A projection lens that satisfies the following conditions: ν_2<ν_4 ν_5<ν_4, where the Abbe number of the lens is ν_2, and the Abbe numbers of the positive lens and negative lens among the fourth and fifth lenses are ν_4 and ν_5, respectively. . 2. In the projection lens according to claim 1, when the focal length of the entire system is f, the focal length of the second lens is f_2, and the focal length of the negative lens among the fourth and fifth lenses is f_5, the following conditions are satisfied. A projection lens that satisfies -0.5<f/f_2<-0.3 -0.6<f/f_5<-0.4. 3. In the projection lens according to claim 1, when the focal length of the entire system is f, the focal length of the first lens is f_1, and the distance between the fifth lens and the fluorescent surface of the cathode ray tube is D, the following conditions are satisfied. A projection lens that satisfies the following: 0.4<f/f_1<0.6 0.6<D/f<0.8. 4. In the projection lens according to claim 1, when the effective radius of the seventh lens on the screen side is H1, and the distance from the optical axis of the light beam at object height 1 on the fluorescent surface is H2, the following condition 0.77 is satisfied. A projection lens characterized by satisfying <H1/H2.
JP26888589A 1989-10-18 1989-10-18 Projection lens Expired - Lifetime JP2691030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26888589A JP2691030B2 (en) 1989-10-18 1989-10-18 Projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26888589A JP2691030B2 (en) 1989-10-18 1989-10-18 Projection lens

Publications (2)

Publication Number Publication Date
JPH03131808A true JPH03131808A (en) 1991-06-05
JP2691030B2 JP2691030B2 (en) 1997-12-17

Family

ID=17464617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26888589A Expired - Lifetime JP2691030B2 (en) 1989-10-18 1989-10-18 Projection lens

Country Status (1)

Country Link
JP (1) JP2691030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11106014B2 (en) 2019-06-14 2021-08-31 Largan Precision Co., Ltd. Optical photographing lens assembly comprising nine lenses of various refractive powers, image capturing unit and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11106014B2 (en) 2019-06-14 2021-08-31 Largan Precision Co., Ltd. Optical photographing lens assembly comprising nine lenses of various refractive powers, image capturing unit and electronic device
US11885937B2 (en) 2019-06-14 2024-01-30 Largan Precision Co., Ltd. Optical photographing lens assembly comprising nine lenses of various refractive powers, image capturing unit and electronic device

Also Published As

Publication number Publication date
JP2691030B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
US5659424A (en) Projecting lens and image display device
JPS6218894B2 (en)
JP2003015034A (en) Lens device for projection, and backproject type image display device using the same
US5066113A (en) Projecting lens
JPH0315166B2 (en)
KR0141805B1 (en) Projection lens
JPH0423764B2 (en)
JPH0679105B2 (en) Lens for projection television
JPH0151809B2 (en)
JP3434179B2 (en) Projection lens
JP4083856B2 (en) Projection zoom lens
JPH10232348A (en) Projection lens
JP3222126B2 (en) Projection type image display device
US5373394A (en) Projection lens system for a video projector
JPH03131808A (en) Projection lens
JPS58198016A (en) Projection lens
JPH0990219A (en) Projection lens
JP3429843B2 (en) Projection lens and image display device
JP2781604B2 (en) Projection lens
JP3493305B2 (en) Projection lens device
JP2798770B2 (en) Projection lens
JPS6271915A (en) Optical system for projection type television
JPH02196207A (en) Projection lens for projector
JP2629095B2 (en) Projection lens
JPS6385515A (en) Projection lens