JPH03130410A - Fibrillated fiber and its production - Google Patents

Fibrillated fiber and its production

Info

Publication number
JPH03130410A
JPH03130410A JP26839789A JP26839789A JPH03130410A JP H03130410 A JPH03130410 A JP H03130410A JP 26839789 A JP26839789 A JP 26839789A JP 26839789 A JP26839789 A JP 26839789A JP H03130410 A JPH03130410 A JP H03130410A
Authority
JP
Japan
Prior art keywords
solution
diameter
polymer
acrylonitrile
methyl methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26839789A
Other languages
Japanese (ja)
Inventor
Yuichi Fukui
福居 雄一
Hajime Ito
元 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP26839789A priority Critical patent/JPH03130410A/en
Publication of JPH03130410A publication Critical patent/JPH03130410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the subject fiber having high reinforcing effect by mixing a polymer component containing a specific amount of acrylonitrile with a polymer solution containing a specific amount of methyl methacrylate, spinning and drawing the mixture, cutting the obtained fiber to a specific aspect ratio and beating the cut fibers. CONSTITUTION:The objective fiber composed of plural fibrils having a diameter of <=2mu and an aspect ratio of >=1,000 and having a root stem part with a diameter larger than 10 times the diameter of the fibril can be produced by mixing (A) 1 pt.wt. of a solution having a viscosity of 100-2,000 poise at 50 deg.C and produced by dissolving a polymer containing >=85% of acrylonitrile in a solvent and (B) 1-100 pts.wt. of a solution having a viscosity of 100-2,000 poise at 50 deg.C and produced by dissolving a polymer containing >=90% of methyl methacrylate in a solvent, spinning and drawing the obtained mixed solution containing the component A dispersed in the component B in the form of fine particles having a diameter of 1-100mu, cutting the drawn fiber to an aspect ratio of 1,000-100,000 and beating the cut fibers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメチルメタクリレートを主体とするポリマー成
形物の補強に適したフィブリル化繊維及びその製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to fibrillated fibers suitable for reinforcing polymer molded articles mainly composed of methyl methacrylate, and a method for producing the same.

〔従来の技術〕[Conventional technology]

メチルメタクリレート系ポリマーば、その優れた透明性
の故に光学材料や照明器具、装飾品、建材等の分野に広
く使われ、その形態も立体状、板状、シート状と多岐に
亘って−る。しかしな小らこのポリマーはこのような特
長にも拘わらず強度特に衝撃強度の低さのゆえに使用が
制限されることがある。
Due to its excellent transparency, methyl methacrylate polymers are widely used in the fields of optical materials, lighting equipment, ornaments, building materials, etc., and their shapes vary widely, including three-dimensional shapes, plate shapes, and sheet shapes. However, despite these features, the use of this polymer is sometimes limited due to its low strength, particularly impact strength.

このために特に衝撃強度の向上を目的として種涜の方法
が検討されてきたが、中でもアクリロニトリル系ポリマ
ーからなる繊維を用いた繊維補強法は特に有望と考えら
れてきた。その理由はポリメチルメタクリレートとポリ
アクリロニトリルの屈折率が、前者では1.490後者
では1、506と非常に近いために、アクリロニトリル
系ポリマーからの繊維で補強されたメチルメタクリレー
トを主体とするポリマーは、現実的には透明でポリマー
の特長を損なうことが無いとhう点にある。
For this reason, methods of reinforcing fibers using fibers made of acrylonitrile polymers have been considered to be particularly promising, especially for the purpose of improving impact strength. The reason for this is that the refractive index of polymethyl methacrylate and polyacrylonitrile is very close, 1.49 for the former and 1.506 for the latter. In reality, it is transparent and does not impair the features of the polymer.

しかし実際にはアクリロニトリル系ポリマーからのa維
をメチルメタクリレートを主体とするポリマーに分散し
ようとすると、繊維同士が絡曾る現象、つ1リフアイバ
ーボールの生成を避けることが実際には非常に難しく本
技術の実用化を妨げている。
However, in reality, when trying to disperse a-fibers from acrylonitrile-based polymers into a polymer mainly composed of methyl methacrylate, it is actually very difficult to avoid the phenomenon of fibers becoming entangled with each other and the formation of fiber balls. This is hindering the practical application of this technology.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる状況に鑑み、木発明者らはメチルメタクリレート
を主体とするポリマーに均一に分散しやすく、かつ補強
効果の高い繊維の研究を鋭意進めた結果、従来になし全
く新しb構成からなるフィブリル化繊維を開発し本発明
を完成した。
In view of this situation, the inventors of wood have conducted research on fibers that can be easily dispersed uniformly in polymers mainly composed of methyl methacrylate and have a high reinforcing effect. Developed fibers and completed the present invention.

〔課題を解決するための手段〕[Means to solve the problem]

即ち本発明の要旨は、アクリロニ) lルが85僑以上
であるポリマーからなり、直径が2ミクロン以下、好1
しくは1ミクロン以下、より好!シ〈ば[15ミクロン
以下、更に好1しくは(11ミクロン以下で且つ長さが
直径の1000倍以上、好1しくば10000倍以上、
更に好筐しくは100000倍以上である複数のフィブ
リルの根乾部が、該フィブリルの直径の10倍以上、好
1しくは50倍以上の直径を有し、メチルメタクリレー
ト系ポリマーからなる繊維を共有してなることを特徴と
するフィブリル化*雅である。
That is, the gist of the present invention is that the polymer is made of a polymer having an acrylonitrile content of 85 mm or more, and has a diameter of 2 microns or less, preferably 1 micron.
Or less than 1 micron, even better! (15 microns or less, more preferably 11 microns or less, and the length is 1000 times or more the diameter, preferably 10000 times or more,
More preferably, the root dry parts of a plurality of fibrils have a diameter that is 100,000 times or more, preferably 50 or more times the diameter of the fibrils, and share fibers made of methyl methacrylate polymer. It is fibrillation, which is characterized by the fact that it becomes fibrillated.

本発明の繊維は、アクリロニトリル系ポリマーからなり
、且つ2ミクロン以下で、更にcL1ミクロン以下とい
う極めて細いフィブリル集合体が、それよりも10倍以
上太いメチルメタクリレート系ポリマーからなる幹繊維
を共有するという構造であり、細いフィブリルがその大
きな比表面積を有することとともに、大きなアスペクト
比(繊維長/繊維径)を有するために高す補強効果を有
する。又幹部が非常に太いために均一に分散し易くファ
イバーポールを作りにくい。更に該幹部がポリメチルメ
タクリレートからなるために補強゛されるべきメチルメ
タクリレートを主体とするポリマーに対して強固に接着
する。
The fiber of the present invention is made of an acrylonitrile-based polymer, and has a structure in which extremely thin fibril aggregates of 2 microns or less and cL 1 micron or less share a trunk fiber made of a methyl methacrylate polymer that is 10 times or more thicker than the fibril aggregate. Since the thin fibrils have a large specific surface area and a large aspect ratio (fiber length/fiber diameter), they have a high reinforcing effect. Also, since the trunk is very thick, it is easy to disperse uniformly, making it difficult to make fiber poles. Furthermore, since the trunk is made of polymethyl methacrylate, it firmly adheres to the polymer mainly composed of methyl methacrylate to be reinforced.

本発明のフィブリル化繊維はアクリロニトリルを85係
以上含有するポリマーを、該ポリマーを溶解することの
できる溶媒に溶解することにより得られる50℃におけ
る粘度が100から2000ボイズである溶液A1重量
部とメチルメタクリレートを90係以上含有するポリマ
ー及び必要に応じてアクリロニトリルとメチルメタクリ
レートからなる2元コポリマーもしくはアクリロニトリ
ルとメチルメタクリレートと他の第三モノマーとからな
る3元コポリマーの1o0/1〜10000/1のポリ
マー混合物を該ポリマー混合物を溶解することのできる
溶媒に溶解することにより得られる50℃に釦ける粘度
が100から2000ボイズである溶液B1な−し10
0重量部を混合して、溶液Bからなる連続相の中に溶液
Aが直径1ミクロンから100ミクロンの微粒子状で分
散した状態とし、該混合溶液を孔断面積が等価の円の直
径から計算される有効直径が100ミクロン以下、好オ
しくは50ミクロン以下、史に好1しくは30ミクロン
以下の吐出孔を有する紡糸口金から乾湿式または湿式法
で紡糸して得られる複合凝固糸を、常法に従って2倍以
上、好1しくは4倍以上、更に好壕しくば6倍以上延伸
して得られる延伸糸を、アスペクト比が1000〜10
0000になるように切断し、常法により叩解すること
によって製造される。
The fibrillated fiber of the present invention is prepared by dissolving a polymer containing acrylonitrile of 85 or more in a solvent capable of dissolving the polymer, and 1 part by weight of a solution A having a viscosity of 100 to 2000 voids at 50°C and methyl A 100/1 to 10000/1 polymer mixture of a polymer containing methacrylate of 90 or more and, if necessary, a binary copolymer consisting of acrylonitrile and methyl methacrylate or a ternary copolymer consisting of acrylonitrile, methyl methacrylate, and another third monomer. A solution B1-10 having a viscosity of 100 to 2000 voids at 50° C. obtained by dissolving the polymer mixture in a solvent capable of dissolving the polymer mixture.
0 parts by weight are mixed to form a state in which solution A is dispersed in the form of fine particles with a diameter of 1 to 100 microns in a continuous phase consisting of solution B, and the mixed solution is calculated from the diameter of a circle with an equivalent pore cross-sectional area. A composite coagulated yarn obtained by dry-wet or wet spinning from a spinneret having a discharge hole with an effective diameter of 100 microns or less, preferably 50 microns or less, and most preferably 30 microns or less, The drawn yarn obtained by stretching the yarn by 2 times or more, preferably 4 times or more, more preferably 6 times or more according to a conventional method, has an aspect ratio of 1000 to 10.
It is produced by cutting it into pieces with a size of 0,000 and beating it by a conventional method.

本発明ではアクリロニトリル系ボリマーノ分子量が大き
しほど得られる繊維の直径は長く、溶液状態の分散粒子
の大きさから推定されるよりもはるかに長くなる。例え
ば10係のアクリロニトリル系ポリマーを含む溶液の分
散粒子の大きさが5ミクロン、これ紡糸して得られた繊
維の直径が06ミクロンの繊維が得られたとすると、一
つの分散粒子から一本の繊維が形成されたものと仮定し
た場合にはその長さはせいぜい(12mにしかならない
。ところが本発明の方法によれば得られる繊維の長さF
il saw以上で更には数個にも及ぶことがわかった
In the present invention, the larger the molecular weight of the acrylonitrile-based polymer, the longer the diameter of the fiber obtained, which is much longer than estimated from the size of the dispersed particles in the solution state. For example, if the size of the dispersed particles of a solution containing a 10% acrylonitrile polymer is 5 microns, and the diameter of the fiber obtained by spinning this is 0.6 microns, one fiber will form from one dispersed particle. If it is assumed that F is formed, its length will be at most (12 m).However, according to the method of the present invention, the length of the fiber obtained is
It was found that there were more than il saw and even several pieces.

このことは、これ1で全く知られていなかったことで、
その詳しい機構は不明であるが、アクリロニトリル系ボ
117−の鎖長が長いことが原因で、紡糸時における溶
液の分散状態が変化したものと推定される。
This was something that was completely unknown in the first place.
Although the detailed mechanism is unknown, it is presumed that the long chain length of acrylonitrile-based bo-117- causes a change in the dispersion state of the solution during spinning.

また該ポリマーの分子量は、次の理由からも許容される
範囲で高しほうが望!しい。つ1り細い繊維を得るため
には溶液Aのポリマー濃度は紡糸が可能な範囲で低いほ
うが望1しく、紡糸に必要々粘度を低濃度で確保するた
めには、ポリマーの分子量は高いほうがよい。分子量が
例えば15万より小さいと、得られる超極細繊維は所謂
しなやかさに乏しく、極端々場合には脆性を示すように
なってくる。
Furthermore, it is desirable that the molecular weight of the polymer be as high as possible for the following reasons! Yes. In order to obtain thin fibers, it is desirable that the polymer concentration in solution A be as low as possible for spinning, and in order to ensure the necessary viscosity for spinning at a low concentration, the molecular weight of the polymer should be high. . If the molecular weight is lower than, for example, 150,000, the resulting ultrafine fibers will lack so-called flexibility and, in extreme cases, will exhibit brittleness.

これは溶液ムの濃度が低すぎると凝固過程でボイドが発
生しやすいためで、ポリマー濃度は54以上304以下
、好!シ〈は10係以上25係以下とするのがよく、こ
の範囲で適当な粘度つ1り後で述べるように100ポイ
ズから2000ボイズを確保するためには、分子量ば1
5万ないし150万、好1しくば30万々いし100万
であることが必要である。
This is because if the concentration of the solution is too low, voids are likely to occur during the coagulation process, so the polymer concentration is preferably 54 or more and 304 or less! It is best to set the coefficient between 10 and 25, and in order to maintain an appropriate viscosity within this range from 100 poise to 2000 poise, as described later, the molecular weight should be 10 to 25.
It needs to be between 50,000 and 1,500,000, preferably between 300,000 and 1,000,000.

ポリマー+−にはアクリロニトリルを854以上含有す
ることが、繊維の屈折率をポリメチルメタクリレートに
近す水準に保つ上で必要である。
It is necessary that the polymer +- contains 854 or more acrylonitrile in order to maintain the refractive index of the fiber at a level close to that of polymethyl methacrylate.

溶液ムとBの溶媒は異なっていても同一であってもよい
。溶液Aの溶媒はジメチルホルムアミド、ジメチルアセ
トアミド、ジメチルスルホキシド、ガンマ−ブチロラク
トン等の有機溶媒又はチオシアン酸塩の水溶液、硝酸の
様な無機酸等である。
The solvents of the solution and B may be different or the same. The solvent for solution A is an organic solvent such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, gamma-butyrolactone, or an aqueous solution of thiocyanate, an inorganic acid such as nitric acid, or the like.

溶液Bの溶[は、上に例示したもののほかにアセトン、
クロロホルム、ジクロロメタン、テトラヒドロフラン等
である。
The solution of solution B [is, in addition to those exemplified above, acetone,
These include chloroform, dichloromethane, and tetrahydrofuran.

メチルメタクリレートの含有量は、補強されるメチルメ
タクリレートを主体とするポリマーとの接着性の点から
8041以上であればよい。
The content of methyl methacrylate may be 8041 or more from the viewpoint of adhesion to the reinforcing polymer mainly composed of methyl methacrylate.

また、その分子量も特に限定されないが、分子量が低す
ぎても高すぎても曳糸性が不足し、釦かよそ2万から1
0万前後が適当である。
Furthermore, the molecular weight is not particularly limited, but if the molecular weight is too low or too high, the spinnability will be insufficient, and the button width will vary from 20,000 to 10,000 yen.
Around 00,000 is appropriate.

連続相である溶液B中に、溶液Aを直径1から100ミ
クロンの微粒子として分散させることになるが、その組
成、粘度等の条件によっては、分散状態が崩壊しやすく
、分散状態を作ったらすぐに紡糸するような手段をとる
かまたは分散安定剤を使用するのがよい。
Solution A is dispersed in solution B, which is a continuous phase, as fine particles with a diameter of 1 to 100 microns, but depending on the composition, viscosity, and other conditions, the dispersion state may easily collapse, so it may be necessary to disperse the solution A as soon as the dispersion state is created. It is preferable to take a method such as spinning or use a dispersion stabilizer.

分散安定剤はアクリロニトリルとメチルメタクリレート
からなる2元コポリマーもしくはアクリロニトリルとメ
チルメタクリレートと他の第三モノマーとからなる3元
コポリマーが適当であり特にアクリロニトリル重合体部
分10〜504とメチルメタクリレート及び酢酸ビニル
との共重合体部分50〜904からなるブロックコポリ
マーが非常に有効である。
The dispersion stabilizer is suitably a binary copolymer consisting of acrylonitrile and methyl methacrylate or a ternary copolymer consisting of acrylonitrile, methyl methacrylate and another third monomer, particularly a copolymer consisting of acrylonitrile polymer portions 10 to 504, methyl methacrylate and vinyl acetate. A block copolymer consisting of copolymer portions 50-904 is very effective.

溶液ム又はBの粘度は曳糸性を確保するために重要であ
るが、たとえば50℃における粘度が100から200
0ポイズであればより0分散液を製造する方法としては
、高IAVエアをかけることができる装置を用すればよ
い。
The viscosity of solution M or B is important to ensure stringiness, but for example, if the viscosity at 50°C is 100 to 200
If the poise is 0, a method for producing a 0 poise dispersion may be achieved by using an apparatus capable of applying high IAV air.

次に該液をできるだけ紬い孔径のノズルから押し出す。Next, the liquid is forced out through a nozzle with a hole diameter as large as possible.

たとえば孔断面積が等価の円の直径から計算される有効
直径が100ミクロン以下、好會しくば50ミクロン以
下、更に好ましくは30ミクロン以下である紡糸口金か
ら乾湿式又は湿式で紡糸する。
For example, the material is spun in a dry or wet manner from a spinneret having an effective diameter calculated from the diameter of an equivalent circle with a pore cross-sectional area of 100 microns or less, preferably 50 microns or less, and more preferably 30 microns or less.

吐出された液は、ポリマーを同時に凝固せしめうる凝固
液と接触させればよい。
The discharged liquid may be brought into contact with a coagulating liquid that can coagulate the polymer at the same time.

凝固液としては水、メタノール、エタノール、イソプロ
パツール、グリセ13ン等が挙ケラれ、これらを溶液A
、Bの溶剤と混合してもよい。
Examples of the coagulating liquid include water, methanol, ethanol, isopropanol, glycerine, etc.
, B may be mixed with the solvent.

得られた凝固糸は常法に従って2倍以上、好ましくは4
倍以上、更に好1しくは6倍以上延伸して複合延伸糸と
する。延伸に際しては、冷延伸や、満水延伸、熱延伸を
適当に組み合わせればよい。
The obtained coagulated filament has a density of at least 2 times, preferably 4 times, according to a conventional method.
A composite drawn yarn is obtained by stretching the yarn by a factor of at least 6 times, more preferably by a factor of 6 times or more. For stretching, cold stretching, full water stretching, and hot stretching may be appropriately combined.

得られた延伸糸を、アスペクト比が1000〜1000
00にiるように切断し、常法により叩解すれば本発明
のフィブリル化#&維を得ることができる。
The obtained drawn yarn has an aspect ratio of 1000 to 1000.
The fibrillated #&fiber of the present invention can be obtained by cutting the fiber into a shape of 0.00 and beating it by a conventional method.

このとき、延伸糸は補強効果を発揮せしめるために上記
のアスペクト比に々るように切断することが必要である
At this time, the drawn yarn needs to be cut to match the above aspect ratio in order to exhibit its reinforcing effect.

叩解法としては高速回転刃、ミル等による方法を利用す
ることができる。
As the beating method, a method using a high-speed rotating blade, a mill, etc. can be used.

このようにして得られる線維の特性は、たとえば走査型
電子顕微鏡等の手段で繊維直径、長さ等を容易に知るこ
とができる。
The characteristics of the fibers thus obtained can be easily determined, such as fiber diameter and length, using a scanning electron microscope or the like.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

/ 17マーの「分子量」は希薄溶液粘度法により測定
した重量平均分子量で表す。「憾」は重量参を意味する
The "molecular weight" of /17 mer is expressed as the weight average molecular weight measured by the dilute solution viscosity method. ``憾'' means heavy ginseng.

実施例1〜5 分子量が8万な1wl、150万のポリアクリロニトリ
ルをジメチルアセトアミドに溶解した錆液ム)。このと
きのポリマー濃度#i50℃にわける該溶液粘度が該略
500ポイズに々るようにした。
Examples 1 to 5 A rust solution prepared by dissolving 1 wl of polyacrylonitrile with a molecular weight of 80,000 and 1.5 million in dimethylacetamide. At this time, the solution viscosity divided by the polymer concentration #i at 50° C. was adjusted to approximately 500 poise.

他方、分子量が30万であるポリメチルメタクリレート
ホモポリマー及びアクリロニトリル重合体部分304と
メチルメタクリレート及ヒ酢酸ビニルとの共重合体部分
70e6からなる3元ブロックコポリマー(以下相溶化
剤aと略記)の100/1の混合物をジメチルアセトア
ミドに溶解し濃度124の溶液とした(溶液B)6溶液
Aと溶液Bを混合したところ、溶液Bからなる連続相の
中に溶液ムが直径1ミクロンから100ミクロンの微粒
子状で分散した状態を作っているのを光学顕微鏡による
観察で確認した。該混合溶液をrIL径が50ミクロン
の吐出孔を有する紡糸口金から、水/ジメチルアセトア
ミド(’1/1)の混合液からなる凝固液中に吐出し、
60℃の温水中で2ないし15倍延伸し、最後に150
℃のローラーで連続的に乾燥して延伸糸を得た。延伸糸
を長さ30暉に切断し、毎分1700回の速度で回転す
る刃で乾式叩解した。
On the other hand, a ternary block copolymer (hereinafter abbreviated as compatibilizer a) consisting of a polymethyl methacrylate homopolymer having a molecular weight of 300,000 and an acrylonitrile polymer portion 304 and a copolymer portion 70e6 of methyl methacrylate and vinyl acetate. /1 mixture was dissolved in dimethylacetamide to make a solution with a concentration of 124 (solution B) 6 When solutions A and solution B were mixed, a solution mass with a diameter of 1 to 100 microns was formed in the continuous phase consisting of solution B. It was confirmed by observation using an optical microscope that a finely dispersed state was created. The mixed solution is discharged from a spinneret having a discharge hole with an rIL diameter of 50 microns into a coagulating liquid consisting of a mixed solution of water/dimethylacetamide ('1/1),
Stretched 2 to 15 times in warm water at 60°C, and finally stretched to 150
A drawn yarn was obtained by continuous drying with a roller at ℃. The drawn yarn was cut into lengths of 30 mm and dry beaten using a blade rotating at a speed of 1700 times per minute.

これらの超極細繊維を、走査型電子顕微鏡で観察したと
ころ、表1のような結果であった。
When these ultrafine fibers were observed using a scanning electron microscope, the results were as shown in Table 1.

表 実施例6〜8 実施例5Kbハで、相溶化剤をポリメチルメタクリレー
トに対して1150〜1 /200 D Oとする以外
は実施例3と同様にした。
Table Examples 6 to 8 The same procedure as Example 3 was carried out except that in Example 5 Kb C, the compatibilizing agent was changed to 1150 to 1/200 DO relative to polymethyl methacrylate.

これらの超極細繊維を走査型電子顕微鏡で観察したとこ
ろ、表2のような結果であった。
When these ultrafine fibers were observed using a scanning electron microscope, the results were as shown in Table 2.

表 2table 2

Claims (1)

【特許請求の範囲】 1、アクリロニトリルが85%以上であるポリマーから
なり、直径が2ミクロン以下、アスペクト比が1000
以上である複数のフィブリルの根乾部が、該フィブリル
の直径の10倍以上の直径を有するメチルメタクリレー
ト系ポリマーからなる繊維を共有することを特徴とする
フィブリル化繊維。 2、アクリロニトリルを85%以上含有するポリマーを
溶媒に溶解することにより得られる50℃における粘度
が100から2000ポイズである溶液A1重量部とメ
チルメタクリレートを90%以上含有するポリマー及び
必要に応じてアクリロニトリルとメチルメタクリレート
からなる2元コポリマーもしくはアクリロニトリルとメ
チルメタクリレートと他の第三モノマーとからなる3元
コポリマーを溶媒に溶解することにより得られる50℃
における粘度が100から2000ポイズである溶液B
1ないし100重量部を混合して、溶液Bからなる連続
相の中に溶液Aが直径1ミクロンから100ミクロンの
微粒子状で分散した状態とし、次いで該混合溶液を紡糸
口金から乾湿式または湿式法で紡糸して得られる複合凝
固糸を2倍以上延伸して得られる延伸糸を、アスペクト
比が1000〜100000になるように切断し、常法
により叩解して得られる請求項1記載のフィブリル化繊
維の製法。 3、3元コポリマーがアクリロニトリル重合体部分10
〜50%とメチルメタクリレート及び酢酸ビニルとの共
重合体部分50〜90%からなるブロックコポリマーで
ある請求項2記載の製法。
[Claims] 1. Made of a polymer containing 85% or more of acrylonitrile, having a diameter of 2 microns or less and an aspect ratio of 1000.
A fibrillated fiber characterized in that the root dry parts of a plurality of fibrils as described above share fibers made of a methyl methacrylate polymer having a diameter 10 times or more the diameter of the fibrils. 2. 1 part by weight of a solution A having a viscosity of 100 to 2000 poise at 50°C obtained by dissolving a polymer containing 85% or more acrylonitrile in a solvent, a polymer containing 90% or more methyl methacrylate, and acrylonitrile as necessary. and methyl methacrylate or a tertiary copolymer consisting of acrylonitrile, methyl methacrylate, and another third monomer at 50°C.
Solution B having a viscosity of 100 to 2000 poise at
1 to 100 parts by weight are mixed to form a state in which solution A is dispersed in the form of fine particles with a diameter of 1 to 100 microns in a continuous phase consisting of solution B, and then the mixed solution is passed through a spinneret using a dry-wet method or a wet method. The fibrillation according to claim 1, which is obtained by stretching the composite coagulated yarn by twice or more times, cutting the drawn yarn to have an aspect ratio of 1,000 to 100,000, and beating it by a conventional method. Fiber manufacturing method. 3, the ternary copolymer has an acrylonitrile polymer portion of 10
3. The method according to claim 2, wherein the block copolymer is a block copolymer consisting of 50% to 90% copolymer portion of methyl methacrylate and vinyl acetate.
JP26839789A 1989-10-16 1989-10-16 Fibrillated fiber and its production Pending JPH03130410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26839789A JPH03130410A (en) 1989-10-16 1989-10-16 Fibrillated fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26839789A JPH03130410A (en) 1989-10-16 1989-10-16 Fibrillated fiber and its production

Publications (1)

Publication Number Publication Date
JPH03130410A true JPH03130410A (en) 1991-06-04

Family

ID=17457909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26839789A Pending JPH03130410A (en) 1989-10-16 1989-10-16 Fibrillated fiber and its production

Country Status (1)

Country Link
JP (1) JPH03130410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033018A1 (en) * 1996-03-06 1997-09-12 Mitsubishi Rayon Co., Ltd. Fibril based fibers, method of manufacturing same, spinning nozzle used in same, and moldings obtained therefrom
JP2004278797A (en) * 2000-02-24 2004-10-07 Nippon Steel Corp Columnar body and method for determining engagement condition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033018A1 (en) * 1996-03-06 1997-09-12 Mitsubishi Rayon Co., Ltd. Fibril based fibers, method of manufacturing same, spinning nozzle used in same, and moldings obtained therefrom
US6248267B1 (en) 1996-03-06 2001-06-19 Mitsubishi Rayon Co., Ltd. Method for manufacturing fibril system fiber
CN1109137C (en) * 1996-03-06 2003-05-21 三菱丽阳株式会社 Fibril based fibers, method of mfg. same, spinning nozzle used in same, and moldings obtained therefrom
JP2004278797A (en) * 2000-02-24 2004-10-07 Nippon Steel Corp Columnar body and method for determining engagement condition

Similar Documents

Publication Publication Date Title
US3047456A (en) Manufacture of paper products from fibers wet spun from polymer blends
JPS6245713A (en) High tensile high modulas filament
KR870001444B1 (en) Y type section acrylic fiber and it&#39;s making method
US3932577A (en) Method for making void-free acrylic fibers
JPH0345708A (en) Forming method for melt spinning acrylic fiber adapted for heat conversion to high strength carbon fiber
JPS5818444B2 (en) Microporous acrylic fiber with improved water absorption
JPH03130410A (en) Fibrillated fiber and its production
JPS61119707A (en) Acrylic fiber having excellent durability and color-developability and production thereof
CN113151935A (en) Graphene material with high strength and high toughness and preparation method thereof
JPH03130411A (en) Ultrafine fiber and its production
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
CN110330754A (en) Primary film, polyacrylonitrile film, polyacrylonitrile-radical C film and preparation method
Ranjan et al. Multi-walled carbon nanotube/polymer composite: a nano-enabled continuous fiber
CN113737393B (en) Electrostatic spinning nanofiber membrane and preparation method thereof
JP2004036058A (en) Carbon fiber, carbon fibril obtained therefrom, method for producing the carbon fiber and precursor fiber thereof
JPH10504616A (en) Acrylonitrile filament manufacturing method
KR920007107B1 (en) Acrylic synthetic fiber and process for preparation thereof
JPS61215708A (en) Production of multifilament yarn
JPS62162010A (en) Production of polyvinyl alcohol fiber of high tenacity and elasticity
Chung The effect of lithium chloride on polybenzimidazole and polysulfone blend fibers
JPH0586970B2 (en)
JP2000080521A (en) Slittable acrylic fiber, slit acrylic fiber and sheetlike material
JPH05148709A (en) Acrylic modified cross section fiber and its production
JPH1112854A (en) Precursor fiber for acrylic carbon fiber and its production
Ibrahim et al. Spinning Techniques of Poly (vinyl Alcohol) Fibers for Various Textile Applications