JPH03131349A - Granular inorganic ion exchanger - Google Patents

Granular inorganic ion exchanger

Info

Publication number
JPH03131349A
JPH03131349A JP2147236A JP14723690A JPH03131349A JP H03131349 A JPH03131349 A JP H03131349A JP 2147236 A JP2147236 A JP 2147236A JP 14723690 A JP14723690 A JP 14723690A JP H03131349 A JPH03131349 A JP H03131349A
Authority
JP
Japan
Prior art keywords
ion exchanger
inorganic ion
ion exchange
mechanical strength
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2147236A
Other languages
Japanese (ja)
Other versions
JPH0687982B2 (en
Inventor
Nobuhiko Aiba
相羽 伸彦
Hideki Kato
秀樹 加藤
Hidetake Inoue
井上 英武
Noriyuki Yamamoto
則幸 山本
Shunryo Hirose
広瀬 俊良
Kenichi Ishizaki
謙一 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Publication of JPH03131349A publication Critical patent/JPH03131349A/en
Publication of JPH0687982B2 publication Critical patent/JPH0687982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inorg. ion exchanger enhanced in a high ion exchange characteristic, mechanical strength and heat resistance by baking a granular mixture containing metal alkoxide, a clay mineral and the inorg. ion exchanger. CONSTITUTION:An inorg. ion exchanger is an insoluble inorg. compound showing an ion exchanger characteristic in water, and any of a cation such as antimony trioxide, an anion such as lead hydroxyapatite and an amphoteric compound such as hydrated zironium hydroxide may be used. As a clay mineral, a hydrated silicate compound such as sepiolite is used. Metal alkoxide or a hydrolysate thereof, the clay mineral and the inorg. ion exchanger are mixed, kneaded, granulated and baked. The exchanger thus obtained becomes a uniform porous structure having a large surface area and is excellent in an ion exchange characteristic and enhanced in mechanical strength.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] 本発明は、耐熱性、機械的強度及びイオン交換特性に優
れ、不純物又は有価物の回収等に有用な粒状無機イオン
交換体に関する。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] The present invention provides a method for producing particulate inorganic ions that have excellent heat resistance, mechanical strength, and ion exchange properties and are useful for recovering impurities or valuable materials. Concerning exchange bodies.

[従来の技術] 粒状イオン交換体として、現在イオン交換樹脂が広く用
いられているが、イオン交換樹脂は耐熱温度が低く (
60°C以下)、高温下で使用することができないとい
う欠点がある。
[Prior art] Ion exchange resins are currently widely used as particulate ion exchangers, but ion exchange resins have a low heat resistance (
It has the disadvantage that it cannot be used at high temperatures (below 60°C).

一方、イオン交換樹脂に比較して、無機イオン交換体は
、高温或は弾数射線下における安定性が優れており、高
温水中におけるイオン交換処理、弾数射線物質の分離、
濃縮及び精製等への応用が期待できる。
On the other hand, compared to ion exchange resins, inorganic ion exchangers have superior stability at high temperatures or under bullet rays, and can be used for ion exchange treatment in high-temperature water, separation of bullet ray substances,
Applications such as concentration and purification are expected.

しかし、一般に無機イオン交換体は微粉末状で得られる
ため、無機イオン交換体をカラム充填方式で使用する場
合には、微粉末状の無機イオン交換体を適当な大きさ及
び形状に成形し、通液抵抗を減少させる必要があり、更
に逆洗及び再生等の操作に十分耐えるだけの機械的強度
を有することが要求される。
However, inorganic ion exchangers are generally obtained in the form of fine powder, so when using an inorganic ion exchanger in a column packing method, the fine powder of the inorganic ion exchanger is molded into an appropriate size and shape. It is necessary to reduce resistance to liquid passage, and it is also required to have sufficient mechanical strength to withstand operations such as backwashing and regeneration.

無機イオン交換体を粒状に成形する方法としては、セル
ロース又は合成高分子等の有機系結合剤を用いて成形す
る方法もあるが、有機系結合剤を用いた場合には、粒状
物の耐熱性が不十分であり、高温下におけるイオン交換
処理により粒状物間の融着や崩壊が起こる。
As a method of forming inorganic ion exchangers into granules, there is also a method of forming them using an organic binder such as cellulose or a synthetic polymer, but when an organic binder is used, the heat resistance of the granules is insufficient, and ion exchange treatment at high temperatures causes fusion and collapse between particles.

無機イオン交換体の耐熱性を十分に利用するには、無機
系結合剤を用いて粒状に成形することが好ましく、従来
より水ガラス又は粘土鉱物等を用いて粒状に成形する方
法が知られている。
In order to fully utilize the heat resistance of inorganic ion exchangers, it is preferable to form them into granules using an inorganic binder, and conventional methods of forming them into granules using water glass or clay minerals have been known. There is.

しかし、無機系結合剤を用いて得られる従来の粒状物に
おいては、粒状物の機械的強度を大きくした場合、無機
イオン交換体のイオン交換容量及びイオン交換速度等の
イオン交換特性が粉末状の場合に比較して著しく低下す
るため、イオン交換体としては実用的でなくなり、逆に
粒状物のイオン交換特性を低下させずに成形した場合、
機械的強度が実用的な域に達しないという問題があり、
耐熱性、機械的強度及びイオン交換特性の全てについて
実用的なレヘルにある粒状物が得られていない。
However, in conventional granules obtained using inorganic binders, when the mechanical strength of the granules is increased, the ion exchange properties such as the ion exchange capacity and ion exchange rate of the inorganic ion exchanger are lower than that of the powder. It becomes impractical as an ion exchanger because the ion exchange properties of the granules are significantly reduced compared to those in the case of granules.
There is a problem that the mechanical strength does not reach a practical level,
It has not been possible to obtain a granular material that meets practical levels of heat resistance, mechanical strength, and ion exchange properties.

