JPH03130374A - Plating method - Google Patents

Plating method

Info

Publication number
JPH03130374A
JPH03130374A JP27729189A JP27729189A JPH03130374A JP H03130374 A JPH03130374 A JP H03130374A JP 27729189 A JP27729189 A JP 27729189A JP 27729189 A JP27729189 A JP 27729189A JP H03130374 A JPH03130374 A JP H03130374A
Authority
JP
Japan
Prior art keywords
plating
acid
aromatic
molding
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27729189A
Other languages
Japanese (ja)
Inventor
Toshihiko Muneto
俊彦 宗藤
Meiji Tsuruta
明治 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JPH03130374A publication Critical patent/JPH03130374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To improve the adhesive property between a base material and a metal plating layer by compounding a specific ratio of titanium oxide having a specific grain size in the plating method for an arom. polyester resin molding which can form an anisotropic molten phase. CONSTITUTION:The resin compsn. prepd. by packing 35 to 80wt.% titanium dioxide of 1 to 15mu average grain size to the arom. polyester which can form the anisotropic molten phase is made into the molding. This molding is subjected to a surface treatment by using an aq. alkaline soln. and then to a metal plating treatment. The adhesive property of the plating is insufficient if the average grain size of the titanium dioxide is <1mu. The surface condition after the plating is degraded if the average grain size is >15mu. There is no effect in the adhesive property of the plating if the amt. of the titanium dioxide to be packed is <35%. The molding is difficult and the material strength is low if the amt. exceeds 80%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、異方性溶融相を形成し得る芳香族ポリエステ
ル樹脂成形体のめっき方法に関する。更に詳しくは、そ
の樹脂表面に金属めっき層を容易に形威し得る異方性溶
融相を成形し得る芳香族ポリエステル樹脂成形体のめっ
き方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of plating an aromatic polyester resin molded body capable of forming an anisotropic melt phase. More specifically, the present invention relates to a method of plating an aromatic polyester resin molded body, which can form an anisotropic melt phase that can easily form a metal plating layer on the resin surface.

[従来の技術および発明が解決しようとする課a]異方
性溶融相を形成し得る芳香族ポリエステルは、一般の芳
香族ポリエステルに比べ耐熱性が高く、線膨張係数が低
くまた溶融時の流動性が良いことから、自動車、電気電
子部品をはじめとする多数の分野で利用されている。更
に、これらの分野では機能性、又は装飾性の面から成型
物表面を金属めっきすることがしばしば要求される。と
ころで高分子成形物は、絶縁体であるため高分子表面に
金属めっき層を施すには、表面層に微細な凹凸面を形成
させ、金属のアンカー効果を利用する方法、または表面
層に官能基を導入し、金属との化学結合力を利用する方
法が用いられている。
[Issues to be solved by the prior art and the invention a] Aromatic polyesters capable of forming an anisotropic melt phase have higher heat resistance and lower coefficient of linear expansion than general aromatic polyesters, and have a low flow rate during melting. Due to its good properties, it is used in many fields including automobiles and electrical and electronic parts. Furthermore, in these fields, metal plating on the surface of the molded product is often required for functional or decorative purposes. By the way, polymer molded products are insulators, so in order to apply a metal plating layer to the polymer surface, there are two methods: forming a finely uneven surface on the surface layer and utilizing the anchor effect of the metal, or adding functional groups to the surface layer. A method is being used that utilizes the chemical bonding force with metals.

上記のアンカー効果を利用する方法は、酸、アルカリ水
溶液、或いは有機溶剤を用い、あらかじ′め樹脂中に分
散させておいた無機物又はゴム成分を溶出させる手法、
又はサンドブラスト等による機械的粗化法である。また
、化学結合力を利用する方法は、基材に酸、アルカリ或
いはプラズマ照射処理などを施し、樹脂の表面に官能基
を形成させることにより、金属めっき層の密着性を向上
させる方法である。これらの方法は、塗装、真空蒸着、
スパッタリング、イオンブレーティング、無電解めっき
等の乾式、及び湿式のめっきを行う際の前処理法として
通常行われている。
The method of utilizing the above-mentioned anchor effect is a method of eluting inorganic substances or rubber components that have been dispersed in the resin in advance using an acid, alkali aqueous solution, or an organic solvent;
Alternatively, it is a mechanical roughening method such as sandblasting. In addition, the method of utilizing chemical bonding strength is a method of improving the adhesion of the metal plating layer by subjecting the base material to acid, alkali, or plasma irradiation treatment to form functional groups on the surface of the resin. These methods include painting, vacuum deposition,
It is commonly used as a pretreatment method for dry and wet plating such as sputtering, ion blating, and electroless plating.

異方性溶融相を形成し得る芳香族ポリエステル樹脂のめ
っきは、一般にガラス繊維を充填した組成物を用い粗表
面化処理後めっきを行う方法が試みられている。また、
特開平1−92241号公報記載の液晶ポリエステル樹
脂組成品の表面処理方法が知られている。この方法は、
異方性溶融相を形成しうる溶融加工性ポリエステルに周
期律表mA、nB、IIIA、IVA、VA族元素から
なる群より選ばれた1種又は2種以上の元素を含む無機
充填材を組成物全体量に対して5〜80重量部%含有せ
しめてなる液晶ポリエステル樹脂組成物から成る成形品
を、アルカリ金属の水酸化物又はアルカリ土類金属の水
酸化物を主成分とする水溶液に接触処理せしめることを
特徴とする液晶ポリエステル樹脂成形品の表面処理法で
ある。
For plating aromatic polyester resins capable of forming an anisotropic melt phase, attempts have generally been made to use a composition filled with glass fibers and carry out plating after surface roughening treatment. Also,
A method for surface treatment of liquid crystal polyester resin compositions is known, which is described in JP-A-1-92241. This method is
Composition of an inorganic filler containing one or more elements selected from the group consisting of elements of groups mA, nB, IIIA, IVA, and VA of the periodic table in a melt-processable polyester capable of forming an anisotropic melt phase. A molded article made of a liquid crystal polyester resin composition containing 5 to 80 parts by weight based on the total amount of the product is brought into contact with an aqueous solution containing an alkali metal hydroxide or an alkaline earth metal hydroxide as a main component. This is a surface treatment method for liquid crystal polyester resin molded products, which is characterized by subjecting them to a treatment.

しかしながら装飾品、自動車部品及び電気電子部品等の
多くの分野では、上記特許公報の記載以上に金属めっき
後の表面平滑性に優れがつめつき密着性が良好な異方性
溶融相を形成しつる芳香族ポリエステル樹脂組成物を用
いためっき方法の開発が望まれている。
However, in many fields such as ornaments, automobile parts, and electrical and electronic parts, metal plating forms an anisotropic molten phase with superior surface smoothness and good sticking and adhesion than described in the above patent publication. It is desired to develop a plating method using an aromatic polyester resin composition.

[課題を解決するための手段] 本発明者らは、上記した現状に鑑み金属めっき層へ優れ
ためっき密着性が付与できる特に、異方性溶融相を成形
しうるポリエステル樹脂成形体を得るため鋭意研究を進
めた。その結果、特定の平均粒径を有する酸化チタンを
特定量配合することで著しく密着性が向上しかつ機械的
特性が向上した異方性溶融相を形成しうるポリエステル
樹脂成形体が得られるとを見出だした。
[Means for Solving the Problems] In view of the above-mentioned current situation, the present inventors aimed to obtain a polyester resin molded article that can impart excellent plating adhesion to a metal plating layer, and in particular can form an anisotropic melt phase. He carried out intensive research. As a result, it was found that by blending a specific amount of titanium oxide with a specific average particle size, it is possible to obtain a polyester resin molded article that can form an anisotropic melt phase with significantly improved adhesion and improved mechanical properties. I found a headline.

即ち、本発明は異方性溶融相を形成しうる芳香族ポリニ
ス、チル樹脂に平均粒径が1〜15μmの酸化チタンを
35〜80重量%充填してなる樹脂組成物を成形体とな
し、該成形体をアルカリ性水溶液を用いて表面処理した
後、金属めっき処理することを特徴とするめっき方法に
関するものである。
That is, the present invention provides a molded article of a resin composition comprising an aromatic polyvarnish capable of forming an anisotropic melt phase, a chilled resin filled with 35 to 80% by weight of titanium oxide having an average particle size of 1 to 15 μm, The present invention relates to a plating method characterized in that the molded body is surface-treated using an alkaline aqueous solution and then subjected to metal plating treatment.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で対象とする異方性溶融相を形成しうる芳香族ポ
リエステル樹脂は、溶融時に光学異方性を示す熱可塑性
樹脂であり、一般にサーモトロピック液晶ポリマーに分
類される。上記の如き異方性溶融相を形成するポリエス
テルとしては、芳香族ヒドロキシカルボン酸の中から選
ばれる一種或いは二種以上の化合物を共重合させた芳香
族ポリエステル、又は芳香族ヒドロキシカルボン酸を主
成分として、芳香族ジカルボン酸、脂肪族ジカルボン酸
、芳香族ジオール、脂肪族ジオールの中から化学量論的
にエステル結合を形威し得る少なくとも1種、或いはそ
れ以上の化合物を共重合させた芳香族ポリエステル、及
び芳香族ジカルボン酸。
The aromatic polyester resin capable of forming an anisotropic melt phase, which is the object of the present invention, is a thermoplastic resin that exhibits optical anisotropy when melted, and is generally classified as a thermotropic liquid crystal polymer. The polyester that forms the above-mentioned anisotropic melt phase may be an aromatic polyester obtained by copolymerizing one or more compounds selected from aromatic hydroxycarboxylic acids, or a polyester containing aromatic hydroxycarboxylic acid as the main component. An aromatic compound copolymerized with at least one or more compounds capable of forming an ester bond stoichiometrically from aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aromatic diols, and aliphatic diols. Polyester, and aromatic dicarboxylic acid.

脂肪族ジカルボン酸と芳香族ジオール、脂肪族ジオール
の中から選ばれる1種、或いは2種以上の化合物を共重
合させた芳香族ポリエステルが挙げられる。
Examples include aromatic polyesters obtained by copolymerizing aliphatic dicarboxylic acids and one or more compounds selected from aromatic diols and aliphatic diols.

ポリエステルの構成成分の芳香族ヒドロキシカルボン酸
としては例えば、4−ヒドロキシ安息香酸、3−ヒドロ
キシ安息香酸、2−ヒドロキシ安息香酸、6−ヒドロキ
シ−2−ナフトエ酸、5−ヒドロキシ−2−ナフトエ酸
等の芳香族ヒドロキシカルボン酸又は、4−ヒドロキシ
−2−メチル安息香酸、4−ヒドロキシ−3−メチル安
息香酸、4−ヒドロキシ−2−フェニル安息香酸、2−
クロロ−4−ヒドロキシ安息香酸、3−クロロ−4−ヒ
ドロキシ安息香酸、6−ヒドロキシ−5−クロロ−2−
ナフトエ酸、6−ヒトロキシー7−クロロー2−ナフト
エ酸、6−ヒドロキシ−5,7−ジクロロ−2−ナフト
エ酸等の芳香族ヒドロキシカルボン酸のアルキル、アリ
ル、ハロゲン置換体等が挙げられる。
Examples of aromatic hydroxycarboxylic acids that are constituents of polyester include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 5-hydroxy-2-naphthoic acid, etc. aromatic hydroxycarboxylic acids or 4-hydroxy-2-methylbenzoic acid, 4-hydroxy-3-methylbenzoic acid, 4-hydroxy-2-phenylbenzoic acid, 2-
Chloro-4-hydroxybenzoic acid, 3-chloro-4-hydroxybenzoic acid, 6-hydroxy-5-chloro-2-
Examples include alkyl, allyl, and halogen-substituted aromatic hydroxycarboxylic acids such as naphthoic acid, 6-hydroxy-7-chloro-2-naphthoic acid, and 6-hydroxy-5,7-dichloro-2-naphthoic acid.

芳香族ジカルボン酸としては、テレフタル酸、イソフタ
ル酸、4.4−−ジフェニルジカルボン酸、2,6−ナ
フタレンジカルボン酸、ジフェニルエーテル−4,4゛
−ジカルボン酸、ジフェニルメタン−4,4゛−ジカル
ボン酸、ジフェノキシエタン−4,4′−ジカルボン酸
、ジフェノキシブタン−4,4゛−ジカルボン酸、ジフ
ェニルスルフォン−4,4′−ジカルボン酸、ジフェニ
ルスルファイド−4,4゛−ジカルボン酸、ジフェニル
ケトン−4,4′−ジカルボン酸、3゜4′−ジフェニ
ルジカルボン酸、ジフェニルエーテル−3,4゛−ジカ
ルボン酸、ジフェニルメタン−3,4゛−ジカルボン酸
、ジフェノキシエタン−3,4−一ジカルボン酸、ジフ
ェノキシブタン−3,4゛−ジカルボン酸、ジフェニル
スルフォン−3,4゛−ジカルボン酸、ジフェニルスル
ファイド−3,4−一ジカルボン酸、ジフェニルケトン
−3,4−一ジカルボン酸、3.3′−ジフェニルジカ
ルボン酸、ジフェニルエーテル−3゜3″−ジカルボン
酸、ジフェニルメタン−3゜3゛−ジカルボン酸、ジフ
ェノキシエタン−3゜3゛−ジカルボン酸、ジフェノキ
シブタン−3゜3′−ジカルボン酸、ジフェニルスルフ
ォン−3゜3′−ジカルボン酸、ジフェニルスルファイ
ド−3,3゛−ジカルボン酸、ジフェニルケトン−3゜
3゛−ジカルボン酸等の芳香族ジカルボン酸、又は、ク
ロロテレフタル酸、ブロモテレフタル酸。
Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, 4,4-diphenyldicarboxylic acid, 2,6-naphthalene dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid, diphenylmethane-4,4'-dicarboxylic acid, Diphenoxyethane-4,4'-dicarboxylic acid, diphenoxybutane-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, diphenylsulfide-4,4'-dicarboxylic acid, diphenylketone- 4,4′-dicarboxylic acid, 3゜4′-diphenyldicarboxylic acid, diphenyl ether-3,4゛-dicarboxylic acid, diphenylmethane-3,4゛-dicarboxylic acid, diphenoxyethane-3,4-monodicarboxylic acid, dicarboxylic acid Phenoxybutane-3,4'-dicarboxylic acid, diphenylsulfone-3,4'-dicarboxylic acid, diphenylsulfide-3,4-monodicarboxylic acid, diphenylketone-3,4-monodicarboxylic acid, 3,3'- Diphenyl dicarboxylic acid, diphenyl ether-3゜3''-dicarboxylic acid, diphenylmethane-3゜3゛-dicarboxylic acid, diphenoxyethane-3゜3゛-dicarboxylic acid, diphenoxybutane-3゜3'-dicarboxylic acid, diphenyl sulfone Aromatic dicarboxylic acids such as -3°3'-dicarboxylic acid, diphenylsulfide-3,3'-dicarboxylic acid, and diphenylketone-3'3'-dicarboxylic acid, or chloroterephthalic acid and bromoterephthalic acid.

メチルテレフタル酸、t−ブチルテレフタル酸の如き、
前記芳香族ジカルボン酸のアルキル、ハロゲン置換体等
が挙げられる。
such as methyl terephthalic acid, t-butyl terephthalic acid,
Examples include alkyl and halogen-substituted aromatic dicarboxylic acids.

脂肪族ジカルボン酸としては、トランス−1゜4−シク
ロヘキサンジカルボン酸、シス−1,4−シクロヘキサ
ンジカルボン酸、1,3−シクロヘキサンジカルボン酸
等の環状脂肪族ジカルボン酸、及びその誘導体が挙げら
れる。
Examples of the aliphatic dicarboxylic acids include cycloaliphatic dicarboxylic acids such as trans-1°4-cyclohexanedicarboxylic acid, cis-1,4-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid, and derivatives thereof.

芳香族ジオールとしては、ハイドロキノン、レゾルシン
、4.4−−ジヒドロキシジフェニル。
Aromatic diols include hydroquinone, resorcinol, and 4,4-dihydroxydiphenyl.

4.4゛−ジヒドロキシジフェニルエーテル、3゜4゛
−ジヒドロキシジフェニル、3.4−−ジヒドロキシジ
フェニルエーテル、4.4=−ジヒドロキシベンゾフェ
ノン、3.4”−ジヒドロキシベンゾフェノン、3.3
”−ジヒドロキシベンゾフェノン、4.4−−ジヒドロ
キシジフェニルスルホン、4.4−−ジヒドロキシジフ
ェニルスルフィド、4.4−−ジヒドロキシジフェニル
メタン、3.4−−ジヒドロキシジフェニルスルホン。
4.4゛-dihydroxydiphenyl ether, 3゜4゛-dihydroxydiphenyl, 3.4-dihydroxydiphenyl ether, 4.4=-dihydroxybenzophenone, 3.4"-dihydroxybenzophenone, 3.3
"-dihydroxybenzophenone, 4.4-dihydroxydiphenylsulfone, 4.4-dihydroxydiphenylsulfide, 4.4-dihydroxydiphenylmethane, 3.4-dihydroxydiphenylsulfone.

3.4゛−ジヒドロキジフェニルスルフィド、3゜4゛
−ジヒドロキシジフェニルメタン、3,3−ジヒドロキ
シフェニルスルホン、3.3−−ジヒドロキシジフェニ
ルスルフィド、3.3−−ジヒドロキシジフェニルメタ
ン、2.6−−ナフタレンジオール、1.6−−ナフタ
レンジオール。
3.4'-dihydroxydiphenyl sulfide, 3'4'-dihydroxydiphenylmethane, 3,3-dihydroxyphenyl sulfone, 3.3-dihydroxydiphenyl sulfide, 3.3-dihydroxydiphenylmethane, 2.6-naphthalenediol , 1.6-naphthalene diol.

2.2−一ビス(4−ヒドロキシフェニル)プロパン、
ビス(4−ヒドロキシフェノキシ)エタン等の芳香族ジ
オール、又はクロロハイドロキノン。
2.2-monobis(4-hydroxyphenyl)propane,
Aromatic diols such as bis(4-hydroxyphenoxy)ethane, or chlorohydroquinone.

ブロモハイドロキノン、メチルハイドロキノン。Bromohydroquinone, methylhydroquinone.

t−ブチルハイドロキノン、4−クロルレゾルシン、4
−メチルレゾルシン等の上記アルキル、ハロゲン置換芳
香族ジオールなどが挙げられる。
t-Butylhydroquinone, 4-chlorresorcinol, 4
Examples include the above-mentioned alkyl- and halogen-substituted aromatic diols such as -methylresorcinol.

脂肪族ジオールとしては、トランス−1,4−シクロヘ
キサンジオール、シス−1,4−シクロヘキサンジオー
ル、トランス−1,4−シクロヘキサンジメタツール、
シス−1,4−シクロヘキサンジメタツール、トランス
−1,3−シクロヘキサンジオール、シス−1,2−シ
クロヘキサンジオール、トランス−1,3−シクロへキ
サンジメタツール、エチレングリコール、1.4−ブタ
ンジオール、1,6−ヘキサンジオール、1,8−オク
タンジオール等の環状、直鎖状、又は分岐状脂肪族ジオ
ール、及びその誘導体が挙げられる。
Examples of aliphatic diols include trans-1,4-cyclohexanediol, cis-1,4-cyclohexanediol, trans-1,4-cyclohexane dimetatool,
Cis-1,4-cyclohexane dimetatool, trans-1,3-cyclohexanediol, cis-1,2-cyclohexanediol, trans-1,3-cyclohexane dimetatool, ethylene glycol, 1,4-butane Diol, cyclic, linear, or branched aliphatic diols such as 1,6-hexanediol and 1,8-octanediol, and derivatives thereof.

上記各成分からなる芳香族ポリエステルには、構成成分
及びポリマー中の組成比、シーフェンス分布によっては
、異方性溶融相を形成するものとしないものが存在する
が、本発明で対象とするポリマーは、異方性溶融相を形
成し得る芳香族ポリエステルである。
Among the aromatic polyesters made of each of the above components, there are those that form an anisotropic melt phase and those that do not, depending on the constituent components, the composition ratio in the polymer, and sea fence distribution. is an aromatic polyester capable of forming an anisotropic melt phase.

前記のモノマーを用い異方性溶融相を形威し得る芳香族
ポリエステルを製造する方法については、特に限定はな
い。例えば、代表的な製造方法としては、4−アセトキ
シ安息香酸と4.4゛−ジアセトキシジフェニル、テレ
フタル酸、イソフタル酸を反応させる方法が挙げられる
。反応は、一般に窒素気流中低温から始め、反応進行と
共に温度を連続的に上昇させて行う。得られた粒状の生
成物を更に減圧下或いは、常圧において200〜350
℃の温度で二次固相重縮合反応を行うことができる。こ
の操作により分子量が増大し、得られたポリエステルの
性質は、著しく改良される。
There are no particular limitations on the method for producing an aromatic polyester capable of forming an anisotropic melt phase using the monomers described above. For example, a typical manufacturing method includes a method in which 4-acetoxybenzoic acid is reacted with 4.4'-diacetoxydiphenyl, terephthalic acid, or isophthalic acid. The reaction is generally carried out in a nitrogen stream starting at a low temperature and continuously increasing the temperature as the reaction progresses. The obtained granular product is further heated under reduced pressure or at normal pressure to a temperature of 200 to 350
The secondary solid-state polycondensation reaction can be carried out at a temperature of °C. This operation increases the molecular weight and significantly improves the properties of the polyester obtained.

また、上記の反応を促進するため、例えばルイス酸、ハ
ロゲン化水素、有機酸、又は無機酸の塩及びアンチモン
やゲルマニウムの化合物などの触媒をモノマーに対して
0.01〜1.0重量%用いることもできる。
In addition, in order to promote the above reaction, a catalyst such as a Lewis acid, a hydrogen halide, an organic acid, or an inorganic acid salt, and a compound of antimony or germanium is used in an amount of 0.01 to 1.0% by weight based on the monomer. You can also do that.

本発明に使用するのに適した異方性溶融相を形成し得る
芳香族ポリエステル樹脂は、その溶融粘度が、該ポリエ
ステル樹脂の流動開始温度(F。
Aromatic polyester resins capable of forming an anisotropic melt phase suitable for use in the present invention have a melt viscosity that is equal to or less than the flow onset temperature (F) of the polyester resin.

T、) 〜400℃の温度で103sec−’の剪断速
度で測定する場合に10〜100,000ポアズのもの
、特に10,000ポアズ以下のものが好ましい。(こ
こで流動開始温度は内径lll1!1.長さ10m1の
ダイスを備えた通常の高化式フローテスターにより10
0kg/cdの圧力下、6℃/分で昇温し、溶融粘度が
4,800ポアズを与える温度とした。また、溶融粘度
は、内径0.5mm、長さ2 mmのダイスを備えた高
化式フローテスターにより測定した。)上記の溶融粘度
が10ポアズ未満及び100,000ポアズを越える場
合は、樹脂の成型が困難になるため好ましくない。
T,) from 10 to 100,000 poise, especially less than 10,000 poise, when measured at a shear rate of 103 sec-' at a temperature of ~400°C. (Here, the flow start temperature was measured using a normal high-speed flow tester equipped with a die with an inner diameter of lll1!1 and a length of 10 m1.
The temperature was raised at a rate of 6° C./min under a pressure of 0 kg/cd to give a melt viscosity of 4,800 poise. Further, the melt viscosity was measured using a Koka type flow tester equipped with a die having an inner diameter of 0.5 mm and a length of 2 mm. ) If the above-mentioned melt viscosity is less than 10 poise or more than 100,000 poise, it is not preferable because molding of the resin becomes difficult.

本発明において、前記の異方性溶融相を形成し得る芳香
族ポリエステル樹脂に含有せしめる酸化チタンとは、二
酸化チタンであり、各種製法により製造されるルチル型
及びアナターゼ型のものが用いることができる。
In the present invention, the titanium oxide contained in the aromatic polyester resin capable of forming an anisotropic melt phase is titanium dioxide, and rutile and anatase types manufactured by various manufacturing methods can be used. .

二酸化チタンの平均粒径は、1〜15μmのものが好ま
しく、5〜10μmのものが特に好ましい。平均粒径が
、1μm未満のものは、めっき密着性が不十分である。
The average particle size of titanium dioxide is preferably 1 to 15 μm, particularly preferably 5 to 10 μm. If the average particle size is less than 1 μm, the plating adhesion is insufficient.

また、平均粒径が15μmを越えるものは、めっき後表
面状態が悪化するため実用上好ましくない。
Furthermore, particles with an average particle size exceeding 15 μm are not preferred in practice because the surface condition after plating deteriorates.

前記の酸化チタンは、35〜8Off1%の範囲で用い
られる。ここで、酸化チタンの充填量が35重量%未満
の場合は、めっき密着性に効果がなく、80ff1m%
を越える場合は、成形加工性が困難になりかつ材料強度
が低下するため好ましくない。
The titanium oxide mentioned above is used in a range of 35 to 8%. Here, if the filling amount of titanium oxide is less than 35% by weight, there is no effect on plating adhesion, and 80ff1m%
If it exceeds , it is not preferable because moldability becomes difficult and material strength decreases.

加えて、繊維状物を充填してもよい。ここで、繊維状物
を充填する事は、熱変形温度及び機械的強度が酸化チタ
ンの充填した系に比べ向上するため好ましい。この場合
用いる繊維状物は、平均繊維径が0.1〜30μmでア
スペクト比(平均繊維長/平均繊維径)が10以上のガ
ラス繊維、炭素繊維、グラファイト化繊維、ウィスカー
、金属繊維、無機系繊維、有機系繊維、鉱石系繊維等が
使用可能である。これらの繊維状物は、以下のものが例
示される。
In addition, it may be filled with fibrous material. Here, filling with fibrous material is preferable because the heat distortion temperature and mechanical strength are improved compared to a system filled with titanium oxide. The fibrous materials used in this case include glass fibers, carbon fibers, graphitized fibers, whiskers, metal fibers, and inorganic fibers with an average fiber diameter of 0.1 to 30 μm and an aspect ratio (average fiber length/average fiber diameter) of 10 or more. Fibers, organic fibers, mineral fibers, etc. can be used. Examples of these fibrous materials include the following.

ガラス繊維としては、通常のガラス繊維の他にニッケル
、鋼等の金属上にコートしたガラスファイバー シラン
ファイバー、アミノケイ酸塩ガラスファイバー、中空ガ
ラスファイバー ノンホローファイバー等が使用可能で
あり、炭素繊維としては、ポリアクリロニトリルを原料
とするPAN系、ピッチを原料とするピッチ系繊維が用
いられる。 無機系繊維としては、ロックウール、ジル
コニア、アルミナシリカ、チタン酸カリウム、チタン酸
バリウム、炭化ケイ素、アルミナ、シリカ。
In addition to regular glass fibers, glass fibers coated on metals such as nickel and steel, silane fibers, aminosilicate glass fibers, hollow glass fibers, and non-hollow fibers can be used as carbon fibers. , PAN fibers made from polyacrylonitrile, and pitch fibers made from pitch. Inorganic fibers include rock wool, zirconia, alumina silica, potassium titanate, barium titanate, silicon carbide, alumina, and silica.

高炉スラグ等の各種繊維が用いられる。Various fibers such as blast furnace slag are used.

鉱石系繊維としては、アスベスト、ウオラステナイト、
マグネシウムオキシサルフェート等が使用される。
Mineral fibers include asbestos, wolastenite,
Magnesium oxysulfate and the like are used.

有機系繊維としては、全芳香族ポリアミド繊維。Organic fibers include fully aromatic polyamide fibers.

フェノール樹脂繊維、セルロース繊維、麻糸等が用いら
れる。
Phenol resin fibers, cellulose fibers, hemp threads, etc. are used.

ウィスカーとしては、窒化ケイ素ウィスカー塩基性硫酸
マグネシウムウィスカー、チタン酸バリウムウィスカー
、チタン酸カリウムウィスカー炭化ケイ素ウィスカー、
ボロンウィスカー等が用いられる。
Examples of whiskers include silicon nitride whiskers, basic magnesium sulfate whiskers, barium titanate whiskers, potassium titanate whiskers, silicon carbide whiskers,
Boron whiskers etc. are used.

特に、平均繊維径が0.1〜30μmでアスペクト比(
平均繊維長/平均繊維径)が10以上のガラス繊維、ア
ラミド繊維、チタン酸カリウム繊維、ウオラステナイト
繊維が好ましい。
In particular, when the average fiber diameter is 0.1 to 30 μm, the aspect ratio (
Glass fibers, aramid fibers, potassium titanate fibers, and wolastenite fibers having an average fiber length/average fiber diameter of 10 or more are preferred.

ここで、平均繊維径が0.1μm未満の場合は、材料強
度の向上効果がなく、30μmを越える場合は、金属め
っき後の表面の外観が損なわれるため好ましくない。ま
た、アスペクト比が10未満の場合は、材料強度を低下
させるため好ましくない。
Here, if the average fiber diameter is less than 0.1 μm, there is no effect of improving material strength, and if it exceeds 30 μm, the appearance of the surface after metal plating will be impaired, which is not preferable. Moreover, when the aspect ratio is less than 10, it is not preferable because it lowers the material strength.

繊維状物は、酸化チタンの充填量が35〜80重量%の
範囲内で、5〜20重量%充填することができる。ここ
で、全充填材中の繊維状物の量は、上記範囲内で任意に
用いることができるが、全充填材中の酸化チタンと繊維
状物の総量が80重量%を越える場合は、成形加工性が
困難になりかつ材料強度が低下するため好ましくない。
The fibrous material can be filled with titanium oxide in an amount of 5 to 20% by weight within a range of 35 to 80% by weight. Here, the amount of fibrous materials in the total filler can be arbitrarily used within the above range, but if the total amount of titanium oxide and fibrous materials in the total filler exceeds 80% by weight, molding This is not preferable because it makes processability difficult and reduces material strength.

次に、繊維状物の充填量が5重量%未満の場合は、熱変
形温度及び機械的強度の向上に効果がなく20重量%を
越える場合は、金属めっき後の表面外観性が悪いため好
ましくない。
Next, if the filling amount of the fibrous material is less than 5% by weight, it will not be effective in improving heat distortion temperature and mechanical strength, and if it exceeds 20% by weight, the surface appearance after metal plating will be poor. do not have.

更に、本発明の目的を損なわない範囲で酸化防止剤及び
熱安定剤、紫外線吸収剤、滑剤、離型剤。
Furthermore, antioxidants, heat stabilizers, ultraviolet absorbers, lubricants, and mold release agents within the range that does not impair the purpose of the present invention.

染料、顔料などの着色材、難燃助剤、帯電防止剤などの
通常の添加剤を1種又は2種以上添加することもできる
One or more conventional additives such as colorants such as dyes and pigments, flame retardant aids, and antistatic agents may also be added.

上記の異方性溶融相を形成し得る芳香族ポリエステル樹
脂組成物は、押出成形、射出成形等の通常の成形手段に
より各種部品、シート、板、容器の任意形状に成形され
る。
The aromatic polyester resin composition capable of forming the above-mentioned anisotropic melt phase is molded into arbitrary shapes of various parts, sheets, plates, and containers by conventional molding means such as extrusion molding and injection molding.

本発明のめっき方法は、成形品表面を常法の脱脂工程に
より表面の油膜などの汚れを除去し、次いでアルカリ性
水溶液で表面処理を行う。表面処理に用いるアルカリ性
水溶液は特に限定されないが、水酸化カリウム、水酸化
ナトリウム、水酸化リチウム、水酸化アンモニウム、水
酸化アミンなどからなる113以上の水溶液を用いるこ
とが好ましい。また、上記アルカリ性水溶液にアルコー
ル類、界面活性剤などを混合した表面処理溶液を用いて
もよい。
In the plating method of the present invention, dirt such as an oil film on the surface of the molded article is removed by a conventional degreasing process, and then the surface is treated with an alkaline aqueous solution. The alkaline aqueous solution used for surface treatment is not particularly limited, but it is preferable to use an aqueous solution of 113 or more consisting of potassium hydroxide, sodium hydroxide, lithium hydroxide, ammonium hydroxide, amine hydroxide, and the like. Alternatively, a surface treatment solution obtained by mixing alcohols, surfactants, etc. with the above alkaline aqueous solution may be used.

この成形品の表面処理条件は、用いるアルカリ化合物に
よって異なるが400 g/ l〜800g/lに調整
したアルカリ性水溶液を用いることが好ましく。アルカ
リ水溶液の濃度が、600g/l〜750 g 、/ 
1のものが好ましい。ここで、アルカリ水溶液の濃度が
400 g / 1未満の場合は、長時間の処理時間を
要し好ましくなく、また8 00 g / 1を越える
場合は、作業上危険なため好ましくない。
The surface treatment conditions for this molded article vary depending on the alkaline compound used, but it is preferable to use an alkaline aqueous solution adjusted to 400 g/l to 800 g/l. The concentration of the alkaline aqueous solution is 600 g/l to 750 g/
1 is preferred. Here, if the concentration of the alkaline aqueous solution is less than 400 g/1, it is undesirable because it requires a long processing time, and if it exceeds 800 g/1, it is not preferred because it is dangerous for the work.

次に、成形体の表面処理は、50℃〜80”Cの温度範
囲で行うことができる。表面処理温度が50℃未満の場
合は、表面処理に長時間を要し実用的でなく、80℃を
越える場合は、アルカリ性ミストの多量の発生をひきお
こすので危険である。
Next, the surface treatment of the molded body can be carried out at a temperature range of 50°C to 80"C. If the surface treatment temperature is less than 50"C, the surface treatment takes a long time and is not practical; If the temperature exceeds ℃, a large amount of alkaline mist will be generated, which is dangerous.

次に、成形体の表面処理時間は、成形体の表面処理温度
、アルカリ濃度によって異なるが10〜60分が適切で
ある。表面処理時間が、1o分未満の場合は、表面のエ
ツチング効果が小さくめっき密着性の効果がない。また
、60分を越える場合は、基材劣化の原因、及び生産性
が低下するため好ましくない。
Next, the time for surface treatment of the molded body varies depending on the surface treatment temperature and alkali concentration of the molded body, but 10 to 60 minutes is appropriate. When the surface treatment time is less than 10 minutes, the etching effect on the surface is small and there is no effect on plating adhesion. Moreover, if it exceeds 60 minutes, it is not preferable because it causes deterioration of the base material and reduces productivity.

アルカリ表面処理終了後、成形体を十分洗浄した後、硫
酸、塩酸などの酸性水溶液にて表面処理を行い、成形体
表面に微量に付着しているアルカリ金属塩の除去を行う
。この酸性水溶液による成形体の表面処理条件は、10
〜50℃の温度領域で1〜15分が適切である。
After the alkali surface treatment is completed, the molded body is thoroughly washed, and then surface treated with an acidic aqueous solution such as sulfuric acid or hydrochloric acid to remove trace amounts of alkali metal salts adhering to the surface of the molded body. The surface treatment conditions for the molded body using this acidic aqueous solution were 10
1 to 15 minutes in a temperature range of ~50°C is appropriate.

このような表面処理を行った後異方性溶融相を形成し得
る芳香族ポリエステル樹脂成形体は、−般の無電解めっ
き工程を経て、めっき密着性が著しく向上し、かつめっ
き表面の外観性に優れためっき成形体を得ることができ
る。
Aromatic polyester resin moldings that can form an anisotropic melt phase after such surface treatment undergo a general electroless plating process to significantly improve plating adhesion and improve the appearance of the plated surface. A plated molded body with excellent properties can be obtained.

[実施例] 次に、本発明を実施例を用い具体的に説明する。[Example] Next, the present invention will be specifically explained using examples.

なお、実施例におけるテープ剥離法による密着性試験及
び引張試験機による密着強度試験は以下の方法により行
った。
In addition, the adhesion test using the tape peeling method and the adhesion strength test using a tensile tester in the Examples were conducted by the following method.

○テープ剥離法;無電解めっき後、めっき表面に1mm
の間隔で縦横に11本刻線を入れ、セロテープを貼り付
けた後、金属被覆面に対して90度方向に引き剥し、金
属被覆面の剥がれないで残った格子の割合を測定した。
○ Tape peeling method: After electroless plating, 1mm on the plating surface
After making 11 vertical and horizontal scoring lines at intervals of , and pasting cellophane tape, it was peeled off at 90 degrees to the metal-coated surface, and the proportion of the lattice that remained on the metal-coated surface without being peeled off was measured.

○引張試験;無電解めっき後、光沢硫酸鋼めっきを約7
0μm行い、80℃で2時間乾燥させた後、室温にて放
置した。次いで、めっき品に1cm幅の切り込みを入れ
、引張試験機(島津製作所製、オートグラフ5D−10
0−C)を用いて金属被膜を樹脂基盤に対して垂直に引
張り、その密着力をApl定した。
○Tensile test: After electroless plating, bright sulfuric acid steel plating was applied to about 7
After drying at 80° C. for 2 hours, it was left at room temperature. Next, a 1 cm wide cut was made in the plated product, and a tensile tester (manufactured by Shimadzu Corporation, Autograph 5D-10) was used.
The metal coating was pulled perpendicularly to the resin base using a 0-C), and the adhesion force was determined as Apl.

(実施例1,2) 上記芳香族ポリエステル樹脂(流動開始温度(F、T、
)は島津製作所製、内径1mm、長さ10mmのダイス
を備えた高化式フローテスターを用いて100kg/c
−の圧力下、6℃/分で昇温し溶融粘度が48,000
ポアズを与える温度で測定した結果335℃であった。
(Examples 1 and 2) The above aromatic polyester resin (flow start temperature (F, T,
) is 100 kg/c using a Koka type flow tester manufactured by Shimadzu Corporation and equipped with a die with an inner diameter of 1 mm and a length of 10 mm.
The temperature was raised at a rate of 6°C/min under a pressure of
The measurement result was 335°C at the temperature that gave the poise.

また、溶融粘度は島津製作所製、内径0.5mm、長さ
2關のダイスを備えた高化式フローテスターを用い、温
度−1 340℃、剪断速度10  sec   で測定した結
果、2,000ポアズであった。)と平均粒径10μm
の二酸化チタン(石原産業(株)製)を第2表に示す組
成で混合し、二軸押出し機(日本製鋼新製TEX30S
S)を用い、310℃の温度で押出し造粒を行い、ペレ
ットを作成した。
In addition, the melt viscosity was measured at a temperature of -1340°C and a shear rate of 10 sec using a Koka type flow tester manufactured by Shimadzu Corporation and equipped with a die of 0.5 mm in inner diameter and 2 lengths, and the result was 2,000 poise. Met. ) and average particle size 10μm
Titanium dioxide (manufactured by Ishihara Sangyo Co., Ltd.) was mixed with the composition shown in Table 2, and a twin-screw extruder (Nippon Steel New TEX30S) was used.
Extrusion granulation was performed using S) at a temperature of 310°C to create pellets.

次に、ペレットを150℃で2時間除湿乾燥した後、こ
れらを50トン射出成型機(東芝機械製l550EP)
を用いてシリンダー温度330℃。
Next, after dehumidifying and drying the pellets at 150°C for 2 hours, they were molded into a 50-ton injection molding machine (Toshiba Machine 1550EP).
cylinder temperature of 330℃.

射出圧力1000 kg/ cJ、射出速度高速、金型
温度150℃の条件で7cm幅X7cm長さ×111I
11厚さの試験片を作製し第1表の方法で無電解銅めっ
きを行った。
7cm width x 7cm length x 111I under the conditions of injection pressure 1000 kg/cJ, high injection speed, and mold temperature 150℃.
A test piece having a thickness of 11 was prepared and subjected to electroless copper plating according to the method shown in Table 1.

得られためっき品は、テープ剥離法による密着性試験、
及び光沢硫酸銅めっき後引張試験機による密着強度試験
を行った。その結果を第2表に示す。
The obtained plated products were tested for adhesion by tape peeling method,
After bright copper sulfate plating, an adhesion strength test was conducted using a tensile tester. The results are shown in Table 2.

(実施例3) 実施例1と同様の芳香族ポリエステル樹脂とガラス繊維
(繊維径13μm、カット長140μmのミルドファイ
バー)及び平均粒径10μmの二酸化チタン(石原産業
(株)製)を第2表に示す組成で混合し、二軸押出し機
(日本製鋼新製TEX30SS)を用い、310℃の温
度で押出し造粒を行い、ペレットを作成した。
(Example 3) The same aromatic polyester resin as in Example 1, glass fiber (milled fiber with a fiber diameter of 13 μm and cut length of 140 μm), and titanium dioxide (manufactured by Ishihara Sangyo Co., Ltd.) with an average particle size of 10 μm were prepared in Table 2. The compositions shown were mixed and extrusion granulation was performed at a temperature of 310° C. using a twin-screw extruder (Nippon Steel Shinsei TEX30SS) to create pellets.

次に、ペレットを150℃で2時間除湿乾燥した後、こ
れらを50トン射出成型機(東芝機械製l550EP)
を用いてシリンダー温度330℃。
Next, after dehumidifying and drying the pellets at 150°C for 2 hours, they were molded into a 50-ton injection molding machine (Toshiba Machine 1550EP).
cylinder temperature of 330℃.

射出圧力1000 kg/ cd、射出速度高速、金型
温度150℃の条件で7cm幅X7cm長さ×llll
11厚さの試験片を作製し第1表の方法で無電解銅めっ
きを行った。
7cm width x 7cm length x lllll under the conditions of injection pressure 1000 kg/cd, high injection speed, and mold temperature 150℃
A test piece having a thickness of 11 was prepared and subjected to electroless copper plating according to the method shown in Table 1.

得られためっき品は、テープ剥離法による密着性試験、
及び光沢硫酸銅めっき後引張試験機による密着強度試験
を行った。その結果を第2表に示す。
The obtained plated products were tested for adhesion by tape peeling method,
After bright copper sulfate plating, an adhesion strength test was conducted using a tensile tester. The results are shown in Table 2.

(比較例1) 実施例と同様のポリエステル樹脂を押出機(日本製鋼新
製TEX30SS)を用い、310℃の温度で押出し造
粒を行い、ペレットを作成した。
(Comparative Example 1) The same polyester resin as in Example was extruded and granulated at a temperature of 310°C using an extruder (Nippon Steel Shin-made TEX30SS) to create pellets.

次にペレットを150℃2時間除湿乾燥した後、50ト
ン射出成型機(東芝機械製l550EP)を用いてシリ
ンダー温度330℃、射出圧力1000 kg/ cd
、射出速度高速、金型温度150℃の条件で7cm幅X
7cm長さ×1關厚さの試験片を作製した。
Next, after dehumidifying and drying the pellets at 150°C for 2 hours, they were molded using a 50-ton injection molding machine (Toshiba Machine 1550EP) at a cylinder temperature of 330°C and an injection pressure of 1000 kg/cd.
, 7cm width X under the conditions of high injection speed and mold temperature of 150℃
A test piece with a length of 7 cm and a thickness of 1 cm was prepared.

得られた試験片を用い、第1表の手法で無電解ニッケル
めっきを行った。得られためつき品は、テープ剥離法に
よる密着性試験、及び光沢硫酸鋼めっき後引張試験機に
よる密着強度試験を行った。
Using the obtained test piece, electroless nickel plating was performed using the method shown in Table 1. The resulting preset product was subjected to an adhesion test using a tape peeling method and an adhesion strength test using a tensile tester after plating bright sulfuric acid steel.

その結果を第2表に示す。The results are shown in Table 2.

(比較例2) 二酸化チタンの配合を20重量%に変更した以外は、実
施例1と同様の方法により試験片を作製した。得られた
試験片を用い第1表の手法で無電解銅めっきを行った。
(Comparative Example 2) A test piece was prepared in the same manner as in Example 1, except that the content of titanium dioxide was changed to 20% by weight. Electroless copper plating was performed using the obtained test piece according to the method shown in Table 1.

得られためっき品は、テープ剥離法による密着性試験、
及び光沢硫酸銅めっき後引張試験機による密着強度試験
を行った。その結果を第2表に示す。
The obtained plated products were tested for adhesion by tape peeling method,
After bright copper sulfate plating, an adhesion strength test was conducted using a tensile tester. The results are shown in Table 2.

(比較例3) 実施例1と同様の芳香族ポリエステル樹脂に平均粒径0
.5μmの二酸化チタン(石原産業(株)製)40%配
合し、実施例1と同様の方法により試験片を作製した。
(Comparative Example 3) The same aromatic polyester resin as in Example 1 had an average particle size of 0.
.. A test piece was prepared in the same manner as in Example 1 using 40% of 5 μm titanium dioxide (manufactured by Ishihara Sangyo Co., Ltd.).

得られた試験片を用い第1表の手法で無電解銅めっきを
行った。得られためっき品は、テープ剥離法による密着
性試験、及び光沢硫酸銅めっき後引張試験機による密着
強度試験を行った。その結果を第2表に示す。
Electroless copper plating was performed using the obtained test piece according to the method shown in Table 1. The obtained plated product was subjected to an adhesion test using a tape peeling method and an adhesion strength test using a tensile tester after bright copper sulfate plating. The results are shown in Table 2.

(発明の効果) 本発明によれば、異方性溶融相を成形し得る芳香族ポリ
エステル樹脂に二酸化チタンの平均粒径。
(Effects of the Invention) According to the present invention, the average particle size of titanium dioxide is added to the aromatic polyester resin capable of forming an anisotropic melt phase.

充填量を限定して配合し、エツチング処理を行った後、
無電解めっきを施すことで基材と金属めっき層との密着
性が著しく向上した該樹脂組成物を提供する。かくして
基材と金属めっき層との密着強度を少なくとも0.7k
g/amとすることが可能となる。
After mixing with a limited amount of filling and performing etching treatment,
The present invention provides a resin composition in which the adhesion between a base material and a metal plating layer is significantly improved by electroless plating. In this way, the adhesion strength between the base material and the metal plating layer is at least 0.7k.
g/am.

本発明による樹脂組成物は、アンカー効果により樹脂層
と金属めっき層との密着性を改良し得るものであるため
、通常の蒸着、スパッタリング。
Since the resin composition according to the present invention can improve the adhesion between the resin layer and the metal plating layer due to the anchor effect, it can be easily deposited by ordinary vapor deposition or sputtering.

イオンブレーティング等の真空めっき法に適用する場合
でも、めっき強度の改良が成される事は明白である。
It is clear that the plating strength can be improved even when applied to vacuum plating methods such as ion blating.

Claims (1)

【特許請求の範囲】[Claims] (1)異方性溶融相を形成しうる芳香族ポリエステルに
平均粒径が1〜15μmの酸化チタンを35〜80重量
%充填してなる樹脂組成物を成形体となし、該成形体を
アルカリ性水溶液を用いて表面処理した後、金属めっき
処理することを特徴とするめっき方法。
(1) A resin composition prepared by filling an aromatic polyester capable of forming an anisotropic melt phase with 35 to 80% by weight of titanium oxide having an average particle size of 1 to 15 μm is used as a molded body, and the molded body is alkalineized. A plating method characterized by surface treatment using an aqueous solution and then metal plating treatment.
JP27729189A 1989-07-28 1989-10-26 Plating method Pending JPH03130374A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19397589 1989-07-28
JP1-193975 1989-07-28

Publications (1)

Publication Number Publication Date
JPH03130374A true JPH03130374A (en) 1991-06-04

Family

ID=16316890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27729189A Pending JPH03130374A (en) 1989-07-28 1989-10-26 Plating method

Country Status (1)

Country Link
JP (1) JPH03130374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161404A (en) * 2005-12-13 2007-06-28 Shin Meiwa Ind Co Ltd Dumping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161404A (en) * 2005-12-13 2007-06-28 Shin Meiwa Ind Co Ltd Dumping device

Similar Documents

Publication Publication Date Title
EP0183516B2 (en) Method of manufacturing a laminated film
EP1957565B1 (en) Reinforced composite material
US4997724A (en) Process for surface treatment of moldings of liquid-crystalline polyester resin
JPH0739534B2 (en) Liquid crystalline polyester resin composition having good surface characteristics
EP0376323A2 (en) Aromatic polyester, aromatic polyester amide, filaments thereof and compositions thereof each containing an inorganic filler or magnetic powder
JPS6254073A (en) Surface-metallized resin molding
US4950360A (en) Method of treating the surface of a molded article comprising liquid crystal polyester resin
JP4736548B2 (en) Nonwoven fabric made of liquid crystalline resin fiber
JP3096142B2 (en) Liquid crystalline polyester resin composition
JP2942840B2 (en) Laminated film
JPH03130374A (en) Plating method
JP2946224B2 (en) Resin composition
JPH06306261A (en) Liquid crystal polyester resin composition for blow molding or extrusion molding and molded article thereof
JP2001089581A (en) Sheet and its production
JPH03103464A (en) Resin composition
JPH02155947A (en) Resin composition
JPH0651827B2 (en) Thermo-tropic liquid crystal polymer composition and method for producing the same
JPH06197669A (en) Solid tip for fishing rod
JPH07331451A (en) Treatment of formed thermoplastic synthetic resin article before plating
EP4249203A1 (en) Resin-made pipe
JP7373080B2 (en) Conductive liquid crystal resin composition
JPH03167252A (en) Liquid crystal polymer resin composition
JP2004285108A (en) Polytrimethylene terephthalate resin composition
JPH02301569A (en) Metal plated aromatic polyester resin molded body and plating method therefor
GB2166666A (en) Magnetic tape