JPH03131244A - Method and device for particularly improving the repeatability and efficiency of pressure wave taking place between two electrodes during capacitor discharge with conductive liquid medium interposed therebetween and impulse wave generating device using said method and device to conduct stone crushing particularly in liquid - Google Patents

Method and device for particularly improving the repeatability and efficiency of pressure wave taking place between two electrodes during capacitor discharge with conductive liquid medium interposed therebetween and impulse wave generating device using said method and device to conduct stone crushing particularly in liquid

Info

Publication number
JPH03131244A
JPH03131244A JP2174297A JP17429790A JPH03131244A JP H03131244 A JPH03131244 A JP H03131244A JP 2174297 A JP2174297 A JP 2174297A JP 17429790 A JP17429790 A JP 17429790A JP H03131244 A JPH03131244 A JP H03131244A
Authority
JP
Japan
Prior art keywords
liquid medium
electrodes
resistance
conductive liquid
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2174297A
Other languages
Japanese (ja)
Other versions
JPH0644914B2 (en
Inventor
Dominique Cathignol
ドミニック カティニョール
Jean-Louis Mestas
ジャン―ルイ メスタ
Paul Dancer
ポール ダンセ
Maurice Bourlion
モーリス ブールリオン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de la Sante et de la Recherche Medicale INSERM
Technomed International SA
Original Assignee
Institut National de la Sante et de la Recherche Medicale INSERM
Technomed International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de la Sante et de la Recherche Medicale INSERM, Technomed International SA filed Critical Institut National de la Sante et de la Recherche Medicale INSERM
Publication of JPH03131244A publication Critical patent/JPH03131244A/en
Publication of JPH0644914B2 publication Critical patent/JPH0644914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • G10K15/06Sound-producing devices using electric discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Surgical Instruments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PURPOSE: To prevent discharge vibration by remarkably decreasing resistance to a current between electrodes, and setting the resistance to a resistance value close to the critical resistance or a little higher than that. CONSTITUTION: Resistance to a current flowing between electrodes 12, 14 is remarkably decreased to reach a resistance value close to the critical resistance or a little higher than that. In order to decrease the electric resistance, it is desirable to provide a conductive liquid medium partially positioned between the electrodes, and it can be simply accomplished by filling an elliptic reflector 10 with a conductive liquid medium. The conductive liquid medium is let have electric resistance at least 1/10, preferably 1/100 of the value of electric resistance, taking normal ionized water normally having low efficiency of about 1500Ωcm as a reference. That is, the electric resistance of the conductive medium is such that specific resistance of about 20Ωcm or less is desirable, and preferably it ranges from several Ωcm to 20Ωcm. Thus, discharge vibration is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、2つの電極間に導電性液体を介在させること
により、コンデンサの放電中に該電極間に生じる圧力波
の再現性及び効率を特に改善するための方法及び装置、
並びに特に液中砕石のために該方法または装置を使用し
た衝撃波発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention particularly improves the reproducibility and efficiency of the pressure waves generated between two electrodes during discharge of a capacitor by interposing a conductive liquid between the two electrodes. a method and apparatus for;
It also relates to a shock wave generator using the method or device, particularly for submerged rock crushing.

従来の技術 リーバ−(RIEBIER)によるアメリカ合衆国特許
第2、559.227号から、高周波数衝撃波発生装置
が知られている。この装置は、切頭楕円形レフレクタを
備え、このレフレクタ80中で、楕円体の第一焦点で互
いに収斂するように配置された2つの電極間の放電また
はアークにより衝撃波が発生する。
BACKGROUND OF THE INVENTION A high frequency shock wave generator is known from RIEBIER, US Pat. No. 2,559,227. The device comprises a truncated ellipsoidal reflector 80 in which a shock wave is generated by a discharge or arc between two electrodes arranged to converge on each other at a first focus of the ellipsoid.

この装置の目的は、切頭レフレクタ80の外部にある楕
円体の第二焦点に位置するターゲットを破壊することで
ある(第3図、第7欄の51行から第9欄の30行まで
参照)。
The purpose of this device is to destroy the target located at the second focus of the ellipsoid outside the truncated reflector 80 (see Figure 3, column 7, line 51 to column 9, line 30). ).

銅または黄銅等の導電性の高い材料中で電極12および
13が作成され、絶縁体26に取付けられる。
Electrodes 12 and 13 are made in a highly conductive material such as copper or brass and attached to an insulator 26.

この絶縁体26は、装置11a、llbにより枢軸運動
可能に支持され、電極間の間隔を調節できるようになさ
れている(第4欄の42〜53行、第8欄の40〜47
行参照)。
This insulator 26 is pivotally supported by the devices 11a, llb, and the spacing between the electrodes can be adjusted (column 4, lines 42-53, column 8, lines 40-47).
(see line).

このリーバ−の装置または類似の装置では、放電または
アークは、高電圧スイッチを閉じることによって、コン
デンサ11が瞬時的に放電して、電極間に放電またはア
ークが発生する(第2B図)。
In this Lieber device or similar devices, a discharge or arc is created by closing a high voltage switch, causing the capacitor 11 to momentarily discharge, creating a discharge or arc between the electrodes (FIG. 2B).

リーバ−の装置によれば、電極に付属する回路は、コン
デンサを備え、更に自己インダクタンスを有している。
According to Lieber's device, the circuit associated with the electrode includes a capacitor and also has a self-inductance.

このような回路において、コンデンサの放電は、減衰振
動型であることがわかる。言い換えれば、コンデンサは
、放電した後、非常に高かった初期電圧よりも低い電圧
に、放電と反対方向に再充電することを、コンデンサ中
に含まれる電荷がなくなるまで繰り返す。
It can be seen that in such a circuit, the discharge of the capacitor is of the damped oscillatory type. In other words, the capacitor discharges and then recharges in the opposite direction to a lower voltage than the initial voltage, which was very high, until the charge contained in the capacitor is exhausted.

同時に、アークとプラズマが2つの電極間に生成する。At the same time, an arc and plasma are generated between the two electrodes.

その結果、2つの電極の電流も、第1a図、第1b図お
よび第1C図を参照にしてわかるように減衰振動型であ
る。第1a図は電圧の時間変化を示しているのに対し、
第1b図はリーバ−型放電回路中の電流の変化を示して
いる。回路が時間t、で閉じられると、電極端での電圧
が瞬時にしてコンデンサの両端間の電圧値まで上昇する
ことがわかる(第1a図参照)、3電極が浸っている液
体(通常水である)が若干導電性があり、第安全性とア
ーク発火のため、電極に給電するコンデンサに並列に高
い抵抗が接続されているためにから、2つの電極の間に
小さな電流が流れる(第1b図)。
As a result, the currents in the two electrodes are also of the damped oscillatory type, as can be seen with reference to FIGS. 1a, 1b and 1c. While Figure 1a shows the time variation of voltage,
FIG. 1b shows the variation of the current in a Lieber-type discharge circuit. It can be seen that when the circuit is closed at time t, the voltage at the electrode ends rises instantaneously to the value of the voltage across the capacitor (see Figure 1a), when the three electrodes are immersed in the liquid (usually water). (1b) is slightly conductive, and for safety and arc ignition, a small current flows between the two electrodes (1b) because a high resistance is connected in parallel to the capacitor feeding the electrodes. figure).

所与の時間の後、即ち、潜伏期間乃至は遅延時間と呼ば
れる時間t2後、電極間にアークが発生する。この瞬間
、第1b図に明瞭に示されるように、電流が瞬時に数K
Ai昇する。アークが、極めて低い抵抗(約1/100
または1/1000Ω)であることは公知の事実である
。RL型回路におけるコンデンサの放電時の電流(第1
b図)および電圧(第1a図)が振動するのはこの抵抗
の低い値のためである。
After a given time, t2, which is referred to as the latent period or delay time, an arc occurs between the electrodes. At this moment, as clearly shown in Figure 1b, a current of several K
Ai rises. The arc has extremely low resistance (approximately 1/100
or 1/1000Ω) is a well-known fact. Current during discharge of capacitor in RL type circuit (first
It is because of the low value of this resistance that the voltage (Fig. b) and voltage (Fig. 1a) oscillate.

アークに含まれそして放出されるエネルギは、電極が浸
っている液体(通常は水)を蒸発し、蒸気泡を生成し、
従って、衝撃波を発生する。このエネルギの散逸が速け
れば速いほど、衝撃波の効率も高い。
The energy contained and released in the arc evaporates the liquid (usually water) in which the electrodes are immersed, producing vapor bubbles,
Therefore, a shock wave is generated. The faster this energy dissipates, the more efficient the shock wave is.

このようにして、第1b図に示すように、電流の振動の
特性によって、外部媒体へのエネルギの供給は、第1C
図に明らかに示されるように、漸増的である。
In this way, as shown in Figure 1b, due to the oscillating characteristics of the current, the supply of energy to the external medium is
As clearly shown in the figure, it is incremental.

これは、液体、特に水の蒸発が速ければ速いほど、いか
に圧力波は強(、圧力」二昇時間が短いかを表している
This shows that the faster the liquid, especially water, evaporates, the stronger the pressure wave (and the shorter the pressure rise time).

従って、大量の液体、特に水を蒸発させるためには、大
量のエネルギが伝えられなければならない。
Therefore, in order to evaporate large amounts of liquid, especially water, large amounts of energy must be transferred.

ところが、現在知られている装置のほとんどは、第1a
図および第1b図に示されるように減衰振動型の放電を
利用し、時間の経過と共にエネルギを漸進的に放出する
(第1c図)。
However, most of the currently known devices are
As shown in Figures 1 and 1b, a damped oscillatory discharge is used to release energy progressively over time (Figure 1c).

先行文献EP−^−0296912号において、出願人
は、2つの電極間の放電回路のコンデンサの充電により
蓄えられたエネルギの大部分を瞬時、もしくは比較的短
時間で放出するための第一の解決法を提案した。このた
め、アーク発生電極12.140間に高抵抗絶縁要素(
32)を介在させることにより、少なくとも電極間での
アーク路上での電気抵抗を増加させることが提案されて
いる。この解決法は初期圧力波がほぼ球面状である衝撃
波を発生する場合は完全に満足のゆくものである。
In prior document EP-0296912, the applicant presents a first solution for releasing a large part of the energy stored instantaneously or in a relatively short time by charging a capacitor in a discharge circuit between two electrodes. proposed a law. For this reason, a high resistance insulating element (
32) is proposed to increase the electrical resistance on the arc path at least between the electrodes. This solution is completely satisfactory if the initial pressure wave generates a shock wave that is approximately spherical.

発明が解決しようとする課題 しかし、上記の解決法は、電極の寸法が小さいこと、衝
撃波に対する機械的強度のために、機械的に実現するこ
とは回灯である。さらに、この特殊な解決法の主な目的
は、放電が生じたとき放電効率を改善することだけであ
り、遅延時間の問題は解決されない。そのため、この方
法では放電の再現性、従って、圧力波の再現性および効
率が改善されず、電極の摩耗も減少しない。
Problems to be Solved by the Invention However, the above solution cannot be realized mechanically by turning the lamp due to the small size of the electrode and its mechanical strength against shock waves. Moreover, the main purpose of this particular solution is only to improve the discharge efficiency when the discharge occurs, and does not solve the problem of delay time. Therefore, this method does not improve the reproducibility of the discharge and therefore the reproducibility and efficiency of the pressure waves, nor does it reduce the wear of the electrodes.

ゲーバー(GERBER)によるアメリカ合衆国特許第
3、559.435号には、電流が流れるアークを形成
するために電流用の望ましい導電路を用意するように導
電液体を使用することが記載されている(第5欄、4行
参照)。従って、この目的は、普通の放電において2つ
の電極間にアークとプラズマを生成することである。推
奨される電解層の目的は、2つの電極間に望ましい電流
を流して、高い導電プラズマを生成することである(第
1欄、55行)。
GERBER, U.S. Pat. No. 3,559,435, describes the use of a conductive liquid to provide a desirable conductive path for the current to form an arc through which the current flows. (See column 5, line 4). The purpose is therefore to create an arc and a plasma between the two electrodes in a normal discharge. The purpose of the recommended electrolytic layer is to pass the desired current between the two electrodes to create a highly conductive plasma (column 1, line 55).

いずれにせよゲーバーの解決法は、電極の摩耗を起こす
振動電流、あるいは外部媒体へのエネルギの漸進的供給
の構成を変えることはない。
In any case, Gaber's solution does not change the configuration of the oscillating currents that cause electrode wear or the gradual delivery of energy to the external medium.

上記解決法とは反対に、本発明の目的は、放電振動が生
じるのを防止する、従って、アークまたはプラズマの形
成を防止し、電極間の外部媒質にエネルギを非常に短時
間で供給することである。
Contrary to the above solutions, the aim of the present invention is to prevent discharge oscillations from occurring, thus preventing the formation of arcs or plasma and supplying energy to the external medium between the electrodes in a very short time. It is.

そこで、本発明の主な目的は、電極間に放電を発生する
のに通常必要な遅延時間をほぼ完全に除去することによ
り、2つの電極に接続された放電回路のコンデンサに電
荷として蓄えられたエネルギの大部分を比較的短時間で
即座に送ることを可能にする解決法を提供するという新
しい技術的課題を解決することにある。
The main objective of the present invention, therefore, is to eliminate almost completely the delay time normally required to generate a discharge between the electrodes, thereby reducing the amount of charge stored in the capacitor of the discharge circuit connected to the two electrodes. The object of the invention is to solve the new technical problem of providing a solution that makes it possible to transmit a large part of energy instantly in a relatively short time.

本発明の別の目的は、2つの電極の間に放電を発生させ
るとき、遅延時間をほぼ完全に除去することを可能にす
ると共に、特に、放電電流の発生、従って、それにより
発生した蒸気泡の局在化を大きく改善して、放電中に発
生する圧力波の再現性および効率を大きく向上させる解
決法を提供するという新しい技術的課題を解決すること
である。
Another object of the invention is to make it possible to almost completely eliminate the delay time when generating a discharge between two electrodes and, in particular, to reduce the generation of the discharge current and therefore the vapor bubbles generated thereby. The object of the present invention is to provide a solution that significantly improves the localization of the pressure waves generated during the discharge, thereby greatly increasing the reproducibility and efficiency of the pressure waves generated during the discharge.

さらに、本発明の別の目的は、2つの電極間に放電を発
生させるとき、遅延時間をほぼ完全に除去することを可
能にすると共に、電極に接続された放電回路のコンデン
サの充電により蓄えられたエネルギの大部分を即時にま
たは比較的短時間で放出して、臨界減衰型の放電を起こ
し、これによってアークの形成に伴う振動を防止する解
決法を提供するという新しい技術的課題を解決すること
である。
Furthermore, another object of the present invention is to make it possible to almost completely eliminate the delay time when generating a discharge between two electrodes, and to reduce the amount of time that is stored by charging the capacitor of the discharge circuit connected to the electrodes. To solve the new technical problem of providing a solution for releasing a large part of the energy immediately or in a relatively short time to create a critically damped discharge, thereby preventing the oscillations associated with the formation of the arc. That's true.

さらに、本発明の別の目的は、上記の新しい技術的課題
を解決すると共に、電極の摩耗を減少させる解決法を提
供することである。
Furthermore, another object of the invention is to solve the above-mentioned new technical problem and to provide a solution that reduces electrode wear.

本発明のもう1つの目的は、特に圧力波を用いた結石(
腎結石、胆石ならびに尿結石)または組織(腫瘍等)の
生体外からの破壊、さらに骨折の治療用の装置に関して
、工業的規模で使用できる極めて簡単な方法で上記の新
しい技術的課題を解決することである。
Another object of the present invention is the use of pressure waves in particular to
To solve the above-mentioned new technical problems with a device for the ex vivo destruction of kidney stones, gallstones and urinary stones (kidney stones, gallstones and urinary stones) or tissues (tumors, etc.), as well as for the treatment of bone fractures, in an extremely simple manner that can be used on an industrial scale. That's true.

上記の新しい技術的課題の全てが、満足のゆく方法で、
低価格で、しかも工業レベルで本発明により初めて解決
された。
All of the above new technical challenges can be met in a satisfactory manner.
This problem was solved for the first time by the present invention at a low cost and at an industrial level.

課題を解決するための手段 従って、本発明の第1の特徴によれば、少なくとも2つ
の放電電極間で水等の液体媒質中に生じる放電状態を改
善する方法であって、少なくとも電極間において電流に
対する抵抗をかなり減少させ、その抵抗を臨界抵抗に近
いかあるいは若干高い抵抗値にすることを特徴とする方
法が提供される。
Means for Solving the Problems According to a first feature of the present invention, there is provided a method for improving a discharge state occurring in a liquid medium such as water between at least two discharge electrodes, the method comprising: A method is provided which is characterized in that the resistance to the resistance is significantly reduced and the resistance is close to the critical resistance or slightly higher.

本発明の特に好ましい態様によれば、上記電気抵抗は、
少なくとも電極間に介在する導電液体媒質を用いること
により減少させる。
According to a particularly preferred embodiment of the invention, the electrical resistance is
Reduced by using a conductive liquid medium interposed at least between the electrodes.

本発明の特に有利な態様によれば、使用される上記導電
液体媒質の電気抵抗は、通常のイオン化水を基準として
、その電気抵抗値の少なくとも1/10、さらに好まし
くは少なくとも1/100である。さらに好ましくは、
本発明に従う導電性媒質の電気抵抗は、抵抗率で、約2
0Ωcm以下であり、数Ωcmから20ΩCmの間であ
ることのが好ましい。
According to a particularly advantageous embodiment of the invention, the electrical resistance of the electrically conductive liquid medium used is at least 1/10, more preferably at least 1/100, of its electrical resistance value, based on normal ionized water. . More preferably,
The electrical resistance of the conductive medium according to the invention is approximately 2
It is preferably 0 Ωcm or less, and preferably between several Ωcm and 20 Ωcm.

導電性液体媒質は水性もしくは非水性電解質から成るも
のでよい。適した水性電解質は、イオン化可能な化合物
、特に例えば、NaC1,NHaClのようなハロゲン
化塩、または、アルカリ金属もしくはアルカリ土類金属
、あるいは銅等の遷移金属を含む硫酸塩または硝酸塩の
ような塩を含む水である。
The conductive liquid medium may consist of an aqueous or non-aqueous electrolyte. Suitable aqueous electrolytes include ionizable compounds, especially halogenated salts such as NaCl, NHaCl, or salts such as sulphates or nitrates containing alkali metals or alkaline earth metals or transition metals such as copper. It is water that contains

現在望ましい導電性水性液体媒質は、100または20
0g/fの割合で塩を含み、抵抗率が10から50cI
Ilの水である。適した非水性導電媒質は、当業者には
公知の金属粒子等の導電粒子を添加して導電性にした導
電性油である。
Currently preferred conductive aqueous liquid media are 100 or 20
Contains salt at a rate of 0 g/f and has a resistivity of 10 to 50 cI
Il water. Suitable non-aqueous conductive media are conductive oils made electrically conductive by the addition of conductive particles, such as metal particles, known to those skilled in the art.

本発明の第2の特徴によれば、間歇的に電流が供給され
る少なくとも2つの放電電極の間で水等の液体媒質中に
生じた放電の状態を改善するための装置であって、少な
くとも電極間において電流に対する抵抗を減少させて、
臨界抵抗に近い値かまたは若干高い抵抗値にする手段を
備える装置を提供する。
According to a second feature of the present invention, there is provided an apparatus for improving the state of a discharge occurring in a liquid medium such as water between at least two discharge electrodes to which current is intermittently supplied, the apparatus comprising: By reducing the resistance to current between the electrodes,
To provide a device having means for achieving a resistance value close to or slightly higher than the critical resistance.

特に有利な態様によれば、電流に対する電気抵抗を減少
させる手段は、少なくとも電極間に介在する導電液体媒
質を含む。この介在は、電極を上記導電性液体媒質に浸
す、あるいはこの導電液体媒質を電極のレベルに注ぎ込
むことにより達成される。
According to a particularly advantageous embodiment, the means for reducing the electrical resistance to electric current comprises an electrically conductive liquid medium interposed between at least the electrodes. This intervention is achieved by immersing the electrode in the electrically conductive liquid medium or by pouring this electrically conductive liquid medium at the level of the electrode.

本発明に従う上記導電性液体媒質のその他の特徴は、方
法に関して説明してきたが、勿論装置にも適用可能であ
る。
Other features of the electrically conductive liquid medium according to the invention, which have been described with respect to the method, are of course also applicable to the apparatus.

本発明によれば、放電は導電性媒質を通じて生成される
ので、遅延時間をほぼ完全に除去することができる。さ
らに、電極間に発生した圧力波の再現性がかなり向上す
る共に、アーク形成に伴う振動が防止される。これは、
主に、従来の場合ではアークが時間的にも空間的にもラ
ンダムに生じていたために、上記泡形成の局在化が不正
確であったが、本発明ではそうようにならないからであ
る。従って、本発明に従えば、@動電流が除去され、放
電は臨界減衰型である。これは添イ4の図面を参照にし
た以下の説明からさらに容易に理解されることであろう
According to the invention, since the discharge is generated through a conductive medium, the delay time can be almost completely eliminated. Furthermore, the reproducibility of the pressure waves generated between the electrodes is considerably improved and vibrations associated with arc formation are avoided. this is,
This is mainly because the localization of the bubble formation was inaccurate in the conventional case because arcs occurred randomly both in time and space, but this is not the case in the present invention. Therefore, according to the invention, the dynamic current is eliminated and the discharge is of the critically damped type. This will be more easily understood from the following explanation with reference to the drawings in Attachment A4.

さらにまた本発明によれば、エネルギがより瞬間的に(
臨界速度で)供給されるので、発生ずる圧力はコンデン
サの放電電圧を同じ値とした場合0、従来より高くなる
Furthermore, according to the present invention, the energy is more instantaneously (
(at a critical speed), the pressure generated is 0 when the discharge voltage of the capacitor is the same value, which is higher than that of the conventional case.

本発明は、従って、当業者の誰にも予期されす°、明ら
かではなかった上述した様々な技術的利点を実現するも
のである。
The present invention therefore realizes the various technical advantages described above that were not anticipated or obvious to anyone skilled in the art.

本発明のその他の■的、特徴および利点は、非限定的な
例として示した装置の好ましい実施例を示す添イ4図面
を参照にした、以下に行う説明からさらに明らかにされ
ることであろう。
Other features, features and advantages of the invention will become clearer from the description given below, with reference to the accompanying drawings, which show a preferred embodiment of the device, given by way of non-limiting example. Dew.

り1準1 第2図に、リーバ−のアメリカ合衆国特許箱2゜559
、227号に記載される形式の切頭楕円形レフレクタを
参考として概略的に示し、参照番号10をしである。こ
の1/フ1ノクタは2つの電極12.14を備え、これ
らの電極は、参照記号Fで示した内部焦点に向かって収
斂するように、互いに向かい合うように位置している。
Figure 2 shows Lieber's United States Patent Box 2゜559.
A truncated elliptical reflector of the type described in , No. 227, is shown schematically for reference and designated by the reference numeral 10. This 1/F 1 noctor comprises two electrodes 12.14, which are located opposite each other so as to converge towards an internal focus indicated by the reference symbol F.

楕円体の第二の焦点は切頭楕円形レフレクタ10の外部
に位蓋し、リーバ−のアメリカ合衆国特許に詳細に記載
されているように、この第二焦点に破壊すべきターゲッ
トを合わせる。勿論このターゲットは結石であってもよ
い。
A second focal point of the ellipsoid is located on the exterior of the truncated elliptical reflector 10, and the target to be destroyed is aligned with this second focal point, as described in detail in the Lieber patent. Of course, this target may also be a stone.

電極12は例えば、第2図に示すように、アースされ、
更にコンデンサCの一端に接続されている。
The electrode 12 is, for example, grounded as shown in FIG.
Furthermore, it is connected to one end of the capacitor C.

他方の電極14は例えば、ガス消弧遮断器等の開閉袋]
を介してコンデンサCに接続されている。
The other electrode 14 is, for example, a resealable bag for a gas arc-extinguishing circuit breaker, etc.]
It is connected to capacitor C via.

この開閉装置は参照番号20で示した制御装置により間
歇的に遮断される。高い値の抵抗RがコンデンサCと並
列に配置されている。コンデンサCは、例えば、参考の
ため引用した本出願人による文献EP−八−02969
12号の第1図に示されたような電源から10.000
 =20.000 Vの高電圧が充電される。これに対
応する回路は理解を容易にするため省略した。通常、楕
円形レフレクタ10は、通常は水の衝撃波伝達液で満た
されており、その電流に対する抵抗は少なくない。通常
イオン化水の電気抵抗値は、抵抗率で約1500Ωcm
である。リーバ−のアメリカ合衆国特許箱2.559.
227号の場合のように、非常に絶縁性の高い油類の場
合、抵抗率は約3−・−5MΩcmである。
This switching device is intermittently shut off by a control device designated by reference numeral 20. A high value resistor R is placed in parallel with the capacitor C. Capacitor C may be described, for example, in document EP-8-02969 by the applicant, which is cited for reference.
10,000 from the power supply as shown in Figure 1 of No. 12.
A high voltage of =20.000 V is charged. The corresponding circuit has been omitted for ease of understanding. Typically, the elliptical reflector 10 is filled with a shock wave transmitting fluid, usually water, and has considerable resistance to electrical current. Normally, the electrical resistance value of ionized water is approximately 1500Ωcm in terms of resistivity.
It is. Lieber's United States Patent Box 2.559.
In the case of highly insulating oils, such as No. 227, the resistivity is approximately 3-5 MΩcm.

電極12.14間の液体媒質が通常イオン化水である場
合に、第2図に示したような回路中に放電を起こすとき
、第1a図、第1b図および第1C図に示したような放
電特性となり、これには遅延時間が少なからずあり、放
電の状態は、アークの形成を伴い、且つ、エネルギを外
部媒質に段階的に伝える振動型である。
When the liquid medium between the electrodes 12.14 is usually ionized water, when a discharge occurs in a circuit as shown in FIG. 2, the discharge as shown in FIGS. 1a, 1b and 1c occurs. Characteristically, there is a considerable delay time, and the state of the discharge is of the oscillatory type, accompanied by the formation of an arc, and which transfers energy to the external medium in stages.

本発明に従い、少なくとも電極間を流れる電流に対する
抵抗をかなり減ら12、臨界抵抗に近い値あるいは若干
高い抵抗値にするための手段が使用される。この解決法
は、電極間に絶縁要素を介在させて電極間の電気抵抗を
かなり増加させることを提案する本出願人による文献B
P−A−0296912に推奨される方法と逆であり、
またガーバーのアメリカ合泉田特許第3559435号
に提案されている方法とも対照的である。
According to the invention, measures are used to significantly reduce the resistance to at least the current flowing between the electrodes 12 to a value close to or slightly above the critical resistance. This solution is based on the applicant's document B, which proposes interposing an insulating element between the electrodes to considerably increase the electrical resistance between them.
This is the opposite of the method recommended in P-A-0296912,
It is also in contrast to the method proposed in Gerber, US Pat. No. 3,559,435.

本発明によれば、電気抵抗を減少させる上記手段は、少
なくとも部分的に電極の間に位置する導電性の液体媒質
を備えるのが望ましい。実際に、これは、導電性媒質中
に電極を浸すことにより、即ち、液中で圧力波を生成す
る場合には、楕円形レフレクタ10を」1記導電性液体
媒質で満たずことにより非常に簡単に達成することがで
きる。
According to the invention, the means for reducing the electrical resistance preferably comprises an electrically conductive liquid medium located at least partially between the electrodes. In practice, this can be greatly improved by immersing the electrode in a conductive medium, i.e. by filling the elliptical reflector 10 with a conductive liquid medium, i.e. when generating pressure waves in a liquid. can be easily achieved.

本発明の有利な態様によれば、導電性液体媒質は、通常
1500Ωcm程度の抵抗率を有する通常のイオン化水
を基準として、その電気抵抗の値の少なくとも1/10
、望ましくは1 /100の電気抵抗を有している。本
発明に従う導電性媒質の電気抵抗は、抵抗率で約200
Cm以下が望ましく、さらには数Ωcmから200am
の範囲であることが好ましい。かくして、電極間のく液
体の)抵抗は、臨界抵抗(一般には0.3〜数Ωcm)
と等しいか、これに非常に近い。その結果、電流は、導
電性液体中を流れ、出来る限り短い時間で導電性液体を
加熱する。コンデンサのキャパシタンスCや、放電回路
のインダクタンスL等の外部パラメータの値を考慮する
と、気体の圧力波発生泡はプラズマのほぼ不在下で生成
される。
According to an advantageous aspect of the invention, the electrically conductive liquid medium has an electrical resistance of at least 1/10 of the value of normal ionized water, which typically has a resistivity of the order of 1500 Ωcm.
, preferably has an electrical resistance of 1/100. The electrical resistance of the conductive medium according to the invention is approximately 200 in terms of resistivity.
Cm or less is desirable, and furthermore, from several Ωcm to 200am
It is preferable that it is in the range of . Thus, the resistance (of the liquid between the electrodes) is the critical resistance (generally 0.3 to several Ωcm).
equal to or very close to. As a result, an electric current flows through the conductive liquid and heats it in the shortest possible time. Considering the values of external parameters such as the capacitance C of the capacitor and the inductance L of the discharge circuit, gas pressure wave generating bubbles are generated almost in the absence of plasma.

本発明に従う導電性媒質として、あらゆる水性または非
水性の導電性液体を用いることができる。
Any aqueous or non-aqueous conductive liquid can be used as the conductive medium according to the invention.

適した水性の導電液体は、純粋な水に、/%ロゲン化物
、特に塩化物、硫酸塩、硝酸塩等の塩のようなイオン化
可能な可溶化合物を添加して作製される水性電解液であ
る。特に望ましい水性電解液はNaC1またはNH,C
Iを添加した水である。さらに好ましい媒質は、抵抗率
が10〜5Ωcmで、濃度が100または200g/f
の塩水である。適した非水性の電解液として、導電性油
、即ち、金属粒子のような導電粒子を添加することによ
り導電性とされた油を挙げることができる。
Suitable aqueous conductive liquids are aqueous electrolytes made by adding to pure water ionizable soluble compounds such as /% chlorides, especially salts such as chlorides, sulfates, nitrates, etc. . A particularly desirable aqueous electrolyte is NaCl or NH,C
This is water to which I has been added. A more preferable medium has a resistivity of 10 to 5 Ωcm and a concentration of 100 or 200 g/f.
It is salt water. Suitable non-aqueous electrolytes include conductive oils, ie oils made electrically conductive by the addition of conductive particles, such as metal particles.

本発明に従い、導電性媒質を用いると、第3a図、第3
b図、第3C図に示したように、放電特性が得られる。
According to the invention, using a conductive medium, FIG. 3a, FIG.
The discharge characteristics are obtained as shown in Figure b and Figure 3C.

電極が時間1.で点孤されるとすぐにコンデンサCの放
電がほぼ瞬間的に起こる。
The electrodes are connected for a time of 1. As soon as the capacitor C is ignited, the discharge of the capacitor C occurs almost instantaneously.

さらに、放電は、臨界減衰型であり、シヌソイド型では
ない。また、エネルギは、振動状態の場合や、遅延時間
のある従来の状態の場合よりはるかに短い時間で外部媒
質に送られるので、発生した圧力波の値をより短時間で
増加させることができる。
Furthermore, the discharge is of the critically damped type and not of the sinusoidal type. Also, since the energy is delivered to the external medium in a much shorter time than in oscillating conditions or in conventional conditions with a delay time, the value of the generated pressure wave can be increased in a shorter time.

その結果、放電が時間的及び空間的にランダムに生じる
のではなく、反対に、時間1.で点孤され、完全に局在
化された蒸気泡を形成することから、圧力波の再現性が
相当高くなる。第3図に示すグラフは、電極12.14
を浸すための導電性媒質として濃度200g/Aの塩水
と、容量100nFのコンデンサと、電極間の間隔0.
4mmと、全体の自己インダクタンスLが80nHの第
2図に示した放電回路とを用いて得られた。
As a result, the discharges do not occur randomly in time and space, but, on the contrary, at times 1. The reproducibility of the pressure wave is considerably high due to the formation of completely localized vapor bubbles. The graph shown in FIG.
salt water with a concentration of 200 g/A as a conductive medium for immersing the electrodes, a capacitor with a capacity of 100 nF, and a spacing between the electrodes of 0.
4 mm and an overall self-inductance L of 80 nH using the discharge circuit shown in FIG.

本明細書において、臨界抵抗が、式: %式%) (ただし、Lは、コンデンサCの放電回路の内部自己イ
ンダクジスの値であり、Cはコンデンサの容量値である
) を実質的に満たす電極間の抵抗値であることに留意され
たい。
In this specification, an electrode whose critical resistance substantially satisfies the formula: %formula %) (where L is the value of the internal self-inductance of the discharge circuit of the capacitor C, and C is the capacitance value of the capacitor) Note that the resistance value is between.

本発明に従い、導電性液体媒質を用いて、特に塩水を用
いた場合に、平均偏差が5%以下の優れた圧力波の再現
性が得られる。これに対して、通常のイオン化水を用い
た場合には、平均偏差は約30%である。従って、本発
明は、当業者に明らかではなく、予期されなかった技術
的利点をもたらし、その結果、前述の問題を全て解決す
る。本発明はまた以上説明した方法を実施する可能性も
提供する。
According to the invention, excellent pressure wave reproducibility with an average deviation of less than 5% is obtained using conductive liquid media, especially when using salt water. On the other hand, when ordinary ionized water is used, the average deviation is about 30%. Therefore, the present invention provides unexpected technical advantages that were not obvious to those skilled in the art, and thus solves all of the aforementioned problems. The invention also provides the possibility of implementing the method described above.

最後に、本発明は、2つの電極間に電流を流すことよる
圧力波を発生する圧力波発生装置であって、既に説明し
た放電状態を改善するための方法または装置を使用する
ことを特徴とする装置も実現する。特に、この圧力波発
生装置は、本発明に従う導電性液体媒質を満たした切頭
楕円形レフレクタを備えることを特徴とする。
Finally, the present invention is a pressure wave generating device that generates pressure waves by passing a current between two electrodes, characterized in that it uses the method or device for improving the discharge state described above. We will also realize a device that does this. In particular, this pressure wave generator is characterized in that it comprises a truncated elliptical reflector filled with an electrically conductive liquid medium according to the invention.

上記の圧力波発生装置は、圧力波による結石(腎結石、
胆石、尿結石)、あるいは組織(腫瘍等)の生体外から
の破壊、さらには骨折の治療に適用するのが望ましい。
The above pressure wave generator is used to generate stones (kidney stones, etc.) caused by pressure waves.
It is desirable to apply it to the destruction of gallstones, urinary stones) or tissues (tumors, etc.) from outside the body, and furthermore to the treatment of bone fractures.

4、簡単な図面の説明 第1a図、第1b図および第1c図は、第2図に概略を
示したリーバ−のアメリカ合衆国特許第2、559.2
27号に従う放電回路を用いて2つの電極間に発生する
普通のアーク放電の間の電圧、電流およびエネルギの曲
線をそれぞれ示すグラフであり、 第2図は、リーバ−のアメリカ合衆国特許第2゜559
、227号に記載された形式の切頭楕円形レフレクタを
、電極と切頭楕円形レフレクタの内部焦点を通過する断
面に沿った切断した部分的な断面と、電極に接続された
コンデンサ充放電回路、コンデンサと並列に設けられた
抵抗Rを概略的に示す図であり、 第3a図、第3b図および第3C図は、本発明に従い、
少なくとも電極間に導電性液体媒質を用いた場合に得ら
れる電圧、電流およびエネルギの曲線をそれぞれ示して
いる、第1a図、第1b図および第1C図と同様なグラ
フである。
4. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1a, 1b, and 1c are based on Lieber, U.S. Pat. No. 2,559.2, schematically shown in FIG.
Figure 2 is a graph showing the voltage, current and energy curves, respectively, during a normal arc discharge between two electrodes using a discharge circuit according to No. 27;
, a partial cross-section of a truncated elliptical reflector of the type described in No. 227, taken along a section passing through the electrode and the internal focal point of the truncated elliptical reflector, and a capacitor charging/discharging circuit connected to the electrode. 3a, 3b and 3c schematically show a resistor R arranged in parallel with a capacitor; FIGS. 3a, 3b and 3c show that according to the invention,
1a, 1b and 1c respectively showing the voltage, current and energy curves obtained when using a conductive liquid medium at least between the electrodes; FIG.

(主な参照番号) 10・・レフレクタ、 20・・制御装置、 C・・コンデンサ、 R・・抵抗 12.14・・電極、 F・・内部焦点、 ■・・開閉装置、(Main reference number) 10...Reflector, 20...control device, C... Capacitor, R...Resistance 12.14...electrode, F. Internal focus, ■...Switching device,

Claims (14)

【特許請求の範囲】[Claims] (1)電流が間歇的に供給される少なくとも2つの電極
間で水等の液体媒質中に生じる放電状態の再現性を特に
改善するための方法であって、少なくとも電極間におい
て、電流に対する抵抗をかなり減少させ、該抵抗を臨界
抵抗に近い値かあるいは若干高い抵抗値にすることを特
徴とする方法。
(1) A method for particularly improving the reproducibility of a discharge state that occurs in a liquid medium such as water between at least two electrodes to which a current is intermittently supplied, the method comprising: reducing the resistance to the current at least between the electrodes; A method characterized in that the resistance is significantly reduced to a value close to the critical resistance or slightly higher.
(2)少なくとも電極間に介在するように導電性液体媒
質を用いることを特徴とする請求項1記載の方法。
2. The method according to claim 1, characterized in that: (2) a conductive liquid medium is used so as to be interposed at least between the electrodes.
(3)上記導電性液体媒質の電気抵抗が、通常のイオン
化水を基準として、その電気抵抗値の少なくとも1/1
0、好ましくは少なくとも1/100であることを特徴
とする請求項1記載の方法。
(3) The electrical resistance of the conductive liquid medium is at least 1/1 of the electrical resistance value of normal ionized water.
2. A method according to claim 1, characterized in that it is 0, preferably at least 1/100.
(4)上記導電性液体媒質の電気抵抗が、抵抗率で約−
20Ωcm以下で、好ましくは数Ωcmから20Ωcm
の間の範囲にあることを特徴とする請求項3記載の方法
(4) The electrical resistance of the conductive liquid medium is about - in terms of resistivity.
20Ωcm or less, preferably from several Ωcm to 20Ωcm
4. A method according to claim 3, characterized in that the range is between .
(5)上記導電性液体媒質が、水性もしくは非水性電解
液、望ましくは塩水であることを特徴とする請求項2記
載の方法。
5. A method according to claim 2, characterized in that the electrically conductive liquid medium is an aqueous or non-aqueous electrolyte, preferably salt water.
(6)電流が間歇的に供給される少なくとも2つの電極
間で水等の液体媒質中に生じる放電状態を改善するため
の装置であって、少なくとも電極間において電流に対す
る抵抗をかなり減少させ、該抵抗を臨界抵抗に近い値か
あるいは若干高い抵抗値にする手段を備えることを特徴
とする装置。
(6) A device for improving a discharge state that occurs in a liquid medium such as water between at least two electrodes to which current is intermittently supplied, the device significantly reducing the resistance to the current at least between the electrodes, and A device characterized by comprising means for increasing the resistance to a value close to or slightly higher than the critical resistance.
(7)上記手段が、少なくとも電極間に介在する、ある
いは電極の高さに注入された導電液体媒質を含むことを
特徴とする請求項6記載の装置。
7. Device according to claim 6, characterized in that said means comprises at least a conductive liquid medium interposed between the electrodes or injected at the level of the electrodes.
(8)上記導電性液体媒質の電気抵抗が、抵抗率で、通
常のイオン化水を基準として、その電気抵抗値の少なく
とも1/10、好ましくは少なくとも1/100である
ことを特徴とする請求項6記載の装置。
(8) The electrical resistance of the electrically conductive liquid medium is at least 1/10, preferably at least 1/100 of the electrical resistance value of normal ionized water in terms of resistivity. 6. The device according to 6.
(9)上記導電性液体媒質が、水性もしくは非水性電解
液から成ることを特徴とする請求項8記載の装置。
(9) A device according to claim 8, characterized in that said conductive liquid medium consists of an aqueous or non-aqueous electrolyte.
(10)上記導電性液体媒質が、イオン化可能な化合物
、特に、ハロゲン化塩、硫酸塩または硝酸塩等の塩が添
加された純水から製造された水性電解液であることを特
徴とする請求項7記載の装置。
(10) Claim characterized in that the conductive liquid medium is an aqueous electrolyte prepared from pure water to which an ionizable compound is added, in particular a salt such as a halide salt, sulfate or nitrate. 7. The device according to 7.
(11)上記導電性液体媒質が、例えば、濃度100ま
たは200g/lの塩水のような、抵抗率約20Ωcm
以下の電気抵抗を有することを特徴とする請求項7記載
の装置。
(11) The conductive liquid medium has a resistivity of about 20 Ωcm, such as salt water with a concentration of 100 or 200 g/l.
8. Device according to claim 7, characterized in that it has an electrical resistance of:
(12)2つの電極間に電流を流すことにより圧力波を
発生するための装置であって、請求項6〜11のいずれ
か一項に記載の装置を備える、あるいは請求項1〜5の
いずれか一項に記載の方法を用いることを特徴とする圧
力波発生装置。
(12) A device for generating pressure waves by passing a current between two electrodes, comprising the device according to any one of claims 6 to 11, or any one of claims 1 to 5. A pressure wave generator characterized in that the method according to item 1 is used.
(13)切頭楕円形レフレクタ(10)を備え、該レフ
レクタが、請求項6〜11のいずれか一項に記載の導電
性液体で満たされていることを特徴とする圧力波発生装
置。
(13) A pressure wave generating device, characterized in that it comprises a truncated elliptical reflector (10), which reflector is filled with the electrically conductive liquid according to any one of claims 6 to 11.
(14)上記装置が、圧力波により結石(腎結石、胆石
ならびに尿結石)または組織(腫瘍等)の生体外からの
破壊、さらに骨折の治療に使用されることを特徴とする
請求項12記載の装置。
(14) The device according to claim 12, wherein the device is used to destroy stones (kidney stones, gallstones, and urinary stones) or tissues (tumors, etc.) from outside the body using pressure waves, and to treat bone fractures. equipment.
JP2174297A 1989-06-30 1990-06-30 Improvement of device for generating shock wave by generating discharge in conductive liquid between electrodes Expired - Lifetime JPH0644914B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908846A FR2649252B1 (en) 1989-06-30 1989-06-30 METHOD AND DEVICE FOR DISCHARGING AN ELECTRIC ARC IN AN ELECTRICALLY CONDUCTIVE LIQUID AND APPLICATION TO A LITHOTRYPTER
FR8908846 1989-06-30

Publications (2)

Publication Number Publication Date
JPH03131244A true JPH03131244A (en) 1991-06-04
JPH0644914B2 JPH0644914B2 (en) 1994-06-15

Family

ID=9383363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174297A Expired - Lifetime JPH0644914B2 (en) 1989-06-30 1990-06-30 Improvement of device for generating shock wave by generating discharge in conductive liquid between electrodes

Country Status (6)

Country Link
US (1) US5105801A (en)
JP (1) JPH0644914B2 (en)
DE (1) DE4020770C3 (en)
FR (1) FR2649252B1 (en)
IL (1) IL94865A (en)
IT (1) IT1240475B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE465552B (en) * 1989-03-21 1991-09-30 Hans Wiksell DEVICE FOR SUBDIVISION OF CONCRETE IN THE BODY OF A PATIENT
FR2671239B1 (en) * 1990-12-26 1994-09-30 Technomed Int Sa METHOD AND DEVICE INTERPOSING AN ELECTRICALLY CONDUCTIVE LIQUID BETWEEN ELECTRODES AND SHOCK WAVE APPARATUS INCLUDING APPLICATION.
US5251614A (en) * 1989-06-30 1993-10-12 Technomed International Method and device interposing an electrically conductive liquid between electrodes and shockwave apparatus for method and device
DE3937904C2 (en) * 1989-11-15 1994-05-11 Dornier Medizintechnik Improvement of the ignition behavior on an underwater spark gap
FR2693306B1 (en) * 1992-07-02 1994-10-14 Technomed Int Sa Electric discharge electrode with movable ring, discharge device, pressure wave generating device and treatment apparatus comprising the same.
WO1996009621A1 (en) * 1994-09-21 1996-03-28 Hmt High Medical Technologies Entwicklungs- Und Vertriebs Ag Method and device for generating shock waves for medical treatment, in particular for electro-hydraulic lithotripsy
US6123679A (en) * 1996-08-29 2000-09-26 Lafaut; Jean-Pierre Method for extracorporeal shock wave lithotripsy by applying an acoustic shock wave followed by a limited oscillating acoustic pressure wave train
DE19750598A1 (en) 1996-12-18 1998-06-25 Siemens Ag Product with a substrate made of a partially stabilized zirconium oxide and a buffer layer made of a fully stabilized zirconium oxide and process for its manufacture
DE19702593C2 (en) * 1997-01-24 2000-07-06 Siemens Ag Method and device for generating shock waves for technical, preferably medical applications
US6075753A (en) * 1999-05-06 2000-06-13 The United States Of America As Represented By The Secretary Of The Navy System for simulation of underwater explosion pressure fields
SE0004224D0 (en) * 2000-11-16 2000-11-16 St Jude Medical Medical device
US6570819B1 (en) 2002-03-08 2003-05-27 The United States Of America As Represented By The Secretary Of The Navy Low frequency acoustic projector
DE10311659B4 (en) * 2003-03-14 2006-12-21 Sws Shock Wave Systems Ag Apparatus and method for optimized electrohydraulic pressure pulse generation
US7896822B2 (en) * 2006-11-30 2011-03-01 Scoseria Jose P Multiple lithotripter electrode
DE102007003229A1 (en) * 2007-01-22 2008-07-24 Switech Medical Ag Shock wave generator, has voltage supply connected with another supply so that respective voltage is added between conductive points, and capacitor switched parallel to points, where voltage is smaller than breakdown voltage between points
DE102012007500A1 (en) * 2012-04-17 2013-10-17 Eads Deutschland Gmbh Extraction of oil by pulse discharges
CN103536339B (en) * 2013-11-01 2015-11-25 杜锡鑫 Extra chock wave lithotriptor and the charge-discharge circuit for extra chock wave lithotriptor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165835A (en) * 1982-03-25 1983-09-30 ドルニエ・ジステム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Apparatus for crushing stone in living body
JPS61276549A (en) * 1985-05-29 1986-12-06 ドルニエ、ジステム、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Electrode material for spark gap
JPS62152447A (en) * 1985-12-26 1987-07-07 アロカ株式会社 Stone crushing apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559227A (en) * 1947-05-24 1951-07-03 Interval Instr Inc Shock wave generator
US3559435A (en) * 1968-09-25 1971-02-02 Continental Can Co Liquid bridge wire
DE3019919A1 (en) * 1980-05-24 1981-12-03 Naamloze Vennootschap Klippan S.A., 3044 Leeuwen LOCKING LOCK FOR SAFETY BELTS IN MOTOR VEHICLES
DE3146627C2 (en) * 1981-11-25 1990-04-19 Dornier System Gmbh, 7990 Friedrichshafen Circuit for generating an electrical discharge in the nsec range
US4610249A (en) * 1984-05-08 1986-09-09 The Johns Hopkins University Means and method for the noninvasive fragmentation of body concretions
US4651311A (en) * 1984-12-05 1987-03-17 Southwest Research Institute Electrodeless spark discharge acoustic pulse transducer for borehole operation
DE3622352C1 (en) * 1986-07-03 1987-12-03 Dornier System Gmbh Spark gap with electrode tips of different geometries
FR2616977B1 (en) * 1987-06-16 1992-04-03 Technomed Int Sa METHOD AND DEVICE FOR IMPROVING THE DISCHARGE REGIME OF AN ELECTRIC ARC PRODUCED BETWEEN TWO ELECTRODES, BY INTERPOSING AN INSULATING ELEMENT WITH HIGH RESISTANCE AT LEAST BETWEEN THE ELECTRODES, AND APPARATUS FOR GENERATING SHOCK WAVE USING SUCH A METHOD OR DEVICE , ESPECIALLY FOR HYDRAULIC LITHOTRYPSY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58165835A (en) * 1982-03-25 1983-09-30 ドルニエ・ジステム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Apparatus for crushing stone in living body
JPS61276549A (en) * 1985-05-29 1986-12-06 ドルニエ、ジステム、ゲゼルシヤフト、ミツト、ベシユレンクテル、ハフツング Electrode material for spark gap
JPS62152447A (en) * 1985-12-26 1987-07-07 アロカ株式会社 Stone crushing apparatus

Also Published As

Publication number Publication date
DE4020770C3 (en) 2003-08-21
JPH0644914B2 (en) 1994-06-15
IL94865A (en) 1994-08-26
IT1240475B (en) 1993-12-17
US5105801A (en) 1992-04-21
DE4020770A1 (en) 1991-01-03
IT9067481A1 (en) 1991-12-29
FR2649252B1 (en) 1993-01-15
FR2649252A1 (en) 1991-01-04
IT9067481A0 (en) 1990-06-29
DE4020770C2 (en) 1996-09-05
IL94865A0 (en) 1991-04-15

Similar Documents

Publication Publication Date Title
JPH03131244A (en) Method and device for particularly improving the repeatability and efficiency of pressure wave taking place between two electrodes during capacitor discharge with conductive liquid medium interposed therebetween and impulse wave generating device using said method and device to conduct stone crushing particularly in liquid
US5251614A (en) Method and device interposing an electrically conductive liquid between electrodes and shockwave apparatus for method and device
US6113560A (en) Method and device for generating shock waves for medical therapy, particularly for electro-hydraulic lithotripsy
JPH03159641A (en) Method and device for improving arc ignition characteristics of spark gap
JP4680383B2 (en) Induction of physical changes in metallic objects
US6666834B2 (en) Method and apparatus for generating shock waves
CN105598021A (en) Liquid-electric pulse shock wave generator
KR100783507B1 (en) Extracorporeal shock wave therapy equipment
US20110088802A1 (en) Liquid Arc Induced Cavitation (LAIC) System
WO1998007520A1 (en) Electric discharge shock breakdown method and apparatus therefor
Cathignol et al. Influence of water conductivity on the efficiency and the reproducibility of electrohydraulic shock wave generation
JPH06505648A (en) Method and device for interposing liquid between electrodes of shock wave device
RU2002128370A (en) CAPSULE FOR QUICKLY EXPANDING METAL MIXTURE
JP2007242363A (en) Ultraviolet generator
SU736374A1 (en) Method and device for dc cutout
EP1416518A2 (en) Short arc high intensity mercury discharge lamp
JPH0250600B2 (en)
CN106983537A (en) A kind of height leads sparking electrode
RU2168290C1 (en) DEVICE FOR REALIZATION OF z-PINCH ON THE BASIS OF SLIPPING DISCHARGE
JP6331834B2 (en) Power source for plasma light source
CN105654938A (en) Liquid-state metal plasma electroacoustic conversion device
SU1038900A1 (en) Device for generating elastic pulse in liquid
JPS62152189A (en) Gas laser oscillator
JP2005322500A (en) High-pressure discharge lamp lighting device
JPH04130785A (en) Pulsed laser oscillation device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 17