L本発明が解決しようとする課題] 本発明者らは、無機系結合剤を用いて成形された従来の
粒状無機イオン交換体が有する上記の問題を解消し、耐
熱性、機械的強度及びイオン交換特性に優れた粒状無機
イオン交換体を提供することを課題とする。
L Problems to be Solved by the Present Invention] The present inventors have solved the above-mentioned problems of conventional granular inorganic ion exchangers molded using an inorganic binder, and have improved heat resistance, mechanical strength, and ion exchangers. An object of the present invention is to provide a granular inorganic ion exchanger with excellent exchange characteristics.

(ロ)発明の構成 [課題を解決するための手段] 本発明者等は鋭意検討した結果、無機系結合剤として、
粘土鉱物及び金属アルコキシド又はその加水分解物を併
用することにより、上記の問題を解決することができ、
優れた粒状無機イオン交換体を得ることができることを
見出し、本発明を完成するに至った。
(B) Structure of the invention [Means for solving the problem] As a result of intensive study, the present inventors found that as an inorganic binder,
By using clay minerals and metal alkoxides or their hydrolysates together, the above problems can be solved,
The inventors have discovered that it is possible to obtain an excellent granular inorganic ion exchanger, and have completed the present invention.

即ち、本発明は、金属アルコキシド又はその加水分解物
、粘土鉱物及び無機イオン交換体を含有する混合物の粒
状体を焼成してなる粒状無機イオン交換体である。
That is, the present invention is a granular inorganic ion exchanger obtained by firing a granular mixture containing a metal alkoxide or its hydrolyzate, a clay mineral, and an inorganic ion exchanger.

以下、本発明における各成分及びそれらを用いて粒状物
を得る方法について説明する。
Hereinafter, each component in the present invention and a method for obtaining granules using them will be explained.

〈無機イオン交換体〉 本発明における無機イオン交換体は、水中においてイオ
ン交換特性を示す不溶性無機化合物であれば特に限定さ
れることなく、例えば、陽イオン交換特性を示す不溶性
無機化合物として二酸化アンチモン、五酸化アンチモン
、含水酸化アンチモン(V)、アンチモン酸チタン、ア
ンチモン酸ジルコニウム、アンチモン酸スズ、アンチモ
ン酸鉄、アンチモン酸アルミニウム、アンチモン酸クロ
ム、アンチモン酸タンタル、アンチモン酸マンガン、ア
ンチモン酸ビスマス、リンアンチモン酸、アンチモンタ
ングステン酸、アンチモンモリブデン酸アンモニウム、
リン酸ジルコニウム、リン酸ビスマス、リン酸チタン、
リン酸スズ、五酸化バナジウム、含水五酸化バナジウム
、バナジン酸チタン、バナジン酸アルミニウム、バナジ
ン酸ジルコニウム、リンバナジン酸、バナジンモリブデ
ン酸、フェロシアン化バナジウム、五酸化ニオブ、含水
五酸化ニオブ、五酸化タンタル、含水五酸化タンタル、
リン酸タンタル、水酸化第一鉄、水酸化アルミニウム、
酸化マンガン〔例えば硝酸マンガン(Mn(NOx)t
 ・6HzO)を150〜190°Cで焼成して得られ
るもの〕、含水酸化マンガン及びアルカリ金属イオン又
はアルカリ土類金属イオンを含有させ高温で焼成後、ア
ルカリ金属イオン又はアルカリ土類金属イオンを酸処理
により溶出させて得られるマンガン化合物等があり、ま
た陰イオン交換特性を示す不溶性無機化合物として鉛ヒ
ドロキシアパタイト、カドミウムヒドロキシアパタイト
、ハイドロタルサイト、三酸化ビスマス、五酸化ビスマ
ス、含水酸化ビスマス(■)、含水酸化ビスマス(V)
及び含水酸化硝酸ビスマス(lit)等があり、又両性
イオン交換特性を示す不溶性無機化合物として含水酸化
ジルコニウム、含水酸化チタン、含水酸化スズ及び含水
酸化鉛等がある。これらの化合物は、必要に応じて2種
以上混合して用いても良い。
<Inorganic ion exchanger> The inorganic ion exchanger in the present invention is not particularly limited as long as it is an insoluble inorganic compound that exhibits ion exchange properties in water. For example, insoluble inorganic compounds that exhibit cation exchange properties include antimony dioxide, Antimony pentoxide, hydrated antimony (V) oxide, titanium antimonate, zirconium antimonate, tin antimonate, iron antimonate, aluminum antimonate, chromium antimonate, tantalum antimonate, manganese antimonate, bismuth antimonate, phosphorus antimonate , antimony tungstic acid, ammonium antimony molybdate,
Zirconium phosphate, bismuth phosphate, titanium phosphate,
Tin phosphate, vanadium pentoxide, hydrated vanadium pentoxide, titanium vanadate, aluminum vanadate, zirconium vanadate, phosphovanadic acid, vanadium molybdic acid, vanadium ferrocyanide, niobium pentoxide, hydrated niobium pentoxide, tantalum pentoxide, Hydrous tantalum pentoxide,
tantalum phosphate, ferrous hydroxide, aluminum hydroxide,
Manganese oxide [e.g. manganese nitrate (Mn(NOx)t)
6 HzO) at 150 to 190°C] contains hydrous manganese oxide and alkali metal ions or alkaline earth metal ions, and after firing at a high temperature, the alkali metal ions or alkaline earth metal ions are There are manganese compounds obtained by elution through treatment, and insoluble inorganic compounds that exhibit anion exchange properties such as lead hydroxyapatite, cadmium hydroxyapatite, hydrotalcite, bismuth trioxide, bismuth pentoxide, and hydrated bismuth oxide (■). , hydrated bismuth (V) oxide
and hydrous bismuth oxide nitrate (lit), and insoluble inorganic compounds exhibiting amphoteric ion exchange properties include hydrous zirconium oxide, hydrous titanium oxide, hydrous tin oxide, and hydrous lead oxide. Two or more of these compounds may be used as a mixture, if necessary.

無機イオン交換体の化合物の構造は、例えば結晶質、非
晶質及びガラス状物質等如何なるものでも良く、又その
形態は、如何なるものでもよいが、通常入手が容易な粉
末状のものでよく、その粒径は0.01〜100μ謡が
好ましく、0.1〜10μmの範囲が更に好ましい。粒
径が、0.O1μ−未満では、粉末同志が凝集現象を起
こしたり、粉末の表面が結合剤により被われるために、
イオン交換特性が低下する恐れがあり、逆に100μ−
より大きいと、結合剤との接触部が少ないために、機械
的強度が高い粒状物を得られないという恐れがある。
The inorganic ion exchanger compound may have any structure, such as crystalline, amorphous, or glassy substances, and may have any form, but it may be in the form of powder, which is usually easily available. The particle size is preferably in the range of 0.01 to 100 μm, and more preferably in the range of 0.1 to 10 μm. The particle size is 0. If O is less than 1μ, the powders may aggregate or the surface of the powder may be covered with the binder.
There is a risk that the ion exchange properties will deteriorate, and on the contrary,
If it is larger, there is a fear that granules with high mechanical strength cannot be obtained because there are few contact areas with the binder.

く粘土鉱物〉 粘土鉱物は、構造の違いにより、層状構造を有し、アル
カリ又はアルカリ土類金属等の交換性イオンを層間に有
するフィロケイ酸塩と、複鎖状構造を有し、交換性イオ
ンを有しないイノケイ酸塩とに分類されるが、本発明に
おける好ましい粘土鉱物は、可塑性を有し、乾燥又は焼
成による収縮及び機械的強度の増大を示す含水ケイ酸塩
系の化合物であり、例えばイノケイ酸塩に分類されるセ
ピオライト及びフィロケイ酸塩に分類されるベントナイ
ト、カオリン、珪藻土、木節粘土及び蛙目粘土等がある
Clay minerals> Clay minerals have a layered structure and have exchangeable ions such as alkali or alkaline earth metals between the layers, and clay minerals have a double-chain structure and have exchangeable ions between the layers. However, preferred clay minerals in the present invention are hydrated silicate-based compounds that have plasticity and exhibit shrinkage and increased mechanical strength upon drying or firing, such as These include sepiolite, which is classified as an inosilicate, and bentonite, kaolin, diatomaceous earth, kibushi clay, and frog's eye clay, which are classified as phyllosilicates.

粘土鉱物としてイノケイ酸塩を用いると、後述する工程
に従って造粒物を焼成しても、無機イオン交換体の熱分
解を全く起こすことがなく、又フィロケイ酸塩の場合に
比較して、イオン交換特性、特にイオン交換速度に優れ
た粒状無機イオン交換体を得ることができるため、イオ
ン交換速度が品質を左右する大きな要因の一つである、
粒状無機イオン交換体の製造に際して用いる粘土鉱物と
しては、イノケイ酸塩を用いることが好ましい。
When inosilicate is used as the clay mineral, thermal decomposition of the inorganic ion exchanger does not occur at all even when the granules are fired according to the process described below, and compared to the case of phyllosilicate, ion exchange Since it is possible to obtain a granular inorganic ion exchanger with excellent properties, especially ion exchange rate, ion exchange rate is one of the major factors that influences quality.
As the clay mineral used in the production of the granular inorganic ion exchanger, it is preferable to use inosilicate.

イノケイ酸塩としては、例えばパリゴルスカイト、アク
パルジャイト及びセピオライト等があるが、可塑性付与
能力が高いことから、特にセピオライトが好ましい。又
セピオライトは結晶水の脱離温度が低い粘土鉱物であり
、一般に、結晶水の脱離温度が低い粘土鉱物を用いると
、低温における焼成により粒状無機イオン交換体を得る
ことができるので、この点からもセピオライトの使用は
有利である。
Examples of the inosilicate include palygorskite, apurgite, and sepiolite, and sepiolite is particularly preferred because of its high plasticity imparting ability. In addition, sepiolite is a clay mineral with a low desorption temperature of crystal water, and in general, if a clay mineral with a low desorption temperature of crystal water is used, a granular inorganic ion exchanger can be obtained by firing at a low temperature. The use of sepiolite is also advantageous.

粘土鉱物の配合量は、無機イオン交換体100重量部(
以下単に部と略す)に対して好ましくは1〜70部、よ
り好ましくは2〜40部である。配合量が1部未満では
、粒状無機イオン交換体の機械的強度が低下し、70部
より多くしても機械的強度を向上させる効果が小さく、
イオン交換特性の低下を引き起こす恐れがある。
The content of clay mineral is 100 parts by weight of inorganic ion exchanger (
It is preferably 1 to 70 parts, more preferably 2 to 40 parts. If the amount is less than 1 part, the mechanical strength of the granular inorganic ion exchanger will decrease, and if it is more than 70 parts, the effect of improving the mechanical strength will be small.
May cause deterioration of ion exchange properties.

〈金属アルコキシド又はその加水分解物〉本発明におけ
る金属アルコキシドは、アルコール類の水酸基の水素を
金属で置換した化合物であり、具体例としてはS+ (
OR) a 、T+ (OR) a 、^l (OR)
 a及びZr(OR)n (Rはメチル、エチル、プロ
ピル及びブヂル等のアルキル基)等があり、これらの中
でもシリコンのアルコキシドはアルミニウム、チタン及
びジルコニウム等のアルコキシドに比較して加水分解速
度が小さく、容易に安定なゾル状とすることができるの
で好ましい。
<Metal alkoxide or its hydrolyzate> The metal alkoxide in the present invention is a compound in which the hydrogen of the hydroxyl group of an alcohol is replaced with a metal.
OR) a, T+ (OR) a, ^l (OR)
a and Zr(OR)n (R is an alkyl group such as methyl, ethyl, propyl, and butyl), and among these, silicon alkoxides have a lower hydrolysis rate than alkoxides of aluminum, titanium, zirconium, etc. is preferable because it can be easily made into a stable sol.

本発明における金属アルコキシド加水分解物は、通常の
方法により調製することができるものであり〔例えば、
作孔 情夫 著、「ゾル−ゲルの科学J 、8−24頁
、アグネ承風社発行(1988年〕〕、溶媒中における
金属アルコキシドの加水分解と重合反応の進行度に応じ
てゾル又はゲル状になるが、後述する造粒工程での混練
を容易にするため、ゾル状のものを用いることが好まし
い。
The metal alkoxide hydrolyzate in the present invention can be prepared by a conventional method [for example,
Mio Sakuko, “Sol-Gel Science J, pp. 8-24, published by Agne Seifu-sha (1988)], depending on the progress of the hydrolysis and polymerization reaction of the metal alkoxide in the solvent, sol or gel-like However, in order to facilitate kneading in the granulation step described later, it is preferable to use a sol-like material.

本発明において、金属アルコキシド又はその加水分解物
のいずれを用いてもよいが、後述する造粒工程での混練
時間を短くするためには、好ましくは金属アルコキシド
加水分解物を用いるのがよい。
In the present invention, either a metal alkoxide or a hydrolyzate thereof may be used, but in order to shorten the kneading time in the granulation step described below, it is preferable to use a metal alkoxide hydrolyzate.

上記の金属アルコキシドの溶媒としては、メタノール、
エタノール、プロパツール、ブタノール等のアルコール
類、エチレングリコール、エチレンオキシド、トリエタ
ノールアミン、キシレン、フォルムアミド、ジメチルフ
ォルムアミド、ジオキサン及びシュウ酸等があり、好ま
しくはアル:1−ル類を用いる。
As the solvent for the above metal alkoxide, methanol,
Examples include alcohols such as ethanol, propatool and butanol, ethylene glycol, ethylene oxide, triethanolamine, xylene, formamide, dimethylformamide, dioxane and oxalic acid, and preferably al:1-ols are used.

金属アルコキシド又はその加水分解物の最適配合量は、
用いる無機イオン交換体と粘土鉱物の種類及び量等によ
って種々変動するが、無機イオン交換体100部当り、
金属アルコキシド又はその加水分解物の固形分(金属ア
ルコキシドから生成される金属酸化物の重量に換算され
る量)として1〜60部、好ましくは1〜30部、更に
好ましくは1〜20部とするのがよい。配合量が1部未
満では粒状無機イオン交換体のイオン交換特性が低下し
、60部より多いと、粒状無機イオン交換体の機械的強
度が低下する傾向がある。
The optimal blending amount of metal alkoxide or its hydrolyzate is
Although it varies depending on the type and amount of the inorganic ion exchanger and clay mineral used, per 100 parts of the inorganic ion exchanger,
The solid content of the metal alkoxide or its hydrolyzate (the amount converted to the weight of the metal oxide produced from the metal alkoxide) is 1 to 60 parts, preferably 1 to 30 parts, and more preferably 1 to 20 parts. It is better. When the amount is less than 1 part, the ion exchange properties of the particulate inorganic ion exchanger tend to decrease, and when it is more than 60 parts, the mechanical strength of the particulate inorganic ion exchanger tends to decrease.

〈成形方法〉 本発明の粒状無機イオン交換体を得るには、配合、混合
・混練、造粒及び焼成の−C的な成形工程を経て成形す
れば良い。
<Molding method> In order to obtain the granular inorganic ion exchanger of the present invention, it may be molded through a -C molding process of blending, mixing/kneading, granulation, and firing.

まず、混合・混練工程について説明する。混合混練工程
において、無機イオン交換体、粘土鉱物、金属アルコキ
シド又はその加水分解物及び水等の各成分を混合する。
First, the mixing/kneading process will be explained. In the mixing and kneading step, components such as an inorganic ion exchanger, a clay mineral, a metal alkoxide or a hydrolyzate thereof, and water are mixed.

このときの混合順序については任意であり、各成分を均
一に混合すればよい。混合・混練操作の一例としては、
例えば無機イオン交換体に上記粘土鉱物を添加し、ニー
ダ−等により均一に混合した後、更に上記金属アル:1
キシド又はその加水分解物及び適当量の水を添加し湿式
混合すればよい。このとき添加する水は、混合・混練操
作を容易にするために配合される成分であり、その配合
量としては、無機イオン交換体の種類及び粒度、粘土鉱
物及び金属アルコキシド又はその加水分解物の種類及び
量等により異なるが、通常スラリー中の固形分100部
に対して1〜100部、好ましくは1〜50部がよい。
The mixing order at this time is arbitrary, and each component may be mixed uniformly. An example of mixing/kneading operations is:
For example, the above-mentioned clay mineral is added to an inorganic ion exchanger, mixed uniformly with a kneader, etc., and then the above-mentioned metal alkali:
Oxide or its hydrolyzate and an appropriate amount of water may be added and wet-mixed. The water added at this time is a component added to facilitate mixing and kneading operations, and the amount of water added includes the type and particle size of the inorganic ion exchanger, the clay mineral and metal alkoxide, or the hydrolyzate thereof. Although it varies depending on the type and amount, it is usually 1 to 100 parts, preferably 1 to 50 parts, based on 100 parts of solid content in the slurry.

」二部のようにして得られたスラリーを更にニーダ−等
で数時間〜1日間混練する。
The slurry obtained in Part 2 is further kneaded using a kneader or the like for several hours to one day.

造粒方法についても特に制限はないが、工業的規模にお
いて歩留りや再現性等に優れた、押し出し造粒法を用い
ることが好ましい。なお、得られた造粒物を通常の遠心
回転方式等により球状へ整粒するとよい。
There are no particular restrictions on the granulation method, but it is preferable to use an extrusion granulation method, which has excellent yield and reproducibility on an industrial scale. In addition, it is preferable to size the obtained granules into spheres by a normal centrifugal rotation method or the like.

その後、整粒された造粒物を焼成し、十分な機械的強度
を付与することにより、目的とする粒状無機イオン交換
体を得る。このときの焼成条件は、無機イオン交換体の
種類及び粒度、粘土鉱物及び金属アルコキシド又はその
加水分解物の種類及び配合量等により異なるが、焼成時
の最高焼成温度を通常400°C以上で、かつ無機イオ
ン交換体の融点以下の温度とし、最高焼成温度の保持時
間を1〜8時間、より好ましくは2〜6時間とするのが
よい。焼成温度が4QO’C未満では、粒状無機イオン
交換体の機械的強度が低下し、無機イオン交換体の融点
より高いと、粒子が互いに融着したり、場合によっては
イオン交換特性が著しく低下する場合がある。
Thereafter, the sized granules are fired to impart sufficient mechanical strength to obtain the desired granular inorganic ion exchanger. The firing conditions at this time vary depending on the type and particle size of the inorganic ion exchanger, the type and amount of clay minerals and metal alkoxides or their hydrolysates, etc., but the maximum firing temperature during firing is usually 400 ° C or higher, The temperature is preferably lower than the melting point of the inorganic ion exchanger, and the maximum firing temperature is maintained for 1 to 8 hours, more preferably 2 to 6 hours. If the calcination temperature is less than 4QO'C, the mechanical strength of the granular inorganic ion exchanger will decrease, and if it is higher than the melting point of the inorganic ion exchanger, the particles will fuse to each other, or in some cases, the ion exchange properties will deteriorate significantly. There are cases.

焼成時の昇温速度については特に制限がない。There is no particular restriction on the rate of temperature increase during firing.

[作用1 2 詳細な機構は不明であるが、金属アルコキシド又はその
加水分解物の存在により、焼成に伴う無機イオン交換体
の粒成長が抑制され、更に金属アルコキシド又はその加
水分解物に含まれる揮発性物質が焼成時に揮発する結果
、粒状無機イオン交換体は比表面積が大きく、均一な多
孔性組織となるので、イオン交換特性に優れ、機械的強
度が高い粒状体が得られると考えられる。
[Effect 1 2 Although the detailed mechanism is unknown, the presence of the metal alkoxide or its hydrolyzate suppresses the grain growth of the inorganic ion exchanger during calcination, and further reduces the volatile content of the metal alkoxide or its hydrolyzate. As a result of the volatilization of the granular inorganic ion exchanger during firing, the granular inorganic ion exchanger has a large specific surface area and a uniform porous structure, so it is thought that a granular material with excellent ion exchange properties and high mechanical strength can be obtained.

[実施例及び比較例1 参考例1 まず、金属アルコキシド′の加水分解物を以下のように
して調製した。
[Example and Comparative Example 1 Reference Example 1 First, a hydrolyzate of metal alkoxide' was prepared as follows.

即ち、300m1三ツロフラスコ中で、エチルシリケー
トの部分的加水分解物〔多摩化学工業■製画品名シリケ
ート40140g 、エタノール60g、水7.0g 
(加水分解に必要な理論量の120χ)及び強酸型イオ
ン交換樹脂(IR−120B−11型)1.0gを混合
した。マントルヒーターを用い、混合物を80°Cで2
時間還流後、冷却し、濾過により強酸型イオン交換樹脂
を除去した。このようにして、固形分(以下Nνと略す
。)15χのシリカゾル(エチルシリケートの加水分解
物)を調製した。
That is, in a 300 m1 Mitsuro flask, a partial hydrolyzate of ethyl silicate [Tama Chemical Industry Product Name: Silicate 40140 g, ethanol 60 g, water 7.0 g
(theoretical amount of 120x necessary for hydrolysis) and 1.0 g of a strong acid type ion exchange resin (IR-120B-11 type) were mixed. Using a heating mantle, heat the mixture at 80°C for 2
After refluxing for a period of time, the mixture was cooled and the strong acid type ion exchange resin was removed by filtration. In this way, a silica sol (hydrolyzate of ethyl silicate) having a solid content (hereinafter abbreviated as Nv) of 15χ was prepared.

以下に実施例及び比較例により本発明を更に具体的に説
明する。
The present invention will be explained in more detail below using Examples and Comparative Examples.

実施例1 無機イオン交換体として、平均粒径(沈降法により求め
られた値であり、以下間し。)が0.7μmである鉛ヒ
ドロキシアパタイトを500g、粘土鉱物としてベント
ナイトを551!、水を120g及び金属アルコキシド
の加水分解物として参考例1で得たシリカゾルを560
gを用い、それらを混合し、ニーダ−で2時間混練した
(回転速度10100rp。
Example 1 As an inorganic ion exchanger, 500 g of lead hydroxyapatite with an average particle size (value determined by a sedimentation method, hereinafter referred to as the value) of 0.7 μm, and 551 g of bentonite as a clay mineral. , 120 g of water and 560 g of the silica sol obtained in Reference Example 1 as a hydrolyzate of metal alkoxide.
g, and were mixed and kneaded in a kneader for 2 hours (rotation speed 10,100 rpm).

上記混練物を二本のスクリュー軸を有し、スクリュー先
端横面に0.511χmφのスクリーンをセットした押
し出し造粒機で造粒し、(スクリュー回転速度20rp
I11) 0.5mmφの棒状顆粒物を得た。
The above kneaded material was granulated using an extrusion granulator having two screw shafts and a screen of 0.511 χ mφ set on the lateral surface of the screw tip (screw rotation speed 20 rpm).
I11) Rod-shaped granules with a diameter of 0.5 mm were obtained.

得られた棒状顆粒物を円筒状容器の下部に回転板を有す
る整粒機に入れ、700rρmの速度で回転板を30秒
間回転させ、円筒状容器の側面との衝突を伴う顆粒物の
回転運動により粒状物を得た。
The obtained rod-shaped granules were placed in a granulator having a rotating plate at the bottom of a cylindrical container, and the rotating plate was rotated at a speed of 700 rpm for 30 seconds to form particles by the rotational movement of the granules with collision with the side surface of the cylindrical container. I got something.

得られた粒状物を電気炉内で800°Cで2時間焼成し
た後冷却し、0.3〜0.6mmの粒径を有する粒状無
機イオン交換体を得た。BET法により測定した」−記
粒状体の比表面積は2.3 m27gであった(図1参
照)。
The obtained granules were fired in an electric furnace at 800°C for 2 hours and then cooled to obtain a granular inorganic ion exchanger having a particle size of 0.3 to 0.6 mm. The specific surface area of the granules measured by the BET method was 2.3 m27 g (see Figure 1).

このようにして得た粒状無機イオン交換体の0、IN 
1ICIにより求めたイオン交換容量ば0.4meq/
gであり、粒状無機イオン交換体1gを水100mLと
ともに分液ロートにいれ、100回/分の振蕩器にかけ
た結果、粒状無機イオン交換体の破砕及び粉化は見られ
なかった。
0, IN of the granular inorganic ion exchanger thus obtained
The ion exchange capacity determined by 1ICI is 0.4 meq/
As a result of putting 1 g of the granular inorganic ion exchanger into a separatory funnel with 100 mL of water and shaking it 100 times/min, no crushing or powdering of the granular inorganic ion exchanger was observed.

又、得られた粒状無機イオン交換体1.0gと1/10
0N HC+水溶液100m1をポリエチレン製容器中
で混合し、振蕩器により振蕩したときの振蕩時間と粒状
無機イオン交換体に吸着されたCLイオンの量を測定し
、粒状無機イオン交換体のイオン交換速度を評価した。
In addition, 1.0 g of the obtained granular inorganic ion exchanger and 1/10
Mix 100ml of 0N HC + aqueous solution in a polyethylene container and shake with a shaker. Measure the shaking time and the amount of CL ions adsorbed on the granular inorganic ion exchanger to determine the ion exchange rate of the granular inorganic ion exchanger. evaluated.

その結果を表2に示した。The results are shown in Table 2.

又、上記の鉛ヒドロキシアパタイトの粒状無機イオン交
換体において、60°C及び150°Cの温度における
イオン交換容量を測定した。そのときの測5 定条件及び測定結果を下記表3に示した。
Furthermore, the ion exchange capacity of the lead hydroxyapatite granular inorganic ion exchanger at temperatures of 60°C and 150°C was measured. The measurement conditions and measurement results at that time are shown in Table 3 below.

実施例2 無機イオン交換体として、平均粒径が7μmであるハイ
ドロタルサイトを使用し、粘土鉱物とし゛(蛙目粘土を
用いた以外は、実施例1と同様にして実施例1と同一の
粒径を有する粒状無機イ」ン交換体を得、イオン交換容
量及び機械的強度を評価し、それらの結果を下記表Iに
示した。
Example 2 Hydrotalcite with an average particle size of 7 μm was used as an inorganic ion exchanger, and the same particles as in Example 1 were prepared in the same manner as in Example 1 except that frog's eye clay was used. A particulate inorganic ion exchanger having the following diameter was obtained, and its ion exchange capacity and mechanical strength were evaluated, and the results are shown in Table I below.

比較例1 ヘントナイトが含まれないことを除けば、実施例1と全
く同様にして、実施例1と同一の粒径を有する粒状無機
イオン交換を得た。得られた粒状無機イオン交換につい
て実施例Iと同様にして機械的強度を評価した結果、粒
状無機イオン交換は破砕・粉化した。
Comparative Example 1 A particulate inorganic ion exchange product having the same particle size as in Example 1 was obtained in exactly the same manner as in Example 1 except that hentonite was not included. As a result of evaluating the mechanical strength of the obtained granular inorganic ion exchange in the same manner as in Example I, the granular inorganic ion exchange was crushed and powdered.

比較例2 ソリ力ゾルが含まれないことを除りば、実施例1と全く
同様にして、実施例1と同一の粒径を有する粒状無機イ
オン交換体を得た。BET法により測定した上記粒状体
の比表面積はO,1m”/g未満で6 あった(図2参照)。このようにして得た粒状無機イオ
ン交換体について、実施例1と同様にしてイオン交換容
量、機械的強度及びイオン交換速度を評価し、それらの
結果を下記表1及び表2に示した。
Comparative Example 2 A particulate inorganic ion exchanger having the same particle size as in Example 1 was obtained in exactly the same manner as in Example 1 except that no sorip sol was included. The specific surface area of the above granular material measured by the BET method was less than 0.1 m''/g (see Figure 2). The exchange capacity, mechanical strength, and ion exchange rate were evaluated, and the results are shown in Tables 1 and 2 below.

実施例3 無機イオン交換体として、平均粒径が0.5μmである
含水酸化アンチモン(V)にカリウムを吸着させたもの
を500g、粘土鉱物としてカオリンを125g、参考
例1で調製したシリカゾルを315gにした以外は実施
例1と同様にして粒状物を得た。更に、得られた粒状物
に含まれるカリウムを0.lN11c+を用いてプロト
ンとイオン交換させ、実施例1と同一の粒径を有する粒
状無機イオン交換体を得た。
Example 3 As an inorganic ion exchanger, 500 g of potassium adsorbed on hydrous antimony (V) having an average particle size of 0.5 μm, 125 g of kaolin as a clay mineral, and 315 g of silica sol prepared in Reference Example 1 A granular material was obtained in the same manner as in Example 1 except that . Furthermore, the potassium contained in the obtained granules was reduced to 0. Ion exchange with protons was performed using IN11c+ to obtain a particulate inorganic ion exchanger having the same particle size as in Example 1.

得られた粒状無機イオン交換体のイオン交換容量を、0
.lN NaOHにより求め、機械的強度を実施例1と
同様にして評価した。それらの結果を下記表1に示した
The ion exchange capacity of the obtained granular inorganic ion exchanger was set to 0.
.. The mechanical strength was determined using 1N NaOH and evaluated in the same manner as in Example 1. The results are shown in Table 1 below.

比較例3 カオリンを含まないこと以外は実施例3と全く同様にし
て、実施例1と同一の粒径を有する粒状無機イオン交換
体を得た。得られた粒状無機イオン交換について実施例
1と同様にして機械的強度を評価した結果、粒状無機イ
オン交換は破砕・粉化した。
Comparative Example 3 A particulate inorganic ion exchanger having the same particle size as Example 1 was obtained in exactly the same manner as in Example 3 except that kaolin was not included. As a result of evaluating the mechanical strength of the obtained granular inorganic ion exchange in the same manner as in Example 1, the granular inorganic ion exchange was crushed and powdered.

比較例4 シリカゾルを含まないこと以外は実施例3と全く同様に
して、実施例1と同一の粒径を有する粒状無機イオン交
換体を得、イオン交換容量及び機械的強度を評価した。
Comparative Example 4 A granular inorganic ion exchanger having the same particle size as Example 1 was obtained in the same manner as in Example 3 except that silica sol was not included, and the ion exchange capacity and mechanical strength were evaluated.

それらの結果を下記表1に示した。The results are shown in Table 1 below.

実施例4 無機イオン交換体として、平均粒径が2.6μmである
リン酸スズにナトリウムを吸着させたものを使用し、粘
土鉱物としてヘントナイトを用い、焼成時間を5時間に
した以外は、実施例3と同様にして、実施例1と同一の
粒径を有する粒状無機イオン交換体を得、イオン交換容
量及び機械的強度を評価した。それらの結果を下記表1
に示した。
Example 4 The same procedure was carried out except that as an inorganic ion exchanger, tin phosphate with an average particle size of 2.6 μm was adsorbed with sodium, hentonite was used as a clay mineral, and the firing time was 5 hours. A granular inorganic ion exchanger having the same particle size as Example 1 was obtained in the same manner as in Example 3, and the ion exchange capacity and mechanical strength were evaluated. The results are shown in Table 1 below.
It was shown to.

実施例5 無機イオン交換体として、平均粒径が0.5μmである
リン酸ジルコニウムにナトリウムを吸着させたものを使
用し、粘土鉱物として蛙目粘土を用いた以外は、実施例
3と同様にして、実施例1と同一の粒径を有する粒状無
機イオン交換体を得、イオン交換容量及び機械的強度を
評価した。それらの結果を下記表1に示した。
Example 5 The same procedure as in Example 3 was carried out, except that zirconium phosphate with an average particle size of 0.5 μm and adsorbed sodium was used as the inorganic ion exchanger, and frog's eye clay was used as the clay mineral. A granular inorganic ion exchanger having the same particle size as in Example 1 was obtained, and its ion exchange capacity and mechanical strength were evaluated. The results are shown in Table 1 below.

実施例6 無機イオン交換体として、平均粒径が0.7μmである
リン酸チタンにナトリウムを吸着させたものを使用した
以外は、実施例5と同様にして、実施例1と同一の粒径
を有する粒状無機イオン交換体を得、イオン交換容量及
び機械的強度を評価した。
Example 6 The same procedure as in Example 5 was carried out, except that titanium phosphate with an average particle size of 0.7 μm and sodium adsorbed was used as the inorganic ion exchanger, and the particle size was the same as in Example 1. A granular inorganic ion exchanger was obtained, and its ion exchange capacity and mechanical strength were evaluated.

それらの結果を下記表1に示した。The results are shown in Table 1 below.

実施例7 無機イオン交換体として、平均粒径が0.5μmである
リン酸ジルコニウムにリチウムを吸着させたものを使用
した以外は、実施例5と同様にして、実施例1と同一の
粒径を有する粒状無機イオン交操体を得、イオン交換容
量及び機械的強度を評価した。それらの結果を下記表1
に示した。
Example 7 The same particle size as in Example 1 was obtained in the same manner as in Example 5, except that zirconium phosphate with an average particle size of 0.5 μm and lithium adsorbed was used as the inorganic ion exchanger. A granular inorganic ion exchanger having the following properties was obtained, and its ion exchange capacity and mechanical strength were evaluated. The results are shown in Table 1 below.
It was shown to.

実施例8 無機イオン交換体として、二酸化マンガンを塩化マグネ
シウム水溶液(IM)に浸漬し、乾燥したものを600
 ’Cで焼成した後、0. IN塩酸水溶液で処理して
得られる被酸処理マンガン化合物を使用し、粘土鉱物と
して蛙目粘土を使用した以外は、実施例3と同様にして
、実施例1と同一の粒径を有する粒状無機イオン交換体
を得、イオン交換容量及び機械的強度を評価した。それ
らの結果を下記表1に示した。
Example 8 As an inorganic ion exchanger, manganese dioxide was immersed in an aqueous magnesium chloride solution (IM) and dried.
After firing at 'C, 0. A granular inorganic material having the same particle size as in Example 1 was prepared in the same manner as in Example 3, except that an acid-treated manganese compound obtained by treatment with an IN hydrochloric acid aqueous solution was used, and Frog's eye clay was used as the clay mineral. An ion exchanger was obtained and its ion exchange capacity and mechanical strength were evaluated. The results are shown in Table 1 below.

実施例9 粘土鉱物としてセピオライ]・を15g及び参考例1で
調製したシリカゾルを50gを用い、焼成温度を550
°C5焼成時間を4時間にした以外は、実施例1と同様
にして、実施例1と同一の粒径を有する粒状無機イオン
交換体を得た。得られた粒状無機イオン交換体について
、イオン交換容量及び機械的強度を評価し、その結果を
下記表1に示した。
Example 9 Using 15 g of sepiollie as a clay mineral and 50 g of the silica sol prepared in Reference Example 1, the firing temperature was set to 550.
A granular inorganic ion exchanger having the same particle size as in Example 1 was obtained in the same manner as in Example 1 except that the C5 firing time was changed to 4 hours. The obtained granular inorganic ion exchanger was evaluated for ion exchange capacity and mechanical strength, and the results are shown in Table 1 below.

又、実施例1と同様にしてイオン交換速度を評価し、そ
の結果を下記表2に示した。
Further, the ion exchange rate was evaluated in the same manner as in Example 1, and the results are shown in Table 2 below.

なお、粒状無機イオン交換体の粉末X線回折図(図3)
は、未焼成の鉛ヒドロキシアパタイトの粉末X線回折図
(図4)と全く同じであった。
In addition, the powder X-ray diffraction diagram of the granular inorganic ion exchanger (Figure 3)
was exactly the same as the powder X-ray diffraction pattern (FIG. 4) of unfired lead hydroxyapatite.

比較例5 ヘントナイトを含まないことを除けば、実施例4と同様
にして粒状無機イオン交換体を得た。得られた粒状無機
イオン交換について実施例1と同様にして機械的強度を
評価した結果、粒状無機イオン交換は破砕・粉化した。
Comparative Example 5 A granular inorganic ion exchanger was obtained in the same manner as in Example 4, except that hentonite was not included. As a result of evaluating the mechanical strength of the obtained granular inorganic ion exchange in the same manner as in Example 1, the granular inorganic ion exchange was crushed and powdered.

比較例6 シリカゾルを含まないことを除けば、実施例3と同様に
して粒状無機イオン交換体を得、イオン交換容量及び機
械的強度を評価した。それらの結23 (ハ)発明の効果 本発明の粒状無機イオン交換体は、従来の無機質結合剤
により粒状に成形されたものに比較して、著しく高いイ
オン交換特性及び機械的強度及び耐熱性を有しており、
不純物、有価物回収等の水処理用として各種の分野にお
いて有用なものである。
Comparative Example 6 A granular inorganic ion exchanger was obtained in the same manner as in Example 3 except that it did not contain silica sol, and its ion exchange capacity and mechanical strength were evaluated. Conclusion 23 (c) Effects of the Invention The granular inorganic ion exchanger of the present invention has significantly higher ion exchange properties, mechanical strength, and heat resistance than those formed into granules using conventional inorganic binders. has,
It is useful in various fields for water treatment such as recovering impurities and valuables.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、実施例1で得た粒状無機イオン交換体の走査電
子顕微鏡写真であり、図2は、比較例2で得た粒状無機
イオン交換体の走査電子顕微鏡写真であり、図3は、実
施例9において製造した粒状無機イオン交換体の粉末X
線回折図であり、図4は、未焼酸鉛ヒドロキシアパタイ
トの粉末X線回折図である。
FIG. 1 is a scanning electron micrograph of the granular inorganic ion exchanger obtained in Example 1, FIG. 2 is a scanning electron micrograph of the granular inorganic ion exchanger obtained in Comparative Example 2, and FIG. Granular inorganic ion exchanger powder X produced in Example 9
FIG. 4 is a powder X-ray diffraction diagram of unburned acid lead hydroxyapatite.

Claims (1)

【特許請求の範囲】[Claims] 1、金属アルコキシド又はその加水分解物、粘土鉱物及
び無機イオン交換体を含有する混合物の粒状体を焼成し
てなる粒状無機イオン交換体。
1. A granular inorganic ion exchanger obtained by firing a granular mixture containing a metal alkoxide or its hydrolyzate, a clay mineral, and an inorganic ion exchanger.
JP2147236A 1989-06-21 1990-06-07 Granular inorganic ion exchanger Expired - Fee Related JPH0687982B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-158531 1989-06-21
JP15853189 1989-06-21

Publications (2)

Publication Number Publication Date
JPH03131349A true JPH03131349A (en) 1991-06-04
JPH0687982B2 JPH0687982B2 (en) 1994-11-09

Family

ID=15673767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2147236A Expired - Fee Related JPH0687982B2 (en) 1989-06-21 1990-06-07 Granular inorganic ion exchanger

Country Status (1)

Country Link
JP (1) JPH0687982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006064568A1 (en) * 2004-12-16 2008-06-12 東亞合成株式会社 Anion exchanger and resin composition for sealing electronic parts using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006064568A1 (en) * 2004-12-16 2008-06-12 東亞合成株式会社 Anion exchanger and resin composition for sealing electronic parts using the same

Also Published As

Publication number Publication date
JPH0687982B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
JPS6291410A (en) Calcium phosphate hydroxyapatite for chromatographic separation and its production
EA028588B1 (en) Spherical agglomerates based on zeolites, process for their production and their use in adsorption processes or in catalysis
JPS62230610A (en) Production of zirconium sol and gel and production of zirconia using said sol and gel
WO2013179940A1 (en) Radioactive material adsorbent, adsorption vessel, adsorption tower, and water treatment device
JPS6086023A (en) Alkaline earth metal titanate, manufacture and use for ceramic composition
JPH0324255B2 (en)
US5256615A (en) Granular inorganic exchangers
JPH0535090B2 (en)
JPH03131349A (en) Granular inorganic ion exchanger
US4313844A (en) Inorganic ion exchanger
JP2002522342A (en) Improved process for producing crystalline layered sodium disilicate
US5925284A (en) Shaped article and process for preparing the article
JPH0445854A (en) Granular inorganic ion exchanger
KR100278140B1 (en) Method for producing granular strontium carbonate using strontium-containing binder
JPH07108178A (en) Production of granular inorganic ion exchanger
JPH10114522A (en) Production of powdery zirconium dioxide
JPS63248719A (en) Production of powder as starting material for multicomponent ceramic
CN1022751C (en) Method for preparing nonpigmentary titanium dioxide powders
JP4231917B2 (en) Method for producing yttrium oxide fired body
JPH111318A (en) Production of zeolite granule with controlled pore size
JPH11216356A (en) Antimony adsorbent
JPH10202117A (en) Adsorbent for cs ion
JP2998190B2 (en) High strength molded activated carbon
JPH06106077A (en) Granular inorganic ion exchanger
JPH10192697A (en) Adsorbent for cobalt or manganese ions

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